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1 From Q to R

The notion of numbers started from natural numbers (1, 2, 3, 4, . . .). In order to make the
definitions of addition and subtraction robust, the number zero and negative numbers were added
to it to arrive at the notion of integers (Z). Rational numbers (Q) followed naturally to make
division robust. The next step was a bit more problematic: reals. Initially, it was believed that
all the numbers are rationals, but many suspected that there are more numbers. It was confirmed
when

√
2 was proven to be an irrational number. This forced everyone to change their views as√

2 can easily be realized as the length of hypotenuse of a right angle triangle with other two sides
of length 1. The question then arose: how does one define the set of real numbers? To use the
standard definition that is taught in school is not very precise: the collection of all numbers that
have possibly infinite decimal expansion. In this definition, there are more than one representations
of a number. For example, 2.000000 · · · is the same as 1.999999 · · · . Even worse, it is not clear
how to add or multiply two real numbers in this representation! This is because for a general real
number, its decimal expansion will continue infinitely and without any pattern. Hence given two
real numbers, their addition cannot be defined in the same way as for rational numbers.

Thus we have a serious problem at our hand. While we know intuitively that irrational real
numbers can be added and multiplied, we are unable to define it precisely. These problems were
resolved by mathematician Cauchy through the idea of reals being limits of convegring sequence of
rationals. Rings played a key role!

Definition 1.1. Let (a0, a1, a2, . . .) be an infinite sequence of rational numbers. We say that such
a sequence is a Cauchy sequence if for every rational number ε > 0, there exists an m > 0 such that
for all n ≥ m: |an − am |< ε.

A Cauchy sequence has very strong convergence property: beyond a point, any two numbers in
the sequence must be very close to each other.

Definition 1.2. A Cauchy sequence s = (a0, a1, . . .) converges to a rational number c if for every
rational ε > 0, there exists an m > 0 such that for every n ≥ m: |c− an |< ε.

For example, the sequence (1, 1, 1, 1, 1, . . .) converges to 1. The sequence (1 + 1
1 , 1 + 1

2 , 1 +
1
3 , . . . , 1 + 1

m , . . .) also converges to 1. There are Cauchy sequences that do not converge to a
rational number, and showing this can be non-trivial. For example:

Lemma 1.3. The sequence (1, 1+ 1
2 , 1+ 1

2+ 1
2

, 1+ 1
2+ 1

2+1
2

, 1+ 1
2+ 1

2+ 1

2+1
2

, . . .) is Cauchy and converges

to
√

2.



Proof. Let 1 + pn
qn

be the nth term of the sequence with pn, qn ∈ Z. We have p0 = 1, q0 = 2, and
pn
qn

= 1
1+

pn−1
qn−1

for n ≥ 1. Therefore,

pn
qn

=
qn−1

pn−1 + qn−1
.

We also have that pn and qn are relatively prime (prove this inductively: it is true for n = 0, and
if true for n− 1, must be true for n). This gives: pn = qn−1 and qn = pn−1 + qn−1.

The difference between two consecutive terms is:

pn
qn
− pn−1

qn−1
=

pnqn−1 − qnpn−1

qnqn−1

=
qn−1(pn−2 + qn−2)− (pn−1 + qn−1)qn−2

qnqn−1

=
qn−1pn−2 − pn−1qn−2

qnqn−1
= · · ·
= (−1)n

p1q0 − q1p0
qnqn−1

= (−1)n
1

qnqn−1
.

Recall that qn = qn−1 + pn−1 = qn−1 + qn−2 ≥ 2qn−2. Hence,

| pn
qn
− pn−1

qn−1
|≤ 1

2n−2
.

So the difference between mth and nth term is:

| pn
qn
− pm
qm
| = |

n∑
`=m+1

p`
q`
− p`−1

q`−1
|

= |
n∑

`=m+1

(−1)`
1

q`q`−1
|

≤
n∑

`=m+1

1

q`q`−1

≤
n∑

`=m+1

1

2`−2

≤ 1

2m−2
.

Therefore, the sequence is Cauchy. Let x be the number it converges to. Then,

x = 1 +
1

2 +
1

2 +
1

2 +
1

2 + · · ·

.
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In other words,

x = 1 +
1

1 + x
.

Simplifying, we get:
x2 + x = 2 + x

and therefore, x =
√

2.

In fact, every real number corresponds to a Cauchy sequence:

Lemma 1.4. Let a = m.d1d2d3 · · · with dj between 0 and 9 for j > 0 be the usual representation
of a real number. Then the sequence (m,m+ d1

10 ,m+ d1
10 + d2

100 , . . .) is Cauchy and converges to s.

Proof. The sequence is Cauchy since the difference between its mth and nth term is

n∑
`=m+1

d`
10`

<

n∑
`=m+1

10

10`
<

1

10m−1
.

It converges to the number a because the difference between a and mth term of the sequence is
also bounded by 1

10m−1 .

It is also clear that any Cauchy sequence converges to a real number. This way of defining
real numbers, however, appears even worst than the school way as for every real number, there
are infinitely many Cauchy sequences converging to it! For example, sequence (1, 1k ,

1
2k ,

1
3k , . . .)

converges to 0 for any value of k. So we have not yet solved the problem of finding a unique
representation of real numbers. However, we can easily add and multiply Cauchy sequences as
component wise addition and multiplication of individual rational numbers in the sequence. To see
that this works as required, let

R = {s | s is a Cauchy sequence},

with addition and multiplication of sequences defined as above. With this definition, we have:

Theorem 1.5. R is a commutative ring.

