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Preface

Dear Sir or Madam, will you read my book, it took me years to write, will you
take a look?

JOHN LENNON AND PAUL McCARTNEY, Paperback Writer, single

Although I wrote the first edition of this book more than twenty years
ago, my goals for it remain the same. I want students to receive a solid
introduction to the traditional topics. I want readers to come away with
the view that abstract algebra is a contemporary subject—that its con-
cepts and methodologies are being used by working mathematicians,
computer scientists, physicists, and chemists. I want students to enjoy
reading the book. To this end, I have included lines from popular songs,
poems, quotations, biographies, historical notes, dozens of photographs,
hundreds of figures, numerous tables and charts, and reproductions of
stamps and currency that honor mathematicians. I want students to be
able to do computations and to write proofs. Accordingly, I have
included an abundance of exercises to develop both skills.

Changes for the seventh edition include 120 new exercises, new
theorems and examples, and a freshening of the quotations and biogra-
phies. I have also expanded the supplemental material for abstract alge-
bra available at my website.

These changes accentuate and enhance the hallmark features that
have made previous editions of the book a comprehensive, lively, and
engaging introduction to the subject:

» Extensive coverage of groups, rings, and fields, plus a variety of
non-traditional special topics

* A good mixture of now more than 1750 computational and theoreti-
cal exercises appearing in each chapter and in Supplementary
Exercise sets that synthesize concepts from multiple chapters

* Worked-out examples—now totaling 275—providing thorough
practice for key concepts

» Computer exercises performed using interactive software available
on my website

xi
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Preface

* A large number of applications from scientific and computing fields,
as well as from everyday life

* Numerous historical notes and biographies that illuminate the peo-
ple and events behind the mathematics

* Annotated suggested readings and media for interesting further
exploration of topics.

My website—accessible at www.d.umn.edu/~jgallian or through
Cengage’s book companion site at www.cengage.com/math/gallian—
offers a wealth of additional online resources supporting the book,
including:

* True/false questions

* Flash cards

* Essays on learning abstract algebra, doing proofs, and reasons why
abstract algebra is a valuable subject to learn

 Links to abstract algebra-related websites and software packages

e ... and much, much more.

Additionally, Cengage offers the following student and instructor
ancillaries to accompany the book:

* A Student Solutions Manual, available for purchase separately, with
worked-out solutions to the odd-numbered exercises in the book
(ISBN-13: 978-0-547-16539-4; ISBN-10: 0-547-16539-0)

* An online laboratory manual, written by Julianne Rainbolt and me,
with exercises designed to be done with the free computer algebra
system software GAP

* An online Instructor’s Solutions Manual with solutions to the even-
numbered exercises in the book and additional test questions and
solutions

* Online instructor answer keys to the book’s computer exercises and
the exercises in the GAP lab manual.

Connie Day was the copyeditor and Robert Messer was the accuracy
reviewer. | am grateful to each of them for their careful reading of the
manuscript. I also wish to express my appreciation to Janine Tangney,
Daniel Seibert, and Molly Taylor from Cengage Learning, as well as
Tamela Ambush and the Cengage production staff.

I greatly valued the thoughtful input of the following people, who
kindly served as reviewers for the seventh edition:

Rebecca Berg, Bowie State University; Monte Boisen, University of
Idaho; Tara Brendle, Louisiana State University; Jeff Clark, Elon
University; Carl Eckberg, San Diego State University; Tom Farmer,
Miami University; Yuval Flicker, Ohio State University; Ed Hinson,


www.d.umn.edu/~jgallian

Preface xiii

University of New Hampshire; Gizem Karaali, Pomona College; Mohan
Shrikhande, Central Michigan University; Ernie Stitzinger, North
Carolina State University.

Over the years, many faculty and students have kindly sent me valu-
able comments and suggestions. They have helped to make each edition
better. I owe thanks to my UMD colleague Robert McFarland for giv-
ing me numerous exercises and comments that have been included in
this edition. Please send any comments and suggestions you have to me
at jgallian@d.umn.edu.

Joseph A. Gallian
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Preliminaries

The whole of science is nothing more than a refinement
of everyday thinking.

ALBERT EINSTEIN, Physics and Reality

Properties of Integers

Much of abstract algebra involves properties of integers and sets. In this
chapter we collect the properties we need for future reference.

An important property of the integers, which we will often use, is the
so-called Well Ordering Principle. Since this property cannot be proved
from the usual properties of arithmetic, we will take it as an axiom.

Well Ordering Principle

Every nonempty set of positive integers contains a smallest member.

The concept of divisibility plays a fundamental role in the theory of
numbers. We say a nonzero integer ¢ is a divisor of an integer s if there
is an integer u such that s = fu. In this case, we write ¢ | s (read “¢
divides s’). When ¢ is not a divisor of s, we write ¢t 4 s. A prime is a
positive integer greater than 1 whose only positive divisors are 1 and
itself. We say an integer s is a multiple of an integer ¢ if there is an in-
teger u such that s = tu.

As our first application of the Well Ordering Principle, we establish
a fundamental property of integers that we will use often.

1 Theorem 0.1 Division Algorithm

Let a and b be integers with b > 0. Then there exist unique integers q
and r with the property that a = bq + r, where 0 = r < b.

PROOF We begin with the existence portion of the theorem. Consider
the set S = {a — bk | kis an integer and a — bk = 0}.1f 0 € S, then b

3
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divides a and we may obtain the desired result with ¢ = a/b and r = 0.
Now assume O & S. Since S is nonempty [ifa > 0,a — b -0 € S;ifa <
0, a — b(2a) = a(l — 2b) € S; a # 0 since 0 & S], we may apply the
Well Ordering Principle to conclude that S has a smallest member, say
r=a— bg. Then a =bg + r and r =0, so all that remains to be
proved is that r < b.

If r=0b,thena—blg + 1)=a—bg—b=r—>b=0, so that
a—blg+ 1)&€ S Buta—>blg + 1)<a-— bg, and a — bg is the
smallest member of S. So, r < b.

To establish the uniqueness of ¢ and r, let us suppose that there are
integers ¢, ¢, r, and r’ such that

a=bg+r, 0=r<b and a=bqg +7r, 0=r <b.

For convenience, we may also suppose that ' =r. Then bg + r =
bg' + r and b(q —q')=7r"—r. So, b divides ¥ —rand 0 =r' — r=
r" < b. It follows that ¥ — r = 0, and therefore ¥’ = rand ¢ = ¢'. |

The integer ¢ in the division algorithm is called the quotient upon di-
viding a by b; the integer r is called the remainder upon dividing a by b.

B EXAMPLE 1 For a = 17 and b = 5, the division algorithm gives
17=5 -3 + 2; for a = —23 and b = 6, the division algorithm gives
—23 =6(—4) + 1. |

Several states use linear functions to encode the month and date of
birth into a three-digit number that is incorporated into driver’s li-
cense numbers. If the encoding function is known, the division algo-
rithm can be used to recapture the month and date of birth from the
three-digit number. For instance, the last three digits of a Florida male
driver’s license number are those given by the formula 40(m — 1) + b,
where m is the number of the month of birth and 4 is the day of birth.
Thus, since 177 = 40 - 4 + 17, a person with these last three digits
was born on May 17. For New York licenses issued prior to
September of 1992, the last two digits indicate the year of birth, and
the three preceding digits code the month and date of birth. For a
male driver, these three digits are 63m + 2b, where m denotes the
number of the month of birth and b is the date of birth. So, since 701 =
63 - 11 + 2 - 4, a license that ends with 70174 indicates that the
holder is a male born on November 4, 1974. (In cases where the for-
mula for the driver’s license number yields the same result for two or
more people, a “tie-breaking” digit is inserted before the two digits
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for the year of birth.) Incidentally, Wisconsin uses the same method
as Florida to encode birth information, but the numbers immediately
precede the last pair of digits.

Definitions Greatest Common Divisor, Relatively Prime Integers

The greatest common divisor of two nonzero integers a and b is the
largest of all common divisors of a and b. We denote this integer by
gcd(a, b). When ged(a, b) = 1, we say a and b are relatively prime.

The following property of the greatest common divisor of two inte-
gers plays a critical role in abstract algebra. The proof provides an ap-
plication of the division algorithm and our second application of the
Well Ordering Principle.

B Theorem 0.2 GCD Is a Linear Combination

For any nonzero integers a and b, there exist integers s and t such that
gcd(a, b) = as + bt. Moreover, gcd(a, b) is the smallest positive integer
of the form as + bt.

PROOF Consider the set S = {am + bn | m, n are integers and
am + bn > 0}. Since S is obviously nonempty (if some choice of m
and n makes am + bn < 0, then replace m and n by —m and —n), the
Well Ordering Principle asserts that S has a smallest member, say,
d = as + bt. We claim that d = gcd(a, b). To verify this claim, use the
division algorithm to write a = dgq + r, where 0 =r <d. If r > 0,
then r=a —dgq=a — (as + bt)g=a — asq — btqg = a(1 — sq) +
b(—tq) € S, contradicting the fact that d is the smallest member of §.
So, r = 0 and d divides a. Analogously (or, better yet, by symmetry),
d divides b as well. This proves that d is a common divisor of a and b.
Now suppose d’ is another common divisor of a and b and write a =
d'hand b = d'k. Then d = as + bt = (d'h)s + (d'k)t = d'(hs + ki),
so that d’ is a divisor of d. Thus, among all common divisors of a and
b, d is the greatest. |

The special case of Theorem 0.2 when a and b are relatively prime is
so important in abstract algebra that we single it out as a corollary.

1 Corollary

If a and b are relatively prime, than there exist integers s and t such
that as + bt = 1.
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B EXAMPLE 2 gcd(4, 15) = 1; ged(4, 10) = 2; ged(2? - 3% - 5,2 - 37 -
7%) = 2 - 32. Note that 4 and 15 are relatively prime, whereas 4 and 10 are
not. Also, 4 -4 + 15(—1) = 1and 4(—2) + 10- 1 = 2. |

The next lemma is frequently used. It appeared in Euclid’s Elements.
I Euclid’sLemma p | ab Impliesplaorplb

If p is a prime that divides ab, then p divides a or p divides b.

PROOF Suppose p is a prime that divides ab but does not divide a. We
must show that p divides b. Since p does not divide a, there
are integers s and ¢ such that 1 = as + pt. Then b = abs + ptb, and since
p divides the right-hand side of this equation, p also divides b. |

Note that Euclid’s Lemma may fail when p is not a prime, since
61(4-3)but6+4and6+ 3.

Our next property shows that the primes are the building blocks for
all integers. We will often use this property without explicitly saying so.

B Theorem 0.3 Fundamental Theorem of Arithmetic

Every integer greater than 1 is a prime or a product of primes. This

product is unique, except for the order in which the factors appear.

Thatis, ifn =p,p,---p,andn = q,q, - - - q, where the p’s and q’s

are primes, then r = s and, after renumbering the q’s, we have p, = q,
foralli.

We will prove the existence portion of Theorem 0.3 later in this
chapter. The uniqueness portion is a consequence of Euclid’s Lemma

(Exercise 27).
Another concept that frequently arises is that of the least common

multiple of two integers.

Definition Least Common Multiple

The least common multiple of two nonzero integers a and b is the
smallest positive integer that is a multiple of both a and b. We will de-
note this integer by lcm(a, b).

