
Cloud Computing
Prof. Soumya Kanti Ghosh

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 36
Introduction To DOCKER Container

Hello, so welcome to the course on cloud computing. So, so far what we were discussing

is about that how this cloud computing evolved, what are the different advantages and

challenges in cloud computing? What are the different associated technologies to this

cloud computing aspects? So core architecture and what are the different other type of

technologies which came up with those things.

So, as we have seen it may not be a totally new technology or new innovation as such,

but it is trying to look at all these innovations, all these new approaches and coming up

the things. Another new development what we will look today is a container technology.

So, what we are finding; one way as we have seen that there are challenges in

infrastructure build up, there are challenges in platform build up, there are challenges in

software build up.

That is why we try to migrate from our in house installation to some service providers

installation. So, typically as we have discussed on XAS type of services; infrastructure

platform and software, these are the different type of services. Another problem which is

coming up nowadays is; or rather with the development of software and other

developments like there is a redeployment or reconfiguration or recompilation of the

software whenever we want to ship one package from one environment to other.

This is one of the major motivation towards these; these days we are having devices,

which are pretty resourceful; say your mobile device or some notepad or laptop or even

these days smart watches. So, all those things are resourceful and able to run different

applications. So, one way is looking at that sort of things; other way another aspects of it

is; we are having variety of applications development across the things. So, this type of

portability of one application from one environment to another is becoming a major

challenge.

So, there were the container technology came into picture; where we will be able to

bundle up the application along with these associated dependencies into a container and

push it as a single container to the other type of environment; I mean the amount

container fits, your applications start working on that.

So, cloud in such cases can be a platform to host this container; though there are some

literature or in some forum people say this container technologies is something a

contended to the cloud. But what we see these days not exactly a container to or a

something which is fighting with cloud; rather we can cloud can act as a platform to host

these container and basically cloud can enhance its capability; by adapting this container

technology.

One such container which has become a very popular is the Docker; a open source

container which has become a Docker. So, what will see; we will see a brief introduction

to this Docker container. It will help us in understanding this how this portability of

different systems and software will be there and also help us in looking at this container

technology with a background of a cloud computing.

(Refer Slide Time: 04:24)

So, if you look at that Docker; it is somewhere initial release where March 2013. So, it is

a container management service; main feature of Docker are develop ship run anywhere.

So, this key words if we can see like; develop; ship it and run anywhere. So, irrespective

of where it is, it should be able to run; this is basic philosophy of Docker which tells

everything like you develop once and ship to any environment and run to this. It can be

any your desktop environment, it can be a android environment, it can be a IOS

environment, it can be a say any cloud environment, it can be open stack, it can be azure,

it can be blue mix or Amazon; anything.

(Refer Slide Time: 05:47)

So, that is exactly the container things trying to say. So, the Docker aims at facilitating

developer to easily develop applications, ship them into containers which can then be

deployed anywhere. It has become the buzz word for modern world development;

especially in the face of agile based projects. So, this is the buzzword these days to look

at the these type of things. We will try to make a quick analogy of the things and try to

understand what is there in this type of things.

Now, if you look at how our computing paradigm develop. So, it was somewhere a

system like it maybe a somewhere; something like a laptop or even desktop or some

specialized board or a chassis with blade servers and any type of things, even if I can

look at some devices like network devices, where we basically build some applications

for them. Now, if I am running something on a particular laptop and then want to run it

on a server thing, then in most of the cases I need to recompile the things, I need to align

the things or redevelop; not that redevelop the whole thing, but I need to redevelop a

major portion of the things or recompile the (Refer Time: 06:51) into the server I want to

do for another type of system; I need to again redevelop the things.

So, what is happening that there is a lot of man power uses into the things. Whereas, on

the other side; so one side there is a large (Refer Time: 07:11) miss or there is a everyday

we are coming or means periodically you are coming with new systems and software’s

and ways and type of things. On the other hand we have several applications which are

coming up on the other hand. Some maybe static website; something like background

worker like python and so and so forth, user DB, analytics DB, queue, API endpoints,

web frontend and endless things are being developed.

Now, if you look at that for everything; if you want to have. If you want to sip a

application from one to another and if we want to this sort of recompilation or

reconfiguring the things it is a hell of a job.

(Refer Slide Time: 08:00)

So, what we try to; when look at that interoperability or portability; what we try to do?

We try to set up a matrix. Like say static website; whether it will run on this particular

device, whether you run on this device and so and so forth; it is a user DB and type of

things.

So, if I put tick on this matrix then this is there. So, our major objective is that with

minimal investment in terms of man power, skill, infrastructure and software and so and

so forth; I should be able to have all ticks on this matrix; anything can run anywhere,

type of situations. So, that is a big challenge to add here, but never the less; the whole

computing world wants to achieve.

