
Cloud Computing
Prof. Soumya Kanti Ghosh

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 14
Introduction to Map Reduce

(Refer Slide Time: 00:40)

Hello, so we will continue our discussion on cloud computing. As in our previous lecture

we discussed about data store or data how to manage data in cloud having an overview

of the things. Now, we like to see that another programming paradigm which is call map

reduce right a very popular programming paradigm which is primarily level out by

Google, but now being used for different scientific purposes. So, Google primarily

developed it for their large scale searches search engines primarily to search on huge

amount of volumes of documents which their Google search engines chants, but it

becomes a important paradigm programming paradigm for this scientific world to work

on to exploit this philosophy to efficiently execute for different type of scientific

problems.

(Refer Slide Time: 01:30)

So, map reduce is a programming model developed at Google, primarily objective was to

implement large scale search, text processing on massively scalable web data stored in

using big table or and GFS distributed file system. So, as we obtained that big data and

GFS distributed file systems the data are stored. So, how to process this massively

scalable web data that means, the huge volume of data are coming into play. Design for

processing and generating large volumes of data via massively parallel computation

utilizing tens of thousands of processor at a time.

So, I have a large pool of processors a huge pool of data and I want to do some analysis

out of it. So, how can I do it? So, one very popular problem what we see is that if I have

a huge volume of data and number of processors then how do say want to do some sort

of what counting or counting the frequency of some of the words in that huge volume of

data like I want to find out that how many times IIT, Kharagpur appears in this a huge

chunk of data, which are primarily stored in this HDFS or GFS or big table type of

architecture.

So, and it should be fault tolerant, ensure progress of the computation even if processor

fails and network fails right. So, because as there are huge volume huge number of

processors and say underlining networks, so I do ensure fault tolerant. So, one of the

example is Hadoop open source implementation of map reduce developed at time

volume had over initially developed at Yahoo and then became a open source. Available

in a pre packaged AMIs on Amazon EC 2 platform, right. So, we are what we are

looking at is trying to give a programming provide a programming platform or

programming paradigm which can interact with data basis which are stored in this sort of

cloud data stores right, it can be HDFS, GFS type or managed by big table and so on so

forth.

(Refer Slide Time: 04:00)

So, if we look at again parallel computing as we have seen in our previous lectures, so

different models of parallel computing it depends on the nature and evolution of the

processor, multiprocessor computer architecture. So, it is shared memory model,

distributed memory model, so these are the 2 popular thing. So, parallel computing

developed for computing, intensive scientific tasks as we all know; later found

application in data base arena or data base paradigm also, right.

So, it was initially it is more of a doing a huge scientific task and later we have seen that

it has a lot of application in the database domain too. And we have seen in our earlier

lecture that we have three type of scenario one is shared memory, shared disk and shared

nothing, right. So, whenever we want to do a programming paradigm or work on

something which can work on this sort of parallel programming paradigm where the data

stored in the different this sort of clouds storages, so we need to take care of that what

sort of mechanism is there. Like, whether it is shared memory, shared disk or shared

nothing type of configuration.

(Refer Slide Time: 05:28)

This is the picture already we have seen in our earlier lectures, so we do not want to

repeat. So, it is a shared memory structure, shared disk and shared nothing, but the

perspective we are looking at now is little different. There it is more of the storage where

we are looking at. Now, we are trying to look at that how the programming can exploit

this type of structure.

(Refer Slide Time: 05:52)

So, this is already we have seen; so, shared memory suitable for servers with multiple

CPUs. Shared nothing cluster of independent server each with its own hard disk, so

connected by a high-speed network. And shared disk, so it is a hybrid architecture

independent server cluster shares storage through a high speed network storage like NAS

or SAN. Clusters are connected via to storage via standard Ethernet, fast fiber channel

infini-band and so on and so forth.

So, whenever we do anything parallel or anything parallel computing or parallel storing

and type of things, what is our back of the mind is to have efficiency right. So, you want

to do parallism to one of the major aspect is to have a efficiency. There may be other

aspects of fault tolerance and full proof and failure register and type of thing, but

primarily it should be efficient. Now, first of all the type of work we are doing there

should be inherent parallism into it. If there is no inherent parallism, then it may not be

fruitful to do using always a parallel architecture.