We leave it as an exercise (Exercise 12) to prove that every common
multiple of a and b is a multiple of lcm(a, b).
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# EXAMPLE 3 Icm(4, 6) = 12; lem(4, 8) = 8§; lem(10, 12) = 60;
lem(6, 5) = 30; lem(2? - 3%-5,2-33-7%)=22-3%-5- 72, |

Modular Arithmetic

Another application of the division algorithm that will be important to
us is modular arithmetic. Modular arithmetic is an abstraction of a
method of counting that you often use. For example, if it is now
September, what month will it be 25 months from now? Of course, the
answer is October, but the interesting fact is that you didn’t arrive at the
answer by starting with September and counting off 25 months.
Instead, without even thinking about it, you simply observed that
25 =2-12 + 1, and you added 1 month to September. Similarly, if it
is now Wednesday, you know that in 23 days it will be Friday. This
time, you arrived at your answer by noting that 23 = 7 - 3 + 2, so you
added 2 days to Wednesday instead of counting off 23 days. If your
electricity is off for 26 hours, you must advance your clock 2 hours,
since 26 = 2 - 12 + 2. Surprisingly, this simple idea has numerous im-
portant applications in mathematics and computer science. You will see
a few of them in this section. The following notation is convenient.

When a = gn + r, where ¢ is the quotient and r is the remainder
upon dividing a by n, we write @ mod n = r. Thus,

3mod2=1since3=1-2+1,
6mod2 =0since6=3-2+0,
11mod3 =2since 1l =3 -3 + 2,
62 mod 85 = 62 since 62 = 0 - 85 + 62,
—2mod 15 = 13 since —2 = (—1)15 + 13.

In general, if @ and b are integers and n is a positive integer, then
amod n = b mod n if and only if n divides a — b (Exercise 9).

In our applications, we will use addition and multiplication mod n.
When you wish to compute ab mod n or (a + b) mod n, and a or b is
greater than n, it is easier to “mod first.” For example, to compute
(27 - 36) mod 11, we note that 27 mod 11 = 5 and 36 mod 11 = 3, so
(27 -36) mod 11 = (5 - 3) mod 11 = 4. (See Exercise 11.)

Modular arithmetic is often used in assigning an extra digit to identi-
fication numbers for the purpose of detecting forgery or errors. We pre-
sent two such applications.

B EXAMPLE 4 The United States Postal Service money order shown
in Figure 0.1 has an identification number consisting of 10 digits together
with an extra digit called a check. The check digit is the 10-digit number
modulo 9. Thus, the number 3953988164 has the check digit 2, since
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£ 39539881L42 881018 558041 sx:ﬁm

> THANDS

BERIAL KUMBER YEAR MONTH DAY OFFICE .t

m GHIE 3 {z? STRERT : 1
— . GTATI - A= e 2 =i STATE 3 :
e
1100000800 21 3953988 1Lk 2
Figure 0.1

3953988164 mod 9 = 2.7 If the number 39539881642 were incorrectly
entered into a computer (programmed to calculate the check digit) as,
say, 39559881642 (an error in the fourth position), the machine would
calculate the check digit as 4, whereas the entered check digit would be
2. Thus the error would be detected. |

B EXAMPLE 5 Airline companies, United Parcel Service, and the
rental car companies Avis and National use the modulo 7 values of
identification numbers to assign check digits. Thus, the identification
number 00121373147367 (see Figure 0.2) has the check digit 3 appended

wmwxﬁamwﬂwuﬂ 5 ! e

N PASSENGER RELEIFT = e xm
MATTUWEST AIRI INES >%'m'u-: e HIEF pand m.r‘JUSEF‘H ne
BRERRS"TREE TYL . STORM LAKE ~"~PE=SpsRiEss wi - iy
EATTITN/J0SEFH DR | OSSR aa pftepgomesee i SOWET? M WI025 W ITOVHS

BT VALID FORxx ™THYS 1%0R RELEPT™ © SRR nony WSTTTH NS g!
X TRANSFORTATIONX AT S e K 1902

PEE-BIES/REFUND. WIS F L2 il
FF CHECK /FCILH HU X/WSP i SUX179 09426 N xmsp ; : B
W ILH224.54F26 A0, 63,50 xf-‘nspansps : mmumm-a-!!

mlil(ll llill‘llHilmilllm

P HHH S HFHHHEH H ]l

B0 403. as gl & T R e R i
Nus damarE T i T R BT AT For™TRAVIL
NE . 6.00 20692567618 | 0 D12 13731473K7 3 0002 1573147367 @

%0 450.00 AA146712392

Figure 0.2

"The value of N mod 9 is easy to compute with a calculator. If N = 9¢ + r, where r is
the remainder upon dividing N by 9, then on a calculator screen N + 9 appears as
q.rrrrr . . ., so the first decimal digit is the check digit. For example, 3953988164 +~ 9 =
439332018.222, so 2 is the check digit. If N has too many digits for your calculator, re-
place N by the sum of its digits and divide that number by 9. Thus, 3953988164 mod 9 =
56 mod 9 = 2. The value of 3953988164 mod 9 can also be computed by searching
Google for 3953988164 mod 9.
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Figure 0.3

to it because 121373147367 mod 7 = 3. Similarly, the UPS pickup
record number 768113999, shown in Figure 0.3, has the check digit 2
appended to it. |

The methods used by the Postal Service and the airline companies do
not detect all single-digit errors (see Exercises 35 and 39). However, detec-
tion of all single-digit errors, as well as nearly all errors involving the trans-
position of two adjacent digits, is easily achieved. One method that does
this is the one used to assign the so-called Universal Product Code (UPC)
to most retail items (see Figure 0.4). A UPC identification number has 12
digits. The first six digits identify the manufacturer, the next five identify
the product, and the last is a check. (For many items, the 12th digit is not
printed, but it is always bar-coded.) In Figure 0.4, the check digit is 8.

€— OPEN AT TOP OF SIDE

0 "121000%65897"" 8

Figure 0.4

To explain how the check digit is calculated, it is convenient to intro-
duce the dot product notation for two k-tuples:

(@, ays o osa) - (W, Wy, oo, w) =aw, +aw, +- - +aw,

2
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An item with the UPC identification number a,a,
condition

(@ ay ... a3, 1,3,1,...,3,1)mod 10 = 0.

To verify that the number in Figure 0.4 satisfies the condition above, we
calculate

©0-3+2-1+1-3+0-1+0-3+0-1+6-3+5-1
+8:3+9-1+7-3+8:1)mod 10 =90mod 10 = 0.

a, satisfies the

The fixed k-tuple used in the calculation of check digits is called the
weighting vector.

Now suppose a single error is made in entering the number in
Figure 0.4 into a computer. Say, for instance, that 021000958978 is
entered (notice that the seventh digit is incorrect). Then the computer
calculates

0-3+2-1+1:3+40:-1+0:-3+0-14+9-3
+5-1+8:3+9-1+7-3+8:-1=099.

Since 99 mod 10 # 0, the entered number cannot be correct.

In general, any single error will result in a sum that is not 0 modulo 10.

The advantage of the UPC scheme is that it will detect nearly all
errors involving the transposition of two adjacent digits as well as all
errors involving one digit. For doubters, let us say that the identifica-
tion number given in Figure 0.4 is entered as 021000658798. Notice
that the last two digits preceding the check digit have been trans-
posed. But by calculating the dot product, we obtain 94 mod 10 # 0,
so we have detected an error. In fact, the only undetected transposi-
tion errors of adjacent digits a and b are those where la — bl = 5. To
verify this, we observe that a transposition error of the form

a1a2 et ada.

Qi1 " A =>a410y " " 4;40;° " Ay,

is undetected if and only if
(a,ay...,a, ,a,...,a,  (3,1,3,1,...,3,1)mod 10 = 0.
That is, the error is undetected if and only if

Lap)(3,1,3,1,...,3,1) mod 10
Lay) (3,1,3,1,...,3,1) mod 10.

(al,az,...,aiﬂ,a
=(a,ay...,a

P

Apps -

This equality simplifies to either
(Ba, ., + a)mod 10 = (3a, + a, ;) mod 10
or

(a,., +3a)mod 10 = (a, + 3a, ) mod 10
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depending on whether i is even or odd. Both cases reduce to 2(a,, , — a;)
mod 10 = 0. It follows that la, |, — al = 5,ifa, | # a,

In 2005 United States companies began to phase in the use of a 13th
digit to be in conformance with the 13-digit product indentification
numbers used in Europe. The weighing vector for 13-digit numbers is
(1,3, 1,3,...,3, 1).

Identification numbers printed on bank checks (on the bottom left
between the two colons) consist of an eight-digit number a,a, - - - a
and a check digit a,, so that

ceag) +(7,3,9,7,3,9,7,3,9) mod 10 = 0.

8

(a,,a

1Y

As is the case for the UPC scheme, this method detects all single-
digit errors and all errors involving the transposition of adjacent digits a
and b except when la — bl = 5. But it also detects most errors of the
form:- - -abc--+-—---cba- - -, whereas the UPC method detects no
errors of this form.

In Chapter 5, we will examine more sophisticated means of assign-
ing check digits to numbers.

What about error correction? Suppose you have a number such as
73245018 and you would like to be sure that even if a single mistake
were made in entering this number into a computer, the computer
would nevertheless be able to determine the correct number. (Think of
it. You could make a mistake in dialing a telephone number but still get
the correct phone to ring!) This is possible using two check digits. One
of the check digits determines the magnitude of any single-digit error,
while the other check digit locates the position of the error. With these
two pieces of information, you can fix the error. To illustrate the idea, let
us say that we have the eight-digit identification number a,a, - - - a,. We
assign two check digits a, and a,, so that

(@, *+a,+ -+ +ay+a,)modll =0
and

(a,a »ag, ayy) - (1,2,3,...,10)mod 11 =0

TSR

are satisfied.
Let’s do an example. Say our number before appending the two
check digits is 73245018. Then a, and a,, are chosen to satisfy

(T+3+2+4+5+0+1+8 +a,+a,)mod11 =0 (1)
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and

(7-1+3:2+2:3+4-4+5-5+0-6 2)
+1-7+88+a,-9+a, - 10)mod 11 =0,

Since7+3+2+4+5+0+1+8 =30 and 30 mod 11 = 8,
Equation (1) reduces to

8 + a, + a,y) mod 11 = 0. (1)

Likewise, since (7-1 + 3:2 + 23 + 4-4 + 5-5 +
0-6+1-7+8-8 mod1l1 = 10, Equation (2) reduces to

(10 + 9a, + 10a,,) mod 11 = 0. (2")
Since we are using mod 11, we may rewrite Equation (2') as
(=1 —2a,—a,))mod 11 =0

and add this to Equation (1') to obtain 7 — a, = 0. Thus a, = 7. Now
substituting a, = 7 into Equation (1") or Equation (2'), we obtain
a,, = 7 as well. So, the number is encoded as 7324501877.

Now let us suppose that this number is erroneously entered into a
computer programmed with our encoding scheme as 7824501877 (an
error in position 2). Since the sum of the digits of the received number
mod 11 is 5, we know that some digit is 5 too large or 6 too small
(assuming only one error has been made). But which one? Say the
error is in position i. Then the second dot product has the form a, - 1 +
a2+ -+ (@+5i+aq, , G@+1)+ - +a, 10=
(aja, ...,a, (1,2, ...,10) + 5i.So,(7,8,2,4,5,0,1,8,7,7) -
(1,2,3,4,5,6,7, 8,9, 10) mod 11 = 5i mod 11. Since the left-hand
side mod 11 is 10, we see that i = 2. Our conclusion: The digit in posi-
tion 2 is 5 too large. We have successfully corrected the error.