This leads to commercialization of a product in a better way, marketability of a product

in a better way and rather in some cases like if you look at sensor based technologies; if

the sensor applications runs only on a particular type of smart phone and or a particular

type of OS and it is not running to the other things, then your capability also decreases. I

could have captured through different type of mobile devices, but that portability

becomes a major challenge.

So, these are some of the things which has driven that whether I can have a; somewhere

some intermediate mechanisms which allows me to transfer this data.

(Refer Slide Time: 09:37)

Now, if we try to look at some analogies; look at shipping. I want to ship some product

form one to another. So, one side these products are there like; there can be variety of

products. Like it can be a box, it can be a car, it can be some barrel, it can be even a

piano and drums and servers and etcetera. So, these are the things I want to ship from

place A to B and it can be shift in varies form.

It can be in somewhere some trucks and sort of things, somewhere can be dumbed into a

racks, some fork lifter to lift on the things, somewhere some locomotive or trains being

manufactured out of factory and see it and through crane and put on the ship for shipping

from across the continent.

So, there are a variety of products and variety of techniques and technologies which are

involved in shipping these products. Unless I standardize; like if you thing that the type

of mechanisms required for a server will differ from how you do for a piano or what you

do for a car. So, unless I make a standardized way of doing this business; then things will

not work.

(Refer Slide Time: 11:00)

So, what they found out? They found out a concept for this sort of a docking station or

this sort of a chamber where if it fits in, it can be shipped. So, what we do; any product,

we put into a this sort of docking station or this type of a box. And this box has a

standardized size, standardized mechanism of holding and it can be either put on rack,

put on fork lifter, put on crane, put on ship; can be taken out from factory or inside the

factory or put on the trucks and carry it; these are very popular.

Now, I made this shipping thing to any type of mechanism to transport; by making a

intermediate mechanism call shipping containers. Whether, I can make this thing feasible

for our applications, for our software applications. Now this container is a standardized

size, so if somebody can hold the container; it can hold these products. So, what it does;

the inside the container is more on the product which dictates, outside the container the

infrastructure which dictates. This outside the environment of the container is more

inclined towards this infrastructure by which it is shipped or where it is stored and type

of things.

Inside the container is the way where the product is stored; like piano may have a

different requirement of environment than car than a server systems. So, the same type of

conceptually, the same type of philosophy is being carried to this; when we talk about

container platform, when we talk about Docker.

(Refer Slide Time: 13:11)

So, same thing what we say it is a Docker service. We have different applications and

there are different devices and if I can dock it in somewhere other; which is standardized

and if these devices are able to handle this container or Docker container then my

application will run.

So, what inside that container is there; based on the applications all these related

libraries, binaries, dependences etcetera are contained in this thing; externally where

which infrastructure it is running that is important. So, this sort of philosophy helped in

as we staring that you develop and ship to anywhere; develop, build, ship anywhere.

So, if this type of technology is becoming extremely popular and becoming a defect

standard for this and what we feel that is necessary to discuss. Because most of the cases

what we are doing in a cloud, we are trying to run different applications within this

cloud. Like, if you look at say I want to run in a particular banking application or we talk

about some special web service applications.

So, what it tries to do? It tries to build a container; particular container class in a sense or

a club of services which need to be shipped or needs to be run at different environment.

Let it be as your cloud, let it be open stack cloud, let it be any other sort of cloud like

IBM Blue Mix or Amazon or Google cloud platform any type of platform. My basic

requirement is there; I should not develop, redevelop for every environment and as well

it should run, if the resource permits on my smart phone or my desktops systems or

server and so and so forth.

So, this sort of portability of the things; this container brings into picture.

(Refer Slide Time: 15:40)

So, if we look at again that the basic features; so, Docker has the ability to reduce the

size of development by providing a smaller footprint of the operating system via

containers; so, in the container you have a smaller footprint of the OS. With containers, it

becomes easier for software teams; such as development, QA teams operations to work

seamlessly across applications. So, they are may be at different centers; even for a one

organizations and it can work seamlessly because finally, it should fit into the container

in being shipped to the other things.

One can deploy Docker containers anywhere; on any physical and virtual machines and

even on cloud. So, it is a Docker containers can be deployed anywhere; practically

anywhere or any physical or virtual machines in VMs or physical servers and even on

cloud. Since Docker containers are pretty lightweight, they are easily scalable; that is an

important factor. So, this container; this Docker container is light weight and as it is light

weight then scalability is much easier.