Proof. For a Cauchy sequence s = (a0, a1, . . .), denote ms(ε) to be the smallest number m for which
|an − am |≤ ε. Let s1 = (a0, a1, a2, . . .), and s2 = (b0, b1, b2, . . .) be two Cauchy sequences. Then

s1 + s2 = (a0 + b0, a1 + b1, a2 + b2, . . .)

is a Cauchy sequence since for any ε > 0,

|an + bn − am − bm |≤|an − am | + |bn − bm |≤ ε,

where m = max{ms1( ε2),ms2( ε2)}.
Similarly,

s1 ∗ s2 = (a0 ∗ b0, a1 ∗ b1, a2 ∗ b2, . . .)

is a Cauchy sequence since for every ε > 0,

|an ∗ bn − am ∗ bm |= |an ∗ (bn − bm) + bm ∗ (an − am) |≤|an |
ε

2 |an |
+ |bm |

ε

2 |bm |
= ε,
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where m = max{ms1( ε
2A),ms2( ε

2B )} and A is the smallest positive integer greater than absolute
value of every number in s1, and B is the smallest positive integer greater than absolute value of
every number in s2.

Additive identity is the sequence (0, 0, 0, . . .) and multiplicative identity is the sequence (1, 1, 1, . . .).
Additive inverse of sequence s = (a0, a1, . . .) is (−a0,−a1, . . .).

So the ring R does capture arithmetic over reals. However, it is not a field as division by any
sequence converging to zero is not possible. We fix this in the following way. Let us collect all
Cauchy sequences converging to number 0:

I = {s | s is a Cauchy sequence converging to 0}.

As the naming suggests:

Theorem 1.6. I is an ideal of R.

Proof. Let s1, s2 ∈ I with s1 = (a0, a1, a2, . . .) and s2 = (b0, b1, b2, . . .). By the definition of
convergence, for every rational ε > 0, there exists m1 and m2 such | an |< ε

2 and | bn |< ε
2 for

every n ≥ m = max{m1,m2}. Therefore, for every n ≥ m, |an + bn |< ε and so s1 + s2 ∈ I. It is
clear that the additive identity (all zero sequence) is in I and so is negation of any sequence in I.
Therefore, I is a commutative group under addition.

Now consider s = (a0, a1, a2, . . .) ∈ I and t = (b0, b1, b2, . . .) ∈ R. For every rational ε > 0, there
exists m such that for every n ≥ m, |an |< ε

B where B is the smallest integer greater than every
number in t. Hence, |sn ∗ tn |< ε

B∗ | tn |≤ ε. So I is closed under multiplication by any element of
R and therefore is an ideal of R.

Ideal I is in fact a maximal ideal:

Lemma 1.7. I is a maximal ideal of R.

Proof. Suppose there exists an ideal J of R such that I ⊂ J . Consider a sequence s ∈ J that is not
in I. Let s = (a0, a1, a2, . . .). Since s is Cauchy, for every rational ε > 0 and for every n,m ≥ ms(ε),
|an − am |≤|an − ams(ε) | + |am − ams(ε) |< ε+ ε = 2ε.

Moreover, since s 6∈ I, there exists a rational δ > 0 such that for every ` > 0, there exists an
k ≥ ` with |ak |≥ δ (this is directly from the definition of convergence to a number). Choose ε = δ

4
and ` = ms(ε). Then, for every n ≥ `:

δ ≤|ak |= |ak − an + an |≤|ak − an | + |an |≤ 2ε+ |an |=
δ

2
+ |an | .

Hence, in the sequence s, every number beyond a` is at least δ
4 in absolute value.

Let us modify s a bit:
ŝ = (1, 1, 1, . . . , 1︸ ︷︷ ︸

` times

, a`+1, a`+2, . . .).

Clearly, ŝ ∈ R. The sequence

s− ŝ = (a0 − 1, a1 − 1, a2 − 1, . . . , a` − 1, 0, 0, . . .),

is in I as it converges to 0. Since s ∈ J , ŝ ∈ J . Also, ŝ 6∈ I since s 6∈ I.
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Define a new sequence t as:

t =

1, 1, 1, . . . , 1︸ ︷︷ ︸
` times

,
1

a`+1
,

1

a`+2
, . . .

 .

Sequence t is Cauchy:

| 1

am
− 1

an
|= | an − am

anam
|≤ 16 |an − am |

δ2
,

for any n,m > `. As s is Cauchy, the difference | an − am | gets smaller and smaller as n and m
increase and so the same is true for t. The product

ŝ ∗ t = (1, 1, 1, . . .)

showing that (1, 1, 1, . . .) ∈ J and so J = R. Hence I is maximal.

The quotient ring R/I clearly a field. Its elements are equivalence classes of the form s + I.
The following propery of these equivalence classes is all we need:

Theorem 1.8. Two sequences of R converge to same number if and only if they belong to the same
equivalence class of R/I.

Proof. Let s and t be two sequences converging to the same number c. Then s− t converges to 0,
and so s− t ∈ I showing s and t to be in the same equivalence class. Conversely, if s ∈ t+ I then
s converges to the same number as t since every sequence in I converges to 0.

So R = R/I!

The process of starting with a field F , considering Cauchy sequences of elements of the field,
and then quotienting with an approproate maximal ideal is called completion of F . It can be shown
that completion of R is also R, and so we do not get anything bigger. To define Cauchy sequences
for a field F , we need the notion of valuation defined over F that measures closeness of two elements
of the field, which in our case was | · | . Are there other ways of defining a valuation? If yes, can
we define them for Q? If yes, do we get a different completion than R? We provide answer to all
these questions in the next section.
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