Mathematical Induction

There are two forms of proof by mathematical induction that we will
use. Both are equivalent to the Well Ordering Principle. The explicit
formulation of the method of mathematical induction came in the 16th
century. Francisco Maurolycus (1494—1575), a teacher of Galileo, used
itin 1575 to prove that 1 + 3 +5 + - - - + (2n — 1) = n?, and Blaise
Pascal (1623-1662) used it when he presented what we now call
Pascal’s triangle for the coefficients of the binomial expansion. The
term mathematical induction was coined by Augustus De Morgan.
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I Theorem 0.4 First Principle of Mathematical Induction

Let S be a set of integers containing a. Suppose S has the property that
whenever some integer n = a belongs to S, then the integer n + 1 also
belongs to S. Then, S contains every integer greater than or equal to a.

PROOF The proof is left as an exercise (Exercise 29). |

So, to use induction to prove that a statement involving positive inte-
gers is true for every positive integer, we must first verify that the state-
ment is true for the integer 1. We then assume the statement is true for
the integer n and use this assumption to prove that the statement is true
for the integer n + 1.

Our next example uses some facts about plane geometry. Recall that
given a straightedge and compass, we can construct a right angle.

I EXAMPLE 6 We use induction to prove that given a straightedge, a
compass, and a unit length, we can construct a line segment of length
V/n for every positive integer n. The case when n = 1 is given. Now we
assume that we can construct a line segment of length \V/z . Then use
the straightedge and compass to construct a right triangle with height 1
and base Vn. The hypotenuse of the triangle has length Vn + 1. So,
by induction, we can construct a line segment of length \/n for every
positive integer n. |

§I EXAMPLE 7 DEMOIVRE’S THEOREM We use induction to prove
that for every positive integer n and every real number 6, (cos 6 +
i sin 6)" = cos nf + i sin nf, where i is the complex number V' —1.
Obviously, the statement is true for n = 1. Now assume it is true for n.
We must prove that (cos 6 + i sin 0)"*! = cos(n + 1)8 + i sin(n + 1)6.
Observe that

(cos @ + isin 0)**! = (cos O + i sin 0)"(cos O + i sin 0)
(cos n@ + i sin nf)(cos 6 + i sin 0)
= cos n6 cos O + i(sin n6 cos 0

+ sin 6 cos nf) — sin n6 sin 6.

Now, using trigonometric identities for cos(a + ) and sin(a + (), we
see that this last term is cos(n + 1)0 + i sin(n + 1)6. So, by induction,
the statement is true for all positive integers. |

In many instances, the assumption that a statement is true for an in-
teger n does not readily lend itself to a proof that the statement is true
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for the integer n + 1. In such cases, the following equivalent form of
induction may be more convenient. Some authors call this formulation
the strong form of induction.

I Theorem 0.5 Second Principle of Mathematical Induction

Let S be a set of integers containing a. Suppose S has the property that
n belongs to S whenever every integer less than n and greater than or
equal to a belongs to S. Then, S contains every integer greater than or
equal to a.

PROOF The proof is left to the reader. |

To use this form of induction, we first show that the statement is true
for the integer a. We then assume that the statement is true for all inte-
gers that are greater than or equal to a and less than n, and use this as-
sumption to prove that the statement is true for n.

B EXAMPLE 8 We will use the Second Principle of Mathematical
Induction with a = 2 to prove the existence portion of the Fundamental
Theorem of Arithmetic. Let S be the set of integers greater than 1 that
are primes or products of primes. Clearly, 2 € S. Now we assume that
for some integer n, S contains all integers k with 2 = k < n. We must
show that n € S. If n is a prime, then n € S by definition. If n is not a
prime, then n can be written in the form ab, where 1 <a <mnand 1 <
b < n. Since we are assuming that both a and b belong to S, we know
that each of them is a prime or a product of primes. Thus, n is also a
product of primes. This completes the proof. |

Notice that it is more natural to prove the Fundamental Theorem of
Arithmetic with the Second Principle of Mathematical Induction than
with the First Principle. Knowing that a particular integer factors as a
product of primes does not tell you anything about factoring the next
larger integer. (Does knowing that 5280 is a product of primes help you
to factor 5281 as a product of primes?)

The following problem appeared in the “Brain Boggler” section of
the January 1988 issue of the science magazine Discover.

I EXAMPLE 9 The Quakertown Poker Club plays with blue chips
worth $5.00 and red chips worth $8.00. What is the largest bet that
cannot be made?
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To gain insight into this problem, we try various combinations of
blue and red chips and obtain 5, 8, 10, 13, 15, 16, 18, 20, 21, 23, 24, 25,
26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40. It appears that the
answer is 27. But how can we be sure? Well, we need only prove that
every integer greater than 27 can be written in the form a-5 +
b - 8, where a and b are nonnegative integers. This will solve the prob-
lem, since a represents the number of blue chips and b the number of red
chips needed to make a bet of a - 5 + b - 8. For the purpose of contrast,
we will give two proofs—one using the First Principle of Mathematical
Induction and one using the Second Principle.

Let S be the set of all integers greater than or equal to 28 of the form
a-5 + b-8, where a and b are nonnegative. Obviously, 28 € S. Now
assume that some integer n € S, say, n = a +5 + b - 8. We must show
that n + 1 € S. First, note that since n = 28, we cannot have both
a and b less than 3. If a = 3, then

n+1=@-5+b-8)+(-3-5+2-8)
—@—-3)-5+®h+2)-8.

(Regarding chips, this last equation says that we may increase a bet
from n to n + 1 by removing three blue chips from the pot and adding
two red chips.) If b = 3, then

n+l=@-5+b-8+((5-5-3:8)
=@+5-5+®»—-3)-8.

(The bet can be increased by 1 by removing three red chips and adding
five blue chips.) This completes the proof.

To prove the same statement by the Second Principle, we note that
each of the integers 28, 29, 30, 31, and 32 is in S. Now assume that for
some integer n > 32, S contains all integers k with 28 = k < n. We
must show that n € S. Since n — 5 € S, there are nonnegative
integers a and b such that n —5=a-5 + b - 8. But then n =
(a+1)-5+b-8 Thusnisin S. |

Equivalence Relations

In mathematics, things that are considered different in one context may
be viewed as equivalent in another context. We have already seen one
such example. Indeed, the sums 2 + 1 and 4 + 4 are certainly different
in ordinary arithmetic, but are the same under modulo 5 arithmetic.
Congruent triangles that are situated differently in the plane are not the
same, but they are often considered to be the same in plane geometry.
In physics, vectors of the same magnitude and direction can produce
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different effects—a 10-pound weight placed 2 feet from a fulcrum pro-
duces a different effect than a 10-pound weight placed 1 foot from a
fulcrum. But in linear algebra, vectors of the same magnitude and di-
rection are considered to be the same. What is needed to make these
distinctions precise is an appropriate generalization of the notion of
equality; that is, we need a formal mechanism for specifying whether or
not two quantities are the same in a given setting. This mechanism is an
equivalence relation.

Definition Equivalence Relation
An equivalence relation on a set S is a set R of ordered pairs of
elements of S such that

1. (a,a) € Rforalla € S (reflexive property).
2. (a, b) € R implies (b, a) € R (symmetric property).
3. (@, b) € Rand (b, c¢) € Rimply (a,c) €E R (transitive property).

When R is an equivalence relation on a set S, it is customary to write
aRb instead of (a, b) € R. Also, since an equivalence relation is just a

generalization of equality, a suggestive symbol such as =, =, or ~ is
usually used to denote the relation. Using this notation, the three condi-
tions for an equivalence relation become a ~ a; a ~ b implies

b ~a;and a ~ b and b ~ cimply a ~ c. If ~ is an equivalence relation
on a set S and a € S, then the set [a] = {x € S | x ~ a} is called the
equivalence class of S containing a.

B EXAMPLE 10 Let S be the set of all triangles in a plane. If a, b € S,
define a ~ b if a and b are similar—that is, if @ and b have correspond-
ing angles that are the same. Then, ~ is an equivalence relation on S. il

B EXAMPLE 11 Let S be the set of all polynomials with real coeffi-
cients. If f, g € S, define f ~ g if f' = g, where f' is the derivative of f.
Then, ~ is an equivalence relation on §. Since two polynomials with
equal derivatives differ by a constant, we see that for any fin S, [f] =
{f+ clcisreal}. |

B EXAMPLE 12 Let S be the set of integers and let  be a positive inte-
ger. If a, b € S, define a = b if a mod n = b mod n (thatis, if a — b is
divisible by n). Then, = is an equivalence relation on S and [a] = {a +
kn | k € S}. Since this particular relation is important in abstract alge-
bra, we will take the trouble to verify that it is indeed an equivalence
relation. Certainly, a — a is divisible by n, so that a = a for all a in S.
Next, assume that a = b, say, a — b = rn. Then, b — a = (—r)n, and
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therefore b = a. Finally, assume thata = b and b = ¢, say,a — b =rn
andb — ¢ = sn. Then,wehavea —c=(@—b)+ (b —c)=m+sn=
(r + s)n, so that a = c. |

B EXAMPLE 13 Let = be as in Example 12 and let n = 7. Then we
have 16 =2;9 = —5;and 24 = 3. Also, [1] = {..., =20, —13, —6, 1,
8,15,...}and [4] ={..., —17,—10, —3,4,11, 18, ...}. |

B EXAMPLE 14 Let S={(a, b) | a, b are integers, b # 0}. If
(a, b), (c,d) € S, define (a, b) = (¢, d ) if ad = bc. Then = is an equiv-
alence relation on S. [The motivation for this example comes from frac-
tions. In fact, the pairs (a, b) and (c, d) are equivalent if the fractions a/b
and c/d are equal.]

To verify that = is an equivalence relation on S, note that (a, b) = (a, b)
requires that ab = ba, which is true. Next, we assume that (a, b) = (c, d),
so that ad = bc. We have (c, d) = (a, b) provided that cb = da, which is
true from commutativity of multiplication. Finally, we assume that (a, b) =
(c, d)and (c, d) = (e, f) and prove that (a, b) = (e, f). This amounts to
using ad = bc and cf = de to show that af = be. Multiplying both sides
of ad = bc by fand replacing cf by de, we obtain adf = bcf = bde. Since
d # 0, we can cancel d from the first and last terms. |

Definition Partition

A partition of a set S is a collection of nonempty disjoint subsets of S
whose union is S. Figure 0.5 illustrates a partition of a set into four
subsets.

Figure 0.5 Partition of S into four subsets.

B EXAMPLE 15 The sets {0}, {1,2,3,...},and {..., =3, =2, —1}
constitute a partition of the set of integers. |

B EXAMPLE 16 The set of nonnegative integers and the set of non-
positive integers do not partition the integers, since both contain 0. 1

The next theorem reveals that equivalence relations and partitions
are intimately intertwined.
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I Theorem 0.6 Equivalence Classes Partition

The equivalence classes of an equivalence relation on a set S
constitute a partition of S. Conversely, for any partition P of S, there
is an equivalence relation on S whose equivalence classes are the
elements of P.