So, first of all they should be inherent parallel it should not be a sequence of operations

and then you try to do a parallel. So, it is job 1, job 2, job 3, job 4 a sequence is there or

in between some parallism is there, but if you want to make a parallel operation, there

may not be.

(Refer Slide Time: 07:22)

So, if a task takes time T in uni-processor, it should take t by p if executed in p processor

ideally if the parallelism is there, and we are thinking that there is no cost in dividing

distributing and type of things. So, it ideally T by p is a something ideal condition we can

have. So, inefficiencies introduced in distributed computation due to need of

synchronization among the processors. So, I need to synchronize among the processor, it

is not like that all processor has you may have the individual clocks and you need to

synchronize that where things will be there. Otherwise if you if you divide the job into 2

where one executed now and one executed after couple of hours then it is it could have

been better that is execute to in a one system. So, synchronization in between the

processor is one of the important aspects. So, need to synchronize.

Overheads of message communication between the processors another aspect; imbalance

in the distribution of work to the processors another, so it may not be equally divided and

type of things. So, these are the different aspects which indirectly affect this efficiency or

bring about inefficiency into this parallel implementation. So, parallel efficiency of an

algorithm can be defined as T by p into T by p. So, if it is scalable we say this is scalable

or scalable parallel efficiency remains constant as the size of the data increased along

with a corresponding increase of the processor.

So, what is happening when more data is coming, so you go on deploying more

processor or you go on requesting from the cloud more processor and then your

efficiency remains constant, the efficiency values does not change? So, then what we say

that it is scalable. So, that if I increase both say for example, for linearly then it goes on

in the constant thing. Parallel efficiency increases with the size of the data for a fixed

number of processor, it increases with the size of the data; and if it is a fixed number of

processor then we can have effectively more efficiency.

(Refer Slide Time: 09:46)

Now, the example, which is there in that book you are referring also you will find the

example in different literature, this sort of example not the same. Consider a very large

collection of documents say the web document crawled by the entire internet. So, it is a

pretty large it is large every day it is growing. The problem is to determine the frequency

that is total number of occurrences of each word in this collection right. So, I want to

determine the total number of what is the frequency of occurrences of each word in this

document d. So, thus if there are n documents and m distinct words, we use to determine

m frequency one for each word right. So, this is a simple problem may be true or may be

more relevant for search engines and type of things.

So, we have 2 approaches let each processor compute the frequency for m by p words.

So, each processors if there are p processors, if the m frequencies I need to calculate, I

divide m by p, so many, so for example, I want to look for I have ten processors and I

have no I am look for some 90 words, m equal to ninety. So, every processor does it

chunk of ten right roughly if it is not divisible then you have to make some asymmetric

division. So, it makes things and that at the end of things they again report the things

together or in some through some system. So, other way let each processor compute the

frequency of m words across n by p documents.

So, total number of documents say 10,000. So, 10,000 number of words I am looking for

90 number of processor I am having 10. So, one is 90 by 10 is the 9 words on an average

given to the every processor and they count on the things.

Other thing what we are telling that each processor compute the frequency for all the 90

words, but on n by p document if that 10,000 words and then p 10 processors; so, some

thousand document so each take 100 documents and do the processing and once that

frequency of this m words by individual professors processors come out then I sum up

this thing and aggregate and so the result that this is the thing right, by followed by all

processors summing their results right. Parallel computing, now which one will be

efficient based on this parallel computing paradigm, we need to look at right. So, parallel

computing is implemented as a distributed memory model with a shared disk, so that

each processor is able to access any document from the disk in parallel with no

contention. So, this can be one of the implementation mechanisms.

(Refer Slide Time: 13:01)

Now, time to read each word from the document say if let us assume that time to read

each word from the document equal to time to send the word to another processor via

inter processor communication and equals to c. So, making thing simple so it may be it

should be means ideally in ideal case or in a real life case it will be different, but we

make these scenarios. So, first approach so time for so time to add to a running total of

the frequencies negligible, so summing up is negligible. Once I find the frequencies of

this a m word then summing up is negligible.