If there is a heavy weight stuff, then there is resource requirement will be much higher

and anything portability is becomes or scalability or scaling up or especially scaling up

becomes extremely difficult; so, as this is light weight, this is much easier.

There are different variants or what we say different flavors of things or components. So,

Docker for Mac, it allows one to run Docker container on Mac OS. Docker on Linux, it

allows one to run Docker container on Linux OS. Docker for windows; Docker engine, it

is used for building Docker images and creating Docker containers. Some sort of over

the bare metal OS; you have the Docker engine, over this Docker containers are placed;

some sort of analogy with the hypervisors of a particular virtualization system.

Docker hub; this is a registry the important thing registry which is used to host various

Docker images. So, this Docker hubs you will find various Docker images; if you are a

developer, you can basically submit in the Docker hub, which can be used by others to

use it. Docker compose; this is used to define application using multiple Docker

containers. So, it is a sort of composition service which is used to define applications

using multiple Docker container. So, these are different components; there are various

others or different flavors of these Docker or different components of this Docker.

(Refer Slide Time: 18:42)

So, if we look at the traditional virtualization; so, we have that underlining server or bare

metal or the backbone systems; physical systems. Over that there is a host ways which

basically provide this service to this server, over that we have that hypervisor or VMM or

Virtual Machine Monitor and this helps us in generating different VMs. And every VMs

can have their own guest OS and over the guest OS; different applications runs.

So, this is the basic philosophy of virtualization already we have seen. So, the server is

the physical server that is used to host multiple virtual machine. Host OS is the base

machine such as Linux or windows, hypervisor as either some sort of hypervisor; it can

be VMWare, Xen, KVM and type of things or commercially VMWare or widows hyper

V that is used to host virtual machines.

One would then install multiple operating system as virtual machines on the top of the

existing hypervisor as guest OS. So, what we do in case of a IAAS type of cloud and

then host your application on the top of each guest OS. So, this is the way normally a

traditional virtualization work.

(Refer Slide Time: 20:08)

A variant of this Docker architecture is that; it has the server OS; case two s and then we

have the Docker engine. So, over the Docker engine we can run different apps; so, it is

going to be light weight and of course, you may not do very large applications, but never

the less if your application is not so demanding; you can basically deploy out here.

Server is a physical server that is used host multiple virtual machines. Host OS is the

base machine such as Linux or windows.

Docker engine is used to run operating systems; which is earlier used to be virtual

machines at Docker containers. So, it is running operating systems which is earlier used

as a virtual machines as Docker containers. And then finally, all apps now run on the

Docker containers; so, it has now Docker containers where this different apps run on this

Docker container. So, what we see there is a; though the philosophically maybe same

sort of aspects is there, but there is some difference with this traditional virtualization.

(Refer Slide Time: 21:30)

So, just to recap that containers are abstraction at the app layer that packages code and

dependencies together. So, it is a; what is this container including Docker container? It is

an abstraction at the app layer; that application layer that packages or bundle code and

dependency together; so, it is together bundled. Multiple container can run on the same

machine and share the OS kernel and other containers each running on isolated processes

in the user space, so that is also possible.

Container takes up less place then virtual machines; container images typically tens of

MBs in size and start almost instantaneously as that is exactly what we are discussing, it

is a low weight and we can much less resource hungry than virtual machines and it can

start instantaneous as it is a low weight.

(Refer Slide Time: 22:38)

So, there are other few concepts which comes back to back. One is that image so we are

talking about images and type of things. So, an image in this context is a light weight,

stand-alone, executable package that includes everything needed to run a piece of

software, including code, runtime, libraries, environment variables, config files etcetera;

so it is important.

So, it is a light weight standalone executable package that includes everything needed to

run that particular software package or software including code, runtime, libraries,

environment variables, configuration files everything. A container is a runtime instance

of an image what the image becomes in memory when actually is executed. So, what is

there? so, I have a bundle things once it start running; it is a instantiation of this image

that is exactly the container, it runs completely isolated from host environment by default

only accessing the host file and ports if considered to do so. So, it is independent of the

host environment.

So, other things there container runs apps natively on the host machines kernel; they

have better performance characteristics than virtual machine, that only get virtual access

to the host resources through a hypervisor. So, it runs directly on the host machines

kernel, containers can get native access each one running in a discrete process taking no

more memory than any executable. So, it is not only light weight; it has performance

wise also instantaneous.

(Refer Slide Time: 24:32)

So, if you look at containers and virtual machines; so, we repeat that things; so we have

the underlining infrastructure of the server base. Host base Docker and then we have that

container, it has the applications with other dependencies. Wheras in case of a hypervisor

or a virtual machine over the hypervisor, we have guest OS and rest of the things.