PROOF Let ~ be an equivalence relation on a set S. For any a € S, the
reflexive property shows that a € [a]. So, [a] is nonempty and the union
of all equivalence classes is S. Now, suppose that [a] and [b] are distinct
equivalence classes. We must show that [a] N [#] = 0. On the contrary,
assume ¢ € [a] N [b]. We will show that [a] C [b]. To this end, let x € [a].
We then have ¢ ~ a, ¢ ~ b, and x ~ a. By the symmetric property, we
also have a ~ c. Thus, by transitivity, x ~ ¢, and by transitivity again,
x ~ b. This proves [a] C [b]. Analogously, [b] C [a]. Thus, [a] = [b],
in contradiction to our assumption that [a] and [b] are distinct equiva-
lence classes.

To prove the converse, let P be a collection of nonempty disjoint
subsets of S whose union is S. Define a ~ b if a and b belong to the
same subset in the collection. We leave it to the reader to show that ~ is
an equivalence relation on S (Exercise 55). |

Functions (Mappings)

Although the concept of a function plays a central role in nearly every
branch of mathematics, the terminology and notation associated with
functions vary quite a bit. In this section, we establish ours.

Definition Function (Mapping)

A function (or mapping) ¢ from a set A to a set B is a rule that assigns
to each element a of A exactly one element b of B. The set A is called
the domain of ¢, and B is called the range of ¢. If ¢ assigns b to a, then
b is called the image of a under ¢. The subset of B comprising all the
images of elements of A is called the image of A under ¢.

We use the shorthand ¢p: A — B to mean that ¢ is a mapping from
A to B. We will write ¢(a) = b or ¢: a — b to indicate that ¢ carries
atob.

There are often different ways to denote the same element of a set. In
defining a function in such cases one must verify that the function
values assigned to the elements depend not on the way the elements
are expressed but only on the elements themselves. For example, the
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correspondence ¢ from the rational numbers to the integers given by
¢(a/b) = a + b does not define a function since 1/2 = 2/4 but ¢ (1/2) #*
¢ (2/4). To verify that a correspondence is a function, you assume that
X, = x, and prove that ¢ (x,) = (x,).
Definition Composition of Functions
Let ¢: A — B and ¢y: B — C. The composition ;¢ is the mapping from
A to C defined by (¢)(a) = (¢(a)) for all a in A. The composition
function ¢ can be visualized as in Figure 0.6.

| ﬁ W
S w
Figure 0.6 Composition of functions ¢ and .

In calculus courses, the composition of f with g is written ( fo g)(x) and
is defined by (fo g)(x) = f(g(x)). When we compose functions, we omit
the “circle.”

There are several kinds of functions that occur often enough to be
given names.

Definition One-to-One Function
A function ¢ from a set A is called one-to-one if for every a,, a, € A,
¢(a,) = ¢(a,) implies a, = a,.

The term one-to-one is suggestive, since the definition ensures that
one element of B can be the image of only one element of A. Alternatively,
¢ is one-to-one if a; # a, implies ¢(a,) # ¢(a,). That is, different ele-
ments of A map to different elements of B. See Figure 0.7.

¢ Y
/\ /\
e -
®¢(ay)
¢ is one-to-one 1 is not one-to-one

Figure 0.7
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Definition Function from A onto B

A function ¢ from a set A to a set B is said to be onto B if each element
of B is the image of at least one element of A. In symbols, ¢»: A — B'is
onto if for each b in B there is at least one a in A such that ¢(a) = b.
See Figure 0.8.

¢ y
— T —

-0 (B

¢ is onto ¥ is not onto

Figure 0.8

The next theorem summarizes the facts about functions we will need.

I Theorem 0.7 Properties of Functions

Given functions a: A — B, B: B— C, and y: C — D, then
1. y(Ba) = (vB)a (associativity).
2. If « and B are one-to-one, then B« is one-to-one.
3. If a and B are onto, then Ba is onto.
4. If a is one-to-one and onto, then there is a function o' from B
onto A such that (o« 'a)(a) = aforallain A and (ca™')(b) = b
forall b in B.

PROOF We prove only part 1. The remaining parts are left as exercises
(Exercise 51). Let a € A. Then (y(Ba))(a) = y((Ba)(a)) = y(B(a(a))).
On the other hand, ((yB)a)(a) = (vB)(«(a)) = y(B(a(a))). So, y(Ba) =
(yBa. i

It is useful to note that if « is one-to-one and onto, the function ™!

described in part 4 of Theorem 0.7 has the property that if a(s) = ¢,
then @~ !(r) = 5. That is, the image of 7 under a ! is the unique element s
that maps to # under a. In effect, @~ ! “undoes” what « does.

B EXAMPLE 17 Let Z denote the set of integers, R the set of real num-
bers, and N the set of nonnegative integers. The following table illus-
trates the properties of one-to-one and onto.
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Domain Range Rule One-to-one Onto
Z Z x—=x Yes No
R R x—=x Yes Yes
Z N x — Ixl No Yes
Z Z x = x2 No No

To verify that x — x> is one-to-one in the first two cases, notice that if
x* = y3, we may take the cube roots of both sides of the equation to ob-
tain x = y. Clearly, the mapping from Z to Z given by x — x> is not
onto, since 2 is the cube of no integer. However, x — x* defines an
onto function from R to R, since every real number is the cube of its
cube root (that is, Vb — b). The remaining verifications are left to
the reader. |

| was interviewed in the Israeli Radio for five minutes and | said that more
than 2000 years ago, Euclid proved that there are infinitely many primes.
Immediately the host interrupted me and asked: “Are there still infinitely
many primes?”

NOGA ALON

1. Forn =5, 8, 12, 20, and 25, find all positive integers less than n
and relatively prime to n.

2. Determine ged(2*- 32-5-7% 2-33-7-11) and Iem(23 - 32 -5,
2-33-7-11).

3. Determine 51 mod 13, 342 mod 85, 62 mod 15, 10 mod 15, (82 - 73)
mod 7, (51 + 68) mod 7, (35 - 24) mod 11, and (47 + 68) mod 11.

4. Find integers s and ¢ such that 1 =7 - s + 11 - £. Show that s and ¢
are not unique.

5. In Florida, the fourth and fifth digits from the end of a driver’s license
number give the year of birth. The last three digits for a male with
birth month m and birth date b are represented by 40(m — 1) + b. For
females the digits are 40(m — 1) + b + 500. Determine the dates of
birth of people who have last five digits 42218 and 53953.

6. For driver’s license numbers issued in New York prior to
September of 1992, the three digits preceding the last two of the
number of a male with birth month m and birth date b are repre-
sented by 63m + 2b. For females the digits are 63m + 2b + 1.
Determine the dates of birth and sex(es) corresponding to the num-
bers 248 and 601.
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7.

8.

10.

11.

12.

13.

14.

15.

16.
17.

18.
19.

20.

21.
22,

23.

24,

25.

Show that if a and b are positive integers, then ab = lem(a, b) -
gcd(a, b).

Suppose a and b are integers that divide the integer c. If a and b are
relatively prime, show that ab divides c. Show, by example, that if
a and b are not relatively prime, then ab need not divide c.

. If a and b are integers and 7 is a positive integer, prove that a mod n =

b mod n if and only if n divides a — b.

Let a and b be integers and d = gcd(a, b). If a = da’ and b = db’,
show that gcd(a’, b') = 1.

Let n be a fixed positive integer greater than 1. If a mod n = a’ and
bmod n = b', prove that (a + b) mod n = (¢’ + b") mod n and
(ab) mod n = (a'b") mod n. (This exercise is referred to in Chapters
6, 8, and 15.)

Let a and b be positive integers and let d = gcd(a, b) and m =
lem(a, b). If t divides both a and b, prove that ¢ divides d. If s is a
multiple of both a and b, prove that s is a multiple of m.

Let n and a be positive integers and let d = gcd(a, n). Show that the
equation ax mod n = 1 has a solution if and only if d = 1. (This
exercise is referred to in Chapter 2.)

Show that 5n + 3 and 7n + 4 are relatively prime for all n.

Prove that every prime greater than 3 can be written in the form
6n + 1or6n + 5.

Determine 7' mod 6 and 6'®!' mod 7.

Let a, b, s, and ¢ be integers. If @ mod st = b mod s¢, show that
a mod s = b mod s and @ mod ¢ = b mod ¢. What condition on s
and 7 is needed to make the converse true? (This exercise is referred
to in Chapter 8.)

Determine 842 mod 5.

Show that gcd(a, bc) =1 if and only if ged(a, b) =1 and
gcd(a, ¢) = 1. (This exercise is referred to in Chapter 8.)

Letp,, p,, ..., p, be primes. Show that p, p, - - - p, + 1 is divisi-
ble by none of these primes.

Prove that there are infinitely many primes. (Hint: Use Exercise 20.)
For every positive integer n, prove that 1 + 2 + - - - + n =
n(n + 1)/2.

For every positive integer n, prove that a set with exactly n elements
has exactly 2" subsets (counting the empty set and the entire set).
For any positive integer n, prove that 2"3%* — 1 is always divisible
by 17.

Prove that there is some positive integer n such that n, n + 1,
n+2,...,n+ 200 are all composite.
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(Generalized Euclid’s Lemma) If p is a prime and p divides
a,a, - * - a,, prove that p divides a, for some i.

Use the Generalized Euclid’s Lemma (see Exercise 26) to establish
the uniqueness portion of the Fundamental Theorem of Arithmetic.
What is the largest bet that cannot be made with chips worth $7.00
and $9.00? Verify that your answer is correct with both forms of
induction.

Prove that the First Principle of Mathematical Induction is a conse-
quence of the Well Ordering Principle.

The Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . . In gen-
eral, the Fibonacci numbers are defined by f, = 1, f, = I, and for
n=3, f =f _,+[,_, Prove that the nth Fibonacci number f, sat-
isfies f < 2".

In the cut “As” from Songs in the Key of Life, Stevie Wonder men-
tions the equation 8 X 8 X 8 X 8 = 4. Find all integers n for which
this statement is true, modulo 7.

Prove that for every integer n, n* mod 6 = n mod 6.

If it were 2:00 A.M. now, what time would it be 3736 hours from now?

Determine the check digit for a money order with identification
number 7234541780.

Suppose that in one of the noncheck positions of a money order
number, the digit O is substituted for the digit 9 or vice versa. Prove
that this error will not be detected by the check digit. Prove that all
other errors involving a single position are detected.

Suppose that a money order identification number and check digit
of 21720421168 is erroneously copied as 27750421168. Will the
check digit detect the error?

A transposition error involving distinct adjacent digits is one of the
form ---ab --- — --- ba --- with a # b. Prove that the money
order check digit scheme will not detect such errors unless the
check digit itself is transposed.

Determine the check digit for the Avis rental car with identification
number 540047. (See Example 6.)

Show that a substitution of a digit ;" for the digit a; (a," # a)) in
a noncheck position of a UPS number is detected if and only
ifla, — a1l # 7.

Determine which transposition errors involving adjacent digits are
detected by the UPS check digit.

Use the UPC scheme to determine the check digit for the number
07312400508.
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Explain why the check digit for a money order for the number N is
the repeated decimal digit in the real number N + 9.