Each what word occurs f times on the document on an average. So, if I for our

calculation sake that each word that (Refer Time: 13:44) on an average, workers some f

time. Time for compute all m frequencies with the single processor equal to then I have n

into m into f into c. So, this is the time to compute m frequencies with a single processor,

if I have a single process this could have been the thing. So, if we do the first approach,

first approach was this one, let each processor compute the frequency of m by p words,

so that is a first approach.

So, each processor reads at most n into m by p into f times. So, parallel efficiency is

calculated as nffc by pnmfc, so 1 by p very vanilla type consideration. So, we take that

all are doing all are morally same frequencies, all are negligible time for the any

aggregation then the all time for the means read and write another operations we have to

consider c, considering this we are getting 1 by p. So, efficiency falls with increasing p.

So, if we increase the p, then the efficiency falls. So, it is not constant. So, it is not

scalable, it is one of the major problem is that though it is what we say easy to

conceptualize etcetera, but there is a problem in the scalability so of the things. This one

that let each processor compute frequencies per n by m words n by m words is not

scalable.

(Refer Slide Time: 15:36)

Whereas, in the second approach, where that m words we divide into the different

processes oh sorry we divide that document d, whereas every processor compute this for

all the m words and then aggregate. So, apparently what it looks that this could me more

costly. So, it is there is a aggregation thing then you are doing clubbing those processor,

club means dividing the m set into different this whole documents set into different

partitions and doing that, this could be in efficient than the first one. But let us see what

is there. So, the number of read performs for each processor is n by p into m into f right

num the time taken to read is n by p m into f. It is because you are having n by p amount

of volume of the data and then want to calculate for m into f into c, so that number of

time taken to calculate this read. Time taken to write partial frequency on of m words in

parallel to disk is m into c into m.

So, once you are done you need to write on the parallel to the disk and that is that comes

to be c into m time taken to communicate partial frequency right to p minus 1 processors.

And then locally adding sub p sub vectors to generate one by p of the final m vector of

frequencies then what we have p into m by p into c. So, what you need to do we are time

taken to communicate partial frequencies right because you do not have the whole

frequencies. So, partial frequency by different processor and p minus 1 processor and

then locally adding p sub vectors to generate 1 by p here of the final m vector

frequencies is this one. So, individually need to do.

So, if we adopt all those things in case of this second approach what we have this parallel

frequency as this structure, so 1 by 1 plus 2 p by n f, so that is if you if you look at it

little man dually if you consult the book, it is not a very difficult problem difficult to

deduce. It is pretty easy just have to go by step by step. Now, this is an interesting

phenomena. So, the term we are having here is 1 plus 2 p by n m. So, in this case a p is

many, many times less than n f. Efficiency of the second approach is higher than that of

the first right here if it is p is many, many times less than n f, then this term that this will

be tending towards one. And it can be seemed that there is much efficiency is much

higher.

(Refer Slide Time: 18:57)

In the first approach, so there is a type it should be, let us in the in first approach each

processor is reading many words than it needs to read resulting in wastage of time. What

we have done in the first approach this many processor we have divided this m into

different chunk. So, the processor say as we as we have taken the example that if I am

having m as ninety and number of processor is p, so 90 by p is 10. So, everybody is

getting 10, but when it is searching the whole document, so number of documents is

reading where there is no hit, it is no success.

So, efficiency, so in the second approach every read is useful right. As it results in a

computation and distributes to the final results. So, for in the second approach, every

read is likely to be useful where it contribute to this result. So, it is scalable also. The

efficiency remains constant at both n and p increases potentially, they proportionally. So,

what we see what we have done there that if my data load increases I will increase the

processor. So, if I proportionally increase the data processor then my efficiency remains

constant in this case in the second case. Efficiency tends to one for fixed p and gradually

increasing n. So, efficiency tends to 1, if the number of processor is fixed and gradually

increased we are increasing n that means we are increasing the data load, number of

processor fixed and it will basically approaches one.