(Refer Slide Time: 25:05)

So, that is the difference; so, virtual machine run guest operating system; OS layer in

each box. Resource intensive, so as it is requires more resources resulting disc image and

application state in a entangled with the OS settings, system-installed dependencies, OS

security patches and so and so forth. Whereas, container can share a single kernel and

only information that needs to be in a container image is the executable and its package

dependence.

So, what are the different other package dependencies which never need to be installed

on the host OS. Because it is bundled together; these processes run like native processes

and can be managed individual every container. Because they contain their dependency,

there is no configuration entanglement and so containerized applications runs anywhere.

So; that means, I do not have any so to say any binding with this host machine.

So that means, I isolate this my container based package with the host. So, it increases

the portability and can be run any other system. So, same thing; so, if there is a running

on a VM, then we have every app, every copy of an app, every slide modification

requires a some new virtualized environment.

(Refer Slide Time: 26:35)

Whereas in this case slight modification can be done; allows us only to save the

difference between container A and container A dash and that can be done at that

container level.

(Refer Slide Time: 26:58)

So, overall working as we have the Docker, as we have seen this is the Docker engine is

there. So, form the source repository built over this Docker engine; it is a container, a

particular container; class container A, we push it to this container image registry; which

can be searched by the users or the consumer. This container finally, is basically this

Docker is a some sort of a client server mode operation. So, it search and then pull this

things and run on this particular instantiation of the different container classes.

(Refer Slide Time: 27:42)

So, if we try to look at all together like how it can run on the cloud. So, we have

infrastructure hypervisor over that guest OS, we can have a Docker services; in this case

we have due to different container here only one and so and so forth. So, the cloud can

host or can become a platform for running this container type of services. So, that is on

some VMs; that is in a IAAS type of cloud, we can run this sort of services.

(Refer Slide Time: 28:25)

So, there are needs are enormous or needs, requirement, applicability is enormous like

application level virtualization is possible. A single host can run several special

application for utilization of resources; as we have seen when we discussed about special

cloud there are several special applications and now we can have a single host which can

run several special applications. Build once, deploy anywhere, run anywhere, type of

things; philosophy. So, once I develop and build it and then I deploy anywhere, run

anywhere. Better collaboration between developmental of applications, so I can have

better collaborative applications into place.

(Refer Slide Time: 29:19)

There are few terminologies some of them already you have seen. So, like images list of

all local images, run; create a container from an image and execute a command in it. Tag

an image, pull; download an image from a repository, rmi; delete a local image. So, this

is also remove intermediate images if no longer is used so that resources can be released.

(Refer Slide Time: 29:48)

There are some terminology which are more associated with Docker container like ps;

list all running containers, ps minus a; list all containers including the stopped one, top;

display process in the container, start, stop, pause, rm; delete a container, commit; create

an image on the container. What you may notice that many of them things are some sort

of Linux commands; already we are used to it.

So, in this case is also for container we can use those commands those who are interested

you can basically hook into Docker dot com and see that how the coding can be done and

how a container can be built using a Docker engine. So, this is freely downloadable and

you can work and you can run that things on your desktop or server or even on your

android devices, make a particular application and run on different devices.

(Refer Slide Time: 30:59)

So, there are some few more things; one is the Docker file; create an image automatically

using a build script called Docker file can be versioned in a version control system like

Git or SVN, along with other dependencies. Docker hub can automatically build images

based on Docker files on Github, so these things are possible.

(Refer Slide Time: 31:23)

And the Docker hub; where the public repository of Docker images are there; like hub

dot Docker dot com, there is a good resourceful area for this Docker images. And

automated has been automatically built on Docker file. Source for build is available on

the Github.

(Refer Slide Time: 31:44)

So, finally if we look at that different view point or different uses of this Docker is a

worldwide claim to be leading software container platform being used at various levels,

in different environment and became very popular. So, developers use Docker to

eliminate work on my machine problem. So, that is dependency on the things when

collaboration on code with coworkers are much needed.

Operators use Docker to run and manage apps side-by-side in isolated container to get

better compute density; that is the view point or the usage of the operators. Enterprises

use Docker to build agile software delivery pipelines to ship new features faster, more

securely with confident for both Linux, Windows Servers, Linux-on-mainframe apps and

so and so forth.

So, there are different applicability of the Docker and this services becoming pretty

popular and those who are interested in this particular Docker technology, you may go

through that Docker dot com and there are several other open sources; where you can see

that how this compilation can be done and can have your own Docker images and run

out on different platform and see the things. So, as far as the cloud computing paradigm

is concerned; it acts as a platform and have seen application portability across cloud,

making cloud more useful, more acceptable at different environment.

Thank you.