The 10-digit International Standard Book Number (ISBN-10)
a,a,a,a,a.a,a.d, au,, has the property (a, a,, ..., a,,) - (10,9, 8,7,
6,5,4,3,2,1)mod 11 = 0. The digit a,, is the check digit. When
a,, s required to be 10 to make the dot product 0, the character X is
used as the check digit. Verify the check digit for the ISBN-10 as-
signed to this book.

Suppose that an ISBN-10 has a smudged entry where the question
mark appears in the number 0-716?-2841-9. Determine the missing
digit.

Suppose three consecutive digits abc of an ISBN-10 are scrambled as
bca. Which such errors will go undetected?

The ISBN-10 0-669-03925-4 is the result of a transposition of two
adjacent digits not involving the first or last digit. Determine the
correct ISBN-10.

Suppose the weighting vector for ISBN-10s was changed to (1, 2, 3,
4,5,6,7,8,9, 10). Explain how this would affect the check digit.
Use the two-check-digit error-correction method described in this
chapter to append two check digits to the number 73445860.
Suppose that an eight-digit number has two check digits appended
using the error-correction method described in this chapter and it is
incorrectly transcribed as 4302511568. If exactly one digit is in-
correct, determine the correct number.

The state of Utah appends a ninth digit a, to an eight-digit driver’s
license number a,a, . . . ag so that (9a, + 8a, + 7a, + 6a, + 5a, +
da, + 3a, + 2a4 + a,) mod 10 = 0. If you know that the license
number 149105267 has exactly one digit incorrect, explain why the
error cannot be in position 2, 4, 6, or 8.

Complete the proof of Theorem 0.7.

Let S be the set of real numbers. If a, b € S, definea ~ bifa — b
is an integer. Show that ~ is an equivalence relation on S. Describe
the equivalence classes of S.

Let S be the set of integers. If a, b € S, define aRb if ab = 0. Is R an
equivalence relation on S?

Let S be the set of integers. If a, b € S, define aRb if a + b is even.
Prove that R is an equivalence relation and determine the equivalence
classes of S.

Complete the proof of Theorem 0.6 by showing that ~ is an equiva-
lence relation on S.
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56. Prove that none of the integers 11, 111, 1111, 11111, ... is a
square of an integer.

57. (Cancellation Property) Suppose «, 8 and 7y are functions. If ey =
By and v is one-to-one and onto, prove that a = 3.

There is nothing more practical than a good theory.
LEONID BREZHNEV

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software checks the validity of a Postal Service money order
number. Use it to verify that 39539881642 is valid. Now enter the
same number with one digit incorrect. Was the error detected? Enter
the number with the 9 in position 2 replaced with a 0. Was the error
detected? Explain why or why not. Enter the number with two dig-
its transposed. Was the error detected? Explain why or why not.

2. This software checks the validity of a UPC number. Use it to verify
that 090146003386 is valid. Now enter the same number with one
digit incorrect. Was the error detected? Enter the number with two
consecutive digits transposed. Was the error detected? Enter the
number with the second 3 and the 8 transposed. Was the error de-
tected? Explain why or why not. Enter the number with the 9 and
the 1 transposed. Was the error detected? Explain why or why not.

3. This software checks the validity of a UPS number. Use it to verify
that 8733456723 is valid. Now enter the same number with one digit
incorrect. Was the error detected? Enter the number with two consecu-
tive digits transposed. Was the error detected? Enter the number with
the 8 replaced by 1. Was the error detected? Explain why or why not.

4. This software checks the validity of an identification number on a
bank check. Use it to verify that 091902049 is valid. Now enter the
same number with one digit incorrect. Was the error detected?
Enter the number with two consecutive digits transposed. Was the
error detected? Enter the number with the 2 and the 4 transposed.
Was the error detected? Explain why or why not.

5. This software checks the validity of an ISBN-10. Use it to verify that
0395872456 is valid. Now enter the same number with one digit in-
correct. Was the error detected? Enter the number with two digits
transposed (they need not be consecutive). Was the error detected?


http://www.d.umn.edu/~jgallian
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6. This software determines the two check digits for the mod 11 dec-
imal error-correction scheme discussed in this chapter. Run the
program with the input 21355432, 20965744, 10033456. Then
enter these numbers with the two check digits appended with one
digit incorrect. Was the error corrected?

Suggested Readings

Linda Deneen, “Secret Encryption with Public Keys,” The UMAP Journal
8 (1987): 9-29.
This well-written article describes several ways in which modular
arithmetic can be used to code secret messages. They range from a
simple scheme used by Julius Caesar to a highly sophisticated scheme
invented in 1978 and based on modular » arithmetic, where n has more
than 200 digits.

J. A. Gallian, “Assigning Driver’s License Numbers,” Mathematics Maga-
zine 64 (1991): 13-22.

This article describes various methods used by the states to assign dri-
ver’s license numbers. Several include check digits for error detection.
This article can be downloaded at http://www.d.umn.edu/~jgallian/
license.pdf

J. A. Gallian, “The Mathematics of Identification Numbers,” The College
Mathematics Journal 22 (1991): 194-202.

This article is a comprehensive survey of check digit schemes that are
associated with identification numbers. This article can be downloaded
at http://www.d.umn.edu/~jgallian/ident.pdf

J. A. Gallian and S. Winters, “Modular Arithmetic in the Marketplace,”
The American Mathematical Monthly 95 (1988): 548-551.

This article provides a more detailed analysis of the check digit
schemes presented in this chapter. In particular, the error detection
rates for the various schemes are given. This article can be downloaded
at http://www.d.umn.edu/~jgallian/marketplace.pdf


http://www.d.umn.edu/~jgallian/license.pdf
http://www.d.umn.edu/~jgallian/license.pdf
http://www.d.umn.edu/~jgallian/ident.pdf
http://www.d.umn.edu/~jgallian/marketplace.pdf

For online student resources, visit this textbook’s website at <&
http://college.hmco.com/PIC/gallian7e b
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Introduction

to Groups

Symmetry is a vast subject, significant in art and nature. Mathematics lies at
its root, and it would be hard to find a better one on which to demonstrate
the working of the mathematical intellect.

HERMANN WEYL, Symmetry

Symmetries of a Square

Suppose we remove a square region from a plane, move it in some way,
then put the square back into the space it originally occupied. Our goal
in this chapter is to describe in some reasonable fashion all possible
ways in which this can be done. More specifically, we want to describe
the possible relationships between the starting position of the square
and its final position in terms of motions. However, we are interested
in the net effect of a motion, rather than in the motion itself. Thus, for
example, we consider a 90° rotation and a 450° rotation as equal, since
they have the same net effect on every point. With this simplifying con-
vention, it is an easy matter to achieve our goal.

To begin, we can think of the square region as being transparent
(glass, say), with the corners marked on one side with the colors blue,
white, pink, and green. This makes it easy to distinguish between mo-
tions that have different effects. With this marking scheme, we are now
in a position to describe, in simple fashion, all possible ways in which
a square object can be repositioned. See Figure 1.1. We now claim that
any motion—no matter how complicated—is equivalent to one of these
eight. To verify this claim, observe that the final position of the square
is completely determined by the location and orientation (that is, face
up or face down) of any particular corner. But, clearly, there are only
four locations and two orientations for a given corner, so there are
exactly eight distinct final positions for the corner.

29
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P W P W
R, =Rotation of 0° (no change in position) R,
0 — 0 5
G B G B
P W W B
R,, = Rotation of 90° (counterclockwise) Ry,
G B >~ P G
P W B G
R4, = Rotation of 180° R,
G B w P
P W G P
R, = Rotation of 270° Ry,
G B ~ B W
P W G B
H =Flip about a horizontal axis ~ Jacaaaad H
G B P W
. ) ) P W w P
V =Flip about a vertical axis ! v
G|B| 7/ = |B G
P, W P G
D =Flip about the main diagonal RN D
> —
G B, W B
) . P W B W
D' =Flip about the other diagonal R4 D'
’
G Bl 7/ |G P

Figure 1.1

Let’s investigate some consequences of the fact that every motion is
equal to one of the eight listed in Figure 1.1. Suppose a square is repo-
sitioned by a rotation of 90° followed by a flip about the horizontal axis
of symmetry. In pictures,

P W W B P G
Ryy — J===--- H
G B P G W B

Thus, we see that this pair of motions—taken together—is equal to
the single motion D. This observation suggests that we can compose
two motions to obtain a single motion. And indeed we can, since the
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eight motions may be viewed as functions from the square region to
itself, and as such we can combine them using function composition.

With this in mind, we may now write HR,, = D. The eight motions R,
Ry, R g0 Ryyo H, V, D, and D', together with the operation composition,
form a mathematical system called the dihedral group of order 8 (the
order of a group is the number of elements it contains). It is denoted by
D,. Rather than introduce the formal definition of a group here, let’s
look at some properties of groups by way of the example D,.

To facilitate future computations, we construct an operation table or
Cayley table (so named in honor of the prolific English mathematician
Arthur Cayley, who first introduced them in 1854) for D, below. The
circled entry represents the fact that D = HR,,. (In general, ab denotes
the entry at the intersection of the row with a at the left and the column
with b at the top.)

R, Ry, Ryg Ry H v D D
R, R, Ry, Ry Ry H 4 D D'
Ry, Ry, Rig Ry R, D D H 4
Rigy | Ryg Ry R, Ry, 4 H D D
Ry | Ry R, Ry, Ryg D D 4 H
H H @ 4 D R, Ry Ry, Ry
v 4 D' H D Ry R, Ry Ry,
D D D’ H Ry Ry, R, Ry
D’ D' H D Vv R R R R

90 270

80

=}

Notice how orderly this table looks! This is no accident. Perhaps the
most important feature of this table is that it has been completely filled
in without introducing any new motions. Of course, this is because, as
we have already pointed out, any sequence of motions turns out to be
the same as one of these eight. Algebraically, this says that if A and B
are in D, then so is AB. This property is called closure, and it is one of
the requirements for a mathematical system to be a group. Next, notice
that if A is any element of D, then AR, = RjA = A. Thus, combining
any element A on either side with R yields A back again. An element
R, with this property is called an identity, and every group must have
one. Moreover, we see that for each element A in D, there is exactly
one element B in D, such that AB = BA = R,,. In this case, B is said to
be the inverse of A and vice versa. For example, R, and R,,, are
inverses of each other, and H is its own inverse. The term inverse is a
descriptive one, for if A and B are inverses of each other, then B “un-
does” whatever A “does,” in the sense that A and B taken together in ei-
ther order produce R, representing no change. Another striking feature
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of the table is that every element of D, appears exactly once in each
row and column. This feature is something that all groups must have,
and, indeed, it is quite useful to keep this fact in mind when construct-
ing the table in the first place.

Another property of D, deserves special comment. Observe that
HD # DH but Ry R o) = R ¢ Ry, Thus, in a group, ab may or may not
be the same as ba. If it happens that ab = ba for all choices of group
elements a and b, we say the group is commutative or—better yet—
Abelian (in honor of the great Norwegian mathematician Niels Abel).
Otherwise, we say the group is non-Abelian.

Thus far, we have illustrated, by way of D,, three of the four con-
ditions that define a group—namely, closure, existence of an identity,
and existence of inverses. The remaining condition required for a group
is associativity; that is, (ab)c = a(bc) for all a, b, c in the set. To be sure
that D, is indeed a group, we should check this equation for each of the
8% = 512 possible choices of a, b, and c in D,. In practice, however,
this is rarely done! Here, for example, we simply observe that the eight
motions are functions and the operation is function composition. Then,
since function composition is associative, we do not have to check the
equations.