(Refer Slide Time: 20:57)

So, with these context or with these background of that which can be that this doing that

individually then aggregating is becoming more efficient with this things, we look at that

your map reduce model. So, it is a parallel programming abstraction used by many

different parallel applications which carry out large scale computations involving

thousands of processors; leverages a common underlining fault tolerant implementation.

2 phases of map reduce map operation and reduce operation. A configurable number of

M mapper - mapper processor and R reducer processors are assigned to work on the

problem. Computation is coordinated by a single master process. So, what we are having

now? There are different mapper processors like and there is a different reducer

processor. So, whole process, I divide into 2 things.

(Refer Slide Time: 22:16)

Like I have a mapper, so different mapper processor, so there are M processor and there

is reducer. So, there are different reducer processor. So, what we does it when the data

come here it basically do some execution and then this reducer may be based on the type

of problem it will go on different reduce things and do the execution. So, reducer will

generate is more of aggregated results right. So, what it tries to do it is a parallel

programming abstraction used by mineral parallel applications which carryout large scale

computation involving thousands of processors. So, here the application come into play.

So, it is a 2 phase process, one is a map operation, another is a reduce operation. So, that

the configurable number of M mapper processor, R reducer processors, so it is

configurable; that means, you can have more etcetera mapper and reducer.

(Refer Slide Time: 23:28)

So, map reduce phase. So, if we look at the map phase each mapper read approximately

one by m of the input from the global file. So, it is not the whole data d, but a chunk of

the data read. Map operation consists of transforming one set of value key value pair to

another set of key value pair. So, what map does, it is a one set of key value pair to

another set of key value pair. So, map k 1 v 1 to k 2 v2. So, each mapper writes

computational results in one file per reducer. So, what it does, it basically for every

reducer it produces a file. So, it says if there are reducers R 1, R 2, R 3 a mapper m, I

create three files based on the corresponding the reducer. So, the files are sorted by a key

and stored in a local file systems right. The master keeps tracks of the location of these

files. So, there is a master map reduce master, so which takes care of this location of the

file, each mapper produces a one file for every reducers and the master takes care where

the files are stored in the local disk etcetera.

(Refer Slide Time: 24:55)

In the reduce phase, the master informs the reducers where the partial computation have

been stored on local file systems of respective mappers; so that means, in the reducer

phase the reducer consult this master which informs that where its related files are stored

corresponding to the every mapper functions. Reducer makes remote procedure call to

the mappers to fetch the files. So, reducer in turn make a remote procedure call for the

mapper. So, mapper it is somewhere in the disk and the reducer there may be in different

structure with different types of VMs etcetera running on the things ideally it is not far

not geographically distributed then the things will not work. So, nevertheless it is

working on that particular data which are produced by the mapper.

So, each reducer groups the results of the map step using the same key value key value

function f etcetera, so k 2 v 2 k 2 f v 2. So, here the aggregated functions in comes into

play. In other sense, if we remember our problem. So, what we do that every doc, every

key or every word we want to calculate the frequency, so the functional model is

summing up the frequencies of the things, it can be different for different type of things.

So, it does a k 2 into v etcetera. So, it goes for another key value up here. Final results

are return back to the GFS file system Google file system.

(Refer Slide Time: 26:36)

So, map reduce example. So, if we see there are 3 mapper, 2 reducer. So, map function in

this in our case is that is the data d there are the set of what w 1, w 2, w n and it produce

for every w i the count of the things, how much count the portion of the mapper it is

having. So, every w i, it counts the thing. So, if you see if d 1, it has w 1, w 2, w 4, d 2

these are the things and it counts this. So, every mapper does it, and then it basically

stored in a intermediate space where the reducer reads. So, it generates every file for

every reducer like this particular things is generate a particular file for a reducer. So,

there are 2 reducer.

So, for 2 reducer every mapper generates the file. So, and the reducer in turns basically

accumulate those. So, it says that w it has the thing w 1, w 2, so w 1 as 7, w 2 as

something 15. In this case, w 3, w 4 are the other two. So, the reducers reduces the thing

from the inputs of the or from the outputs of the mapper getting the input from the

mappers output.