The Dihedral Groups

The analysis carried out above for a square can similarly be done for
an equilateral triangle or regular pentagon or, indeed, any regular n-gon
(n = 3). The corresponding group is denoted by D, and is called the
dihedral group of order 2n.

The dihedral groups arise frequently in art and nature. Many of the
decorative designs used on floor coverings, pottery, and buildings have
one of the dihedral groups as a group of symmetry. Corporation logos
are rich sources of dihedral symmetry [1]. Chrysler’s logo has Dy as a
symmetry group, and that of Mercedes-Benz has D,. The ubiquitous
five-pointed star has symmetry group D.. The phylum Echinodermata
contains many sea animals (such as starfish, sea cucumbers, feather
stars, and sand dollars) that exhibit patterns with D, symmetry.

Chemists classify molecules according to their symmetry. Moreover,
symmetry considerations are applied in orbital calculations, in determin-
ing energy levels of atoms and molecules, and in the study of molecular
vibrations. The symmetry group of a pyramidal molecule such as ammo-
nia (NH,), depicted in Figure 1.2, has symmetry group D,.
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Figure 1.2 A pyramidal molecule with symmetry group D..

Mineralogists determine the internal structures of crystals (that is,
rigid bodies in which the particles are arranged in three-dimensional
repeating patterns—table salt and table sugar are two examples) by
studying two-dimensional x-ray projections of the atomic makeup
of the crystals. The symmetry present in the projections reveals the
internal symmetry of the crystals themselves. Commonly occurring
symmetry patterns are D, and D (see Figure 1.3). Interestingly, it is
mathematically impossible for a crystal to possess a D, symmetry pat-
tern withn = 5orn > 6.

-

Figure 1.3 X-ray diffraction photos revealing D, symmetry patterns in crystals.

The dihedral group of order 2n is often called the group of sym-
metries of a regular n-gon. A plane symmetry of a figure F in a
plane is a function from the plane to itself that carries F onto F and
preserves distances; that is, for any points p and ¢ in the plane, the
distance from the image of p to the image of ¢ is the same as the
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distance from p to g. (The term symmetry is from the Greek word
symmetros, meaning “of like measure.”) The symmetry group of a
plane figure is the set of all symmetries of the figure. Symmetries in
three dimensions are defined analogously. Obviously, a rotation of a
plane about a point in the plane is a symmetry of the plane, and a rota-
tion about a line in three dimensions is a symmetry in three-dimensional
space. Similarly, any translation of a plane or of three-dimensional
space is a symmetry. A reflection across a line L is that function that
leaves every point of L fixed and takes any point g, not on L, to the point
q' so that L is the perpendicular bisector of the line segment joining
q and ¢’ (see Figure 1.4). A reflection across a plane in three dimen-
sions is defined analogously. Notice that the restriction of a 180° rota-
tion about a line L in three dimensions to a plane containing L is a
reflection across L in the plane. Thus, in the dihedral groups, the mo-
tions that we described as flips about axes of symmetry in three dimen-
sions (for example, H, V, D, D') are reflections across lines in two
dimensions. Just as a reflection across a line is a plane symmetry that
cannot be achieved by a physical motion of the plane in two dimen-
sions, a reflection across a plane is a three-dimensional symmetry that
cannot be achieved by a physical motion of three-dimensional space.
A cup, for instance, has reflective symmetry across the plane bisecting
the cup, but this symmetry cannot be duplicated with a physical mo-
tion in three dimensions.

Figure 1.4

Many objects and figures have rotational symmetry but not reflective
symmetry. A symmetry group consisting of the rotational symmetries of
0°, 360°/n, 2(360°)/n, . . ., (n — 1)360°n, and no other symmetries is
called a cyclic rotation group of order n and is denoted by <R360/n>. Cyclic
rotation groups, along with dihedral groups, are favorites of artists, de-
signers, and nature. Figure 1.5 illustrates with corporate logos the cyclic
rotation groups of orders 2, 3, 4, 5, 6, 8, 16, and 20.

Further examples of the occurrence of dihedral groups and cyclic
groups in art and nature can be found in the references. A study of sym-
metry in greater depth is given in Chapters 27 and 28.
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Figure 1.5 Logos with cyclic rotation symmetry groups.

The only way to learn mathematics is to do mathematics.
PAUL HALMOS, Hilbert Space Problem Book

1. With pictures and words, describe each symmetry in D, (the set of
symmetries of an equilateral triangle).

2. Write out a complete Cayley table for D;.

3. Is D, Abelian?

4. Describe in pictures or words the elements of D, (symmetries of a
regular pentagon).

5. For n = 3, describe the elements of D, . (Hint: You will need to
consider two cases—n even and n odd.) How many elements
does D, have?

6. In D , explain geometrically why a reflection followed by a reflec-
tion must be a rotation.

7. In D , explain geometrically why a rotation followed by a rotation
must be a rotation.

8. In D , explain geometrically why a rotation and a reflection taken
together in either order must be a reflection.

9. Associate the number +1 with a rotation and the number —1 with
a reflection. Describe an analogy between multiplying these two
numbers and multiplying elements of D, .
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10. If r,» I,, and r, represent rotations from D, and f,, f,, and f; represent
reflections from D , determine whether r,r, fir, f, fr; 18 a rotation

or a reflection.

11. Find elements A, B, and C in D, such that AB = BC but A # C.
(Thus, “cross cancellation” is not valid.)

12. Explain what the following diagram proves about the group D,

1 1 n
/\ F A Rygoim /\

1
n 2 2 n 1 n-1

1 2 2
/\ Rygorn /?\ F

1

n 2 1 3 3 1

13. Describe the symmetries of a nonsquare rectangle. Construct the
corresponding Cayley table.

14. Describe the symmetries of a parallelogram that is neither a rec-
tangle nor a rhombus. Describe the symmetries of a rhombus that
is not a rectangle.

15. Describe the symmetries of a noncircular ellipse. Do the same for
a hyperbola.

16. Consider an infinitely long strip of equally spaced H’s:

Describe the symmetries of this strip. Is the group of symmetries
of the strip Abelian?

17. For each of the snowflakes in the figure, find the symmetry group
and locate the axes of reflective symmetry (disregard imperfections).

Photographs of snowflakes from the Bentley and Humphrey atlas.
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Determine the symmetry group of the outer shell of the cross sec-
tion of the human immunodeficiency virus (HIV) shown below.

Does an airplane propeller have a cyclic symmetry group or a di-
hedral symmetry group?

Bottle caps that are pried off typically have 22 ridges around the
rim. Find the symmetry group of such a cap.

What group theoretic property do upper-case letters F, G, J, K, L,
P, Q, R have that is not shared by the remaining upper-case letters
in the alphabet?

For each design below, determine the symmetry group (ignore
imperfections).
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23. What would the effect be if a six-bladed ceiling fan were designed
so that the centerlines of two of the blades were at a 70° angle and
all the other blades were set at a 58° angle?

Reference

1. B. B. Capitman, American Trademark Designs, New York: Dover, 1976.

Suggested Reading

Michael Field and Martin Golubitsky, Symmetry in Chaos, Oxford Uni-
versity Press, 1992.

This book has many beautiful symmetric designs that arise in
chaotic dynamic systems.



Niels Abel

He [Abel] has left mathematicians
something to keep them busy for five
hundred years.

CHARLES HERMITE

A 500-kroner bank note first issued
by Norway in 1948.

NIELS HENRIK ABEL, one of the foremost
mathematicians of the 19th century, was
born in Norway on August 5, 1802. At the
age of 16, he began reading the classic math-
ematical works of Newton, Euler, Lagrange,
and Gauss. When Abel was 18 years old, his
father died, and the burden of supporting the
family fell upon him. He took in private
pupils and did odd jobs, while continuing to
do mathematical research. At the age of 19,
Abel solved a problem that had vexed lead-
ing mathematicians for hundreds of years.
He proved that, unlike the situation for equa-
tions of degree 4 or less, there is no finite
(closed) formula for the solution of the gen-
eral fifth-degree equation.

Although Abel died long before the ad-
vent of the subjects that now make up ab-
stract algebra, his solution to the quintic
problem laid the groundwork for many of
these subjects. Just when his work was be-
ginning to receive the attention it deserved,
Abel contracted tuberculosis. He died on
April 6, 1829, at the age of 26.

p. EUROPA

This stamp was issued in 1929
to commemorate the 100th
anniversary of Abel’s death.

In recognition of the fact that there is no
Nobel Prize for mathematics, in 2002 Norway
established the Abel Prize as the “Nobel Prize
in mathematics” in honor of its native son. At
approximately the $1,000,000 level, the Abel
Prize is now seen as an award equivalent to
the Nobel Prize.

To find more information about Abel, visit:

http://www-groups.dcs.st-and
.ac.uk/~history/
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A good stock of examples, as large as possible, is indispensable
for a thorough understanding of any concept, and when | want
to learn something new, | make it my first job to build one.

PAUL R. HALMOS

Definition and Examples of Groups

40

The term group was used by Galois around 1830 to describe sets of
one-to-one functions on finite sets that could be grouped together to
form a set closed under composition. As is the case with most funda-
mental concepts in mathematics, the modern definition of a group that
follows is the result of a long evolutionary process. Although this defi-
nition was given by both Heinrich Weber and Walter von Dyck in 1882,
it did not gain universal acceptance until the 20th century.

Definition Binary Operation
Let G be a set. A binary operation on G is a function that assigns each
ordered pair of elements of G an element of G.

A binary operation on a set G, then, is simply a method (or for-
mula) by which the members of an ordered pair from G combine to
yield a new member of G. This condition is called closure. The most
familiar binary operations are ordinary addition, subtraction, and
multiplication of integers. Division of integers is not a binary opera-
tion on the integers because an integer divided by an integer need not
be an integer.

The binary operations addition modulo n and multiplication mod-
ulo n on the set {0, 1, 2, ..., n — 1}, which we denote by Z , play an
extremely important role in abstract algebra. In certain situations we
will want to combine the elements of Z by addition modulo 7 only;
in other situations we will want to use both addition modulo n and
multiplication modulo n to combine the elements. It will be clear
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from the context whether we are using addition only or addition and
multiplication. For example, when multiplying matrices with entries
from Z , we will need both addition modulo n and multiplication
modulo 7.

Definition Group

Let G be a set together with a binary operation (usually called multipli-
cation) that assigns to each ordered pair (a, b) of elements of G an ele-
ment in G denoted by ab. We say G is a group under this operation if
the following three properties are satisfied.

1. Associativity. The operation is associative; that is, (ab)c = a(bc) for
alla, b, cin G.

2. Identity. There is an element e (called the identity) in G such that
ae = ea = afor alla in G.

3. Inverses. For each element a in G, there is an element b in G
(called an inverse of a) such that ab = ba = e.

In words, then, a group is a set together with an associative opera-
tion such that there is an identity, every element has an inverse, and any
pair of elements can be combined without going outside the set. Be
sure to verify closure when testing for a group (see Example 5). Notice
that if a is the inverse of b, then b is the inverse of a.