(Refer Slide Time: 28:08)

So, map reduce model is fault tolerance; there are different way to look at it, one is heart

beat message. So, every particular time period, it says that whether it is a live and type of

things. Communication exists, but no progress master if there are communication exists,

but no progress master duplicate those tasks and assign the processor who are already

completed or some free processors. If the mapper fails, the mapper reassigns key value

designated to it to another work node on the re-execution. So, if it is a failure then it re-

execute the thing. If the reducer fails only the remaining task need to be reassigned to

another node. Since the completed tasks are already written back to Google file system.

So, if the completed tasks are there, they are already in Google file systems only the

remaining tasks need to be reassigned.

(Refer Slide Time: 29:04)

So, if you want to calculate the efficiency of the map reduce, so the general computation

task on a volume of data D. So, takes w D time to uni-processor read time to read data

from disk performing computation write back to the disk. Time to read write one word

from to disk is c. Now, the computation task is decomposed into map reduce stages like

map stage mapping time c m into D data producing and output rho d, reduce stage reduce

time c r rho D and data produced at the output is sigma mu D. So, this is not that

difficult. So, mapping time how much that with D every mapper is doing data produced

time is from the particular mapper which is how much time it is producing reduce

reducers time in calculated with the every c r and that finally, we have that reducer

output.

(Refer Slide Time: 30:11)

So, considering no overheads in decomposing the task into map and reduce stages, we

can have the following relationship. So, if we forget the overhead in decomposing in

mapping and reducing, so we can have this summation of the things. Now, if we had P

processors that serve as both mapper and reducer right irrespective of the phases to solve

problem. So, if we use P processor sometimes it acts as a mapper, sometimes act as a

reducer. Then we have additional overhead each mapper writes to local we have some

additional overheads writes to local disk followed by each reducer remotely reading to

the disk. For analysis purpose time to read to a word locally or remotely, let us consider

as same. Time to read a data from the disk is for each mapper is w D by number of with

an if the number of processor is P w D by P data producer is mapper is rho D by P.

(Refer Slide Time: 31:12)

So, time required to write back to the disk because once you read then you have to after

computation, you have to write back to that is that much. So, similarly data read by each

reducer from its partition to each mappers P mappers are rho D by P by P. So, rho D by P

square. So, if we calculate like that we say that the parallel efficiency of the map reduce

implementation comes as this one, 1 by 1 plus 2 c by w into rho.

(Refer Slide Time: 31:50)

Now, so this is what we get a parallel efficiency out here. Now, if the indexing map

reduce there are several type of applications one is indexing a large collection of

documents right, so that which is primarily one of the major motivation for Google. So,

important aspect for web search as well as handling structured data. So, map task

consists of emitting a word document, record id pair for the each word like as we have

seen w d k into w 1 into n into map to one its map w 1 into every word d ks. So, I can

have some sort of indexing reduce step groups the pair of words and creates entry into

the thing.

So, there are applications in relational operations using map reduce. Execute SQL

statements relational join group by on large set of data. Advantages of parallel data base

large scale fault tolerance we want to exploit and I can have those type of function like as

we have seen that it is a group by clause and type of etcetera we can do, so that some sort

of relational operations we can execute.

So, with these we come to this end of today’s talk. So, what we try to do here to give you

a overview of a map reduce paradigm that how a problem can be divided into a set of

parallel executions, which is a mapper node which creates intermediate results. And there

is a set of reducer nodes which takes this data and create the final results right. And what

we can which there are some of the things which is interesting that the mapper creates

data file for every reducer. So, it is the data is created per reducer. So, the reducer knows

that where the data is there.

Over and above there is a master controller or the map reducer master things which come

to which knows where there things where the data is stored by the mapper and how the

reducer will read. Not only that if the mapper node fails how to reallocate the things; if

the reducer node fails, how to reallocate because the things or the reallocate the not

executed data not executed things not executed yet to be executed operations and so on

and so forth. So, with this we will stop our lecture today.

Thank you.