If a group has the property that ab = ba for every pair of elements
a and b, we say the group is Abelian. A group is non-Abelian if there
is some pair of elements a and b for which ab # ba. When encounter-
ing a particular group for the first time, one should determine whether
or not it is Abelian.

Now that we have the formal definition of a group, our first job is
to build a good stock of examples. These examples will be used
throughout the text to illustrate the theorems. (The best way to grasp
the meat of a theorem is to see what it says in specific cases.) As we
progress, the reader is bound to have hunches and conjectures that
can be tested against the stock of examples. To develop a better un-
derstanding of the following examples, the reader should supply the
missing details.

B EXAMPLE 1 The set of integers Z (so denoted because the German
word for numbers is Zahlen), the set of rational numbers Q (for quo-
tient), and the set of real numbers R are all groups under ordinary addi-
tion. In each case, the identity is 0 and the inverse of a is —a. |
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B EXAMPLE 2 The set of integers under ordinary multiplication is not
a group. Since the number 1 is the identity, property 3 fails. For exam-
ple, there is no integer b such that 56 = 1. |

B EXAMPLE 3 The subset {1, —1, i, —i} of the complex numbers
is a group under complex multiplication. Note that —1 is its own inverse,
whereas the inverse of i is —i, and vice versa. |

B EXAMPLE 4 The set Q" of positive rationals is a group under ordi-
nary multiplication. The inverse of any a is 1/a = a™ . |

B EXAMPLE 5 The set S of positive irrational numbers together with 1
under multiplication satisfies the three properties given in the definition
of a group but is not a group. Indeed, V2 - V2 = 2, s0 S is not closed
under multiplication. |

b
B EXAMPLE 6 A rectangular array of the form {a d} is called a
c

2 X 2 matrix. The set of all 2 X 2 matrices with real entries is a group
under componentwise addition. That is,

{al bl] n [az bz] B {al +a b + bz}
Cq dl Cy dz Cq + Cy dl + d2

00 b . |—a —b
The identity is {0 0}, and the inverse of [Ccl d} is [_CCI —d} |

B EXAMPLE?7 ThesetZ = {0,1,...,n— 1} forn = 11is a group under
addition modulo n. For any j > 0 in Z, the inverse of j is n — j.
This group is usually referred to as the group of integers modulo n. |

As we have seen, the real numbers, the 2 X 2 matrices with real en-
tries, and the integers modulo n are all groups under the appropriate ad-
dition. But what about multiplication? In each case, the existence of
some elements that do not have inverses prevents the set from being a
group under the usual multiplication. However, we can form a group in
each case by simply throwing out the rascals. Examples 8, 9, and 11
illustrate this.

B EXAMPLE 8 The set R* of nonzero real numbers is a group under
ordinary multiplication. The identity is 1. The inverse of a is 1/a. |
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b
B EXAMPLE 9t The determinant of the 2 X 2 matrix [a d] is the
¢

number ad — bc. If A is a 2 X 2 matrix, det A denotes the determinant
of A. The set

a b
GL(2, R):{L d]

of 2 X 2 matrices with real entries and nonzero determinant is a non-
Abelian group under the operation

[al bIHaz bz} B {alaz + bic, ab, + bldz}
¢, dillcy, d, ca, +dc, cby,+ dd,

a,b,c,d € R,ad — bc # O}

The first step in verifying that this set is a group is to show that the
product of two matrices with nonzero determinant also has nonzero
determinant. This follows from the fact that for any pair of 2 X 2
matrices A and B, det (AB) = (det A)(det B).

Associativity can be verified by direct (but cumbersome) calcula-

) . .. (10 ) a bl .
tions. The identity is ; the inverse of is
01 c d
d —-b
ad — bc ad — bc
—c a

ad — bc ad — bc

(explaining the requirement that ad — bc # 0). This very important
non-Abelian group is called the general linear group of 2 X 2 matrices
over R. |

B EXAMPLE 10 The set of all 2 X 2 matrices with real number entries
is not a group under the operation defined in Example 9. Inverses do
not exist when the determinant is 0. |

Now that we have shown how to make subsets of the real numbers
and subsets of the set of 2 X 2 matrices into multiplicative groups, we
next consider the integers under multiplication modulo 7.

"For simplicity, we have restricted our matrix examples to the 2 X 2 case. However,
readers who have had linear algebra can readily generalize to n X n matrices.
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I EXAMPLE 11 (L. Euler, 1761) By Exercise 13 in Chapter 0, an
integer a has a multiplicative inverse modulo 7 if and only if a and n are
relatively prime. So, for each n > 1, we define U(n) to be the set of all
positive integers less than n and relatively prime to n. Then U(n) is a
group under multiplication modulo n. (We leave it to the reader to
check that this set is closed under this operation.)

For n = 10, we have U(10) = {1, 3, 7, 9}. The Cayley table for
U(10) is

mod 10 ‘ 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

(Recall that ab mod r is the unique integer r with the property a « b =
nqg + r, where 0 = r < n and a + b is ordinary multiplication.) In the
case that n is a prime, U(n) = {1,2,...,n — 1}. |

In his classic book Lehrbuch der Algebra, published in 1899, Heinrich
Weber gave an extensive treatment of the groups U(n) and described
them as the most important examples of finite Abelian groups.

B EXAMPLE 12 The set {0, 1, 2, 3} is not a group under multiplica-
tion modulo 4. Although 1 and 3 have inverses, the elements 0 and 2
do not. |

B EXAMPLE 13 The set of integers under subtraction is not a group,
since the operation is not associative. |

With the examples given thus far as a guide, it is wise for the reader
to pause here and think of his or her own examples. Study actively!
Don’t just read along and be spoon-fed by the book.

I EXAMPLE 14 For all integers n = 1, the set of complex nth roots
of unity

{cosk'360+isink'360 k=0.1.2.....n— 1}

(i.e., complex zeros of x” — 1) is a group under multiplication. (See
DeMoivre’s Theorem—Example 7 in Chapter 0.) Compare this group
with the one in Example 3. |
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The complex number a + bi can be represented geometrically as the
point (a, b) in a plane coordinatized by a horizontal real axis and a ver-
tical i or imaginary axis. The distance from the point a + bi to the ori-
gin is Va?+b?* and is often denoted by |a + bil. For any angle 6, the
line segment joining the complex number cos 6 + i sin 6§ and the origin
forms an angle of 6 with the positive real axis. Thus, the six complex
zeros of x® = 1 are located at points around the circle of radius 1, 60°
apart, as shown in Figure 2.1.

Imaginary
-yt
i I 1 Real
_1_ A3,
2 2t

Figure 2.1
B EXAMPLE 15 The setR" = {(a, a,,...,a,) |a;,ay ...,a, € R}
is a group under componentwise addition [i.e., (a,, a,, ..., a) +
(b, by, ...,b)=(a, +b,a,+by...,a,+b)l |

B EXAMPLE 16 For a fixed point (4, b) in R?, define 7 ,: R> — R?
by (x,y) > (x +a,y + b). Then G = (T, | a, bER}lsagroup
under function composition. Stralghtforward calculations show that
r,T.,= Ta teptrq From this formula we may observe that G is
closed T, 1s the identity, the inverse of T, is T_u _p» and G is Abelian.
Functlon composmon is always assomatlve The elements of G are

called translations. |

B EXAMPLE 17 The set of all 2 X 2 matrices with determinant 1 with en-
tries from Q (rationals), R (reals), C (complex numbers), or Zp (p aprime)
is a non-Abelian group under matrix multiplication. This group is called
the special linear group of 2 X 2 matrices over Q, R, C, or Zp, respectively.
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If the entries are from F, where F is any of the above, we denote this group
by SL(2, F). For the group SL(2, F), the formula given in Example 9 for

b
}. When the matrix
—c a

entries are from Z, we use modulo p arithmetic to compute determi-
nants, matrix products, and inverses. To illustrate the case SL(2, Zj),

b
the inverse of “ J simplifies to {
c

3 4
consider the element A = L 4}. ThendetA =3 -4 —4-4)mod5 =

. ) 4 —4 4 1
—4 mod 5 = 1, and the inverse of A is 4 3 = ) 3.No‘[e

tht{3 4H4 1}—{1 O} hen the arithmetic is d dulo5. 1
atl 31 = 1o 1 when the arithmetic is done modulo 5.

Example 9 is a special case of the following general construction.

# EXAMPLE 18 Let F be any of O, R, C, or Zp (p a prime). The set
GL(2, F) of all 2 X 2 matrices with nonzero determinants and entries
from F is a non-Abelian group under matrix multiplication. As in
Example 17, when F is Zp, modulo p arithmetic is used to calculate
determinants, the matrix products, and inverses. The formula given in

b
Example 9 for the inverse of {a d} remains valid for elements from

c
GL(2, Zp) provided we interpret division by ad — bc as multiplication
by the inverse of ad — bc modulo p. For example, in GL(2, Z,),

4 5
consider [6 3} . Then the determinant (ad — bc) mod 7 is (12 — 30)
mod 7 = —18 mod 7 = 3 and the inverse of 3 is 5 [since (3 - 5)

. 4 5. (35 2-5 1 3
mod 7 = 1]. So, the inverse of{ ]15[ ]:{ ]
6 3 1-5 4-5 56
4 5|1 3 1 0
Th der should check that = in GL(2,Z7)]. 1
[The reader should chec a{6 3] {5 6] {0 J in GL(2, Z,)]

B EXAMPLE 19 The set {1, 2,...,n — 1} is a group under multipli-
cation modulo 7 if and only if 7 is prime. |

B EXAMPLE 20 The set of all symmetries of the infinite ornamental
pattern in which arrowheads are spaced uniformly a unit apart along
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a line is an Abelian group under composition. Let 7 denote a translation
to the right by one unit, 7! a translation to the left by one unit, and H a re-
flection across the horizontal line of the figure. Then, every member of the
group is of the form xx, - - - x, where each x €

(T, T, H}. In this case, we say that T, T~!, and H generate the group. 1

Table 2.1 summarizes many of the specific groups that we have
presented thus far.

As the examples above demonstrate, the notion of a group is a very
broad one indeed. The goal of the axiomatic approach is to find proper-
ties general enough to permit many diverse examples having these
properties and specific enough to allow one to deduce many interesting
consequences.

The goal of abstract algebra is to discover truths about algebraic
systems (that is, sets with one or more binary operations) that are inde-
pendent of the specific nature of the operations. All one knows
or needs to know is that these operations, whatever they may be, have

Table 2.1 Summary of Group Examples (F can be any of Q, R, C, or Zp; L is a reflection)

Form of
Group Operation Identity Element Inverse Abelian
Z Addition 0 k —k Yes
ot Multiplication 1 m/n, n/m Yes
m,n>0
zZ, Addition mod n 0 k n—k Yes
R* Multiplication 1 X 1/x Yes
GL(2, F) Matrix 10 a b d —b
multiplication [0 1} L , d} ad — be ad — be
e a No
ad — bc #0 ad — bc ad — bc
U(n) Multiplication 1 k, Solution to Yes
mod n ged(k, n) =1 kxmodn =1
R” Componentwise (0,0, ...,0) (a,,a,,...,a,) (=a,, —ay, ..., —a,) Yes
addition
SL(2, F)  Matrix 1 0 a b d —b No
multiplication [O 1 } { c d} {— c a}
ad — bc =1
D, Composition R, R,L Ry L No
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certain properties. We then seek to deduce consequences of these
properties. This is why this branch of mathematics is called abstract
algebra. It must be remembered, however, that when a specific group
is being discussed, a specific operation must be given (at least
implicitly).

Elementary Properties of Groups

Now that we have seen many diverse examples of groups, we wish to
deduce some properties that they share. The definition itself raises
some fundamental questions. Every group has an identity. Could a
group have more than one? Every group element has an inverse. Could
an element have more than one? The examples suggest not. But exam-
ples can only suggest. One cannot prove that every group has a unique
identity by looking at examples, because each example inherently has
properties that may not be shared by all groups. We are forced to
restrict ourselves to the properties that all groups have; that is, we must
view groups as abstract entities rather than argue by example. The next
three theorems illustrate the abstract approach.

1 Theorem 2.1 Uniqueness of the Identity

In a group G, there is only one identity element.

PROOF Suppose both e and ¢’ are identities of G. Then,

1. ae = aforall a in G, and
2. ¢la=aforallainG.

The choices of a = ¢’ in (1) and a = ¢ in (2) yield e'e = ¢’ and
e'e = e. Thus, e and e’ are both equal to e¢’e and so are equal to each
other. |

Because of this theorem, we may unambiguously speak of “the iden-

tity” of a group and denote it by “e” (because the German word for
identity is Einheit).

B Theorem 2.2 Cancellation

In a group G, the right and left cancellation laws hold; that is,
ba = ca implies b = ¢, and ab = ac implies b = c.
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PROOF Suppose ba = ca. Let a’ be an inverse of a. Then, multi-
plying on the right by a’ yields (ba)a’ = (ca)a’. Associativity yields
b(aa") = c(aa’). Then, be = ce and, therefore, b = ¢ as desired. Simi-
larly, one can prove that ab = ac implies b = ¢ by multiplying by a’ on
the left. |

A consequence of the cancellation property is the fact that in a
Cayley table for a group, each group element occurs exactly once in
each row and column (see Exercise 23). Another consequence of the
cancellation property is the uniqueness of inverses.

I Theorem 2.3 Uniqueness of Inverses

For each element a in a group G, there is a unique element b in G
such that ab = ba = e.

PROOF Suppose b and c are both inverses of a. Then ab = e and
ac = e, so that ab = ac. Canceling the a on both sides gives b = ¢, as
desired. |

As was the case with the identity element, it is reasonable, in view
of Theorem 2.3, to speak of “the inverse” of an element g of a group;
in fact, we may unambiguously denote it by g~ !. This notation is sug-
gested by that used for ordinary real numbers under multiplication.
Similarly, when n is a positive integer, the associative law allows us to
use g" to denote the unambiguous product

gg g

-

n factors

We define g° = e. When n is negative, we define g" = (g~ H"l [for ex-
ample, g7° = (g~ ")%]. Unlike for real numbers, in an abstract group we
do not permit noninteger exponents such as g'2. With this notation, the
familiar laws of exponents hold for groups; that is, for all integers m and
n and any group element g, we have g"g" = g"™*" and (g"™)" = g"".
Although the way one manipulates the group expressions g"”g" and
(g™)" coincides with the laws of exponents for real numbers, the laws
of exponents fail to hold for expressions involving two group elements.
Thus, for groups in general, (ab)" # a"b" (see Exercise 15).

Also, one must be careful with this notation when dealing with a
specific group whose binary operation is addition and is denoted by
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+.” In this case, the definitions and group properties expressed in
multiplicative notation must be translated to additive notation. For
example, the inverse of g is written as —g. Likewise, for example, g3

Table 2.2

Multiplicative Group Additive Group
a-borab Multiplication a+b Addition
eorl Identity or one 0 Zero
a’! Multiplicative inverse of a —a Additive inverse of a
a Power of a na Multiple of a
ab™! Quotient a—b Difference

means g + g + g and is usually written as 3g, whereas g~ means
(—g) + (—g) + (—g) and is written as —3g. When additive notation
is used, do not interpret “ng” as combining n and g under the group
operation; n may not even be an element of the group! Table 2.2 shows
the common notation and corresponding terminology for groups un-
der multiplication and groups under addition. As is the case for real
numbers, we use a — b as an abbreviation for a + (—b).

Because of the associative property, we may unambiguously write
the expression abc, for this can be reasonably interpreted as only (ab)c
or a(bc), which are equal. In fact, by using induction and repeated ap-
plication of the associative property, one can prove a general associa-
tive property that essentially means that parentheses can be inserted or
deleted at will without affecting the value of a product involving any
number of group elements. Thus,

a*(bcdb?) = a’b(cd)b* = (a*b)(cd)b*> = a(abcdb)b,
and so on.
Although groups do not have the property that (ab)" = a"b" there is
a simple relationship between (ab) ™' and a~!' and b™'.

I Theorem 2.4 Socks-Shoes Property

For group elements a and b, (ab)™' = b~ 'a™\.

PROOF Since (ab)(ab)™' = e and (ab)(b~'a™") = abb a ! =
aea”' = aa”! = e, we have by Theorem 2.3 that (ab) ™' = b~ la™ . |
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Historical Note

We conclude this chapter with a bit of history concerning the non-
commutativity of matrix multiplication. In 1925, quantum theory was
replete with annoying and puzzling ambiguities. It was Werner
Heisenberg who recognized the cause. He observed that the product of
the quantum-theoretical analogs of the classical Fourier series did not
necessarily commute. For all his boldness, this shook Heisenberg. As
he later recalled [2, p. 94]:

In my paper the fact that XY was not equal to YX was very disagreeable to me. I felt
this was the only point of difficulty in the whole scheme, otherwise I would be per-
fectly happy. But this difficulty had worried me and I was not able to solve it.

Heisenberg asked his teacher, Max Born, if his ideas were worth pub-
lishing. Born was fascinated and deeply impressed by Heisenberg’s new
approach. Born wrote [1, p. 217]:

After having sent off Heisenberg’s paper to the Zeitschrift fiir Physik for publica-
tion, I began to ponder over his symbolic multiplication, and was soon so involved
in it that I thought about it for the whole day and could hardly sleep at night. For I
felt there was something fundamental behind it, the consummation of our endeav-
ors of many years. And one morning, about the 10 July 1925, I suddenly saw light:
Heisenberg’s symbolic multiplication was nothing but the matrix calculus, well-
known to me since my student days from Rosanes’ lectures in Breslau.

Born and his student, Pascual Jordan, reformulated Heisenberg’s ideas
in terms of matrices, but it was Heisenberg who was credited with the
formulation. In his autobiography, Born laments [1, p. 219]:

Nowadays the textbooks speak without exception of Heisenberg’s matrices, Heisen-
berg’s commutation law, and Dirac’s field quantization.

In fact, Heisenberg knew at that time very little of matrices and had to study
them.

Upon learning in 1933 that he was to receive the Nobel Prize
with Dirac and Schrodinger for this work, Heisenberg wrote to Born
[1, p. 220]:

If I have not written to you for such a long time, and have not thanked you for your
congratulations, it was partly because of my rather bad conscience with respect to
you. The fact that I am to receive the Nobel Prize alone, for work done in Gottingen
in collaboration—you, Jordan, and [—this fact depresses me and I hardly know
what to write to you. I am, of course, glad that our common efforts are now appre-
ciated, and I enjoy the recollection of the beautiful time of collaboration. I also be-
lieve that all good physicists know how great was your and Jordan’s contribution to
the structure of quantum mechanics—and this remains unchanged by a wrong deci-
sion from outside. Yet I myself can do nothing but thank you again for all the fine
collaboration, and feel a little ashamed.

The story has a happy ending, however, because Born received the
Nobel Prize in 1954 for his fundamental work in quantum mechanics.
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“For example,” is not proof.

Jewish Proverb

. Give two reasons why the set of odd integers under addition is not

a group.

. Referring to Example 13, verify the assertion that subtraction is not

associative.

. Show that {1, 2, 3} under multiplication modulo 4 is not a group

but that {1, 2, 3, 4} under multiplication modulo 5 is a group.

. Show that the group GL(2, R) of Example 9 is non-Abelian by ex-

hibiting a pair of matrices A and B in GL(2, R) such that AB # BA.

2 6
. Find the inverse of the element [3 5] in GL(2, Z,,).

. Give an example of group elements a and b with the property that

a'ba # b.

. Translate each of the following multiplicative expressions into its

additive counterpart. Assume that the operation is commutative.
a. a’b’

b. a %(b 'c)?

c. (ab®>)3t=e

. Show that the set {5, 15, 25, 35} is a group under multiplication
modulo 40. What is the identity element of this group? Can you see
any relationship between this group and U(8)?

10.
11.

12.

List the members of H = {x*|x € D,} and K = {x €D, |x? = e}.
Prove that the set of all 2 X 2 matrices with entries from R and de-
terminant +1 is a group under matrix multiplication.

For any integer n > 2, show that there are at least two elements in
U(n) that satisfy x> = 1.



13.

14.

15.

16.

17.

18.
19.

20.
21.

22,

23.

24,
25.
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An abstract algebra teacher intended to give a typist a list of nine in-
tegers that form a group under multiplication modulo 91. Instead,
one of the nine integers was inadvertently left out, so that the list ap-
peared as 1, 9, 16, 22, 53, 74, 79, 81. Which integer was left out?
(This really happened!)

Let G be a group with the following property: Whenever a, b, and
¢ belong to G and ab = ca, then b = c. Prove that G is Abelian.
(“Cross cancellation” implies commutativity.)

(Law of Exponents for Abelian Groups) Let a and b be elements of
an Abelian group and let n be any integer. Show that (ab)" = a"b".
Is this also true for non-Abelian groups?

(Socks-Shoes Property) Draw an analogy between the statement
(ab)™' = b~ 'a~ ! and the act of putting on and taking off your socks
and shoes. Find an example that shows that in a group, it is possible
to have (ab)~% # b~%a2. Find distinct nonidentity elements a and
b from a non-Abelian group such that (ab) ™! = a b,

Prove that a group G is Abelian if and only if (ab)™' = a~'b~! for
all @ and b in G.

Prove that in a group, (a~")~! = a for all a.

For any elements a and b from a group and any integer n, prove
that (a”'ba)* = a~'b"a.

Ifa,a,...,a, belong to a group, what is the inverse of a\a, - - - a,?

The integers 5 and 15 are among a collection of 12 integers that
form a group under multiplication modulo 56. List all 12.

Give an example of a group with 105 elements. Give two examples
of groups with 44 elements.

Prove that every group table is a Latin square'; that is, each ele-
ment of the group appears exactly once in each row and each col-
umn. (This exercise is referred to in this chapter.)

Construct a Cayley table for U(12).

Suppose the table below is a group table. Fill in the blank entries.

QLU o T8 8
|

Latin squares are useful in designing statistical experiments. There is also a close con-
nection between Latin squares and finite geometries.
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26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Prove that if (ab)> = a’b? in a group G, then ab = ba.
Let a, b, and c be elements of a group. Solve the equation axb = ¢
for x. Solve a™'xa = ¢ for x.

Prove that the set of all rational numbers of the form 376", where
m and n are integers, is a group under multiplication.

Let G be a finite group. Show that the number of elements x of G
such that x> = ¢ is odd. Show that the number of elements x of G
such that x2 # e is even.

Give an example of a group with elements a, b, ¢, d, and x such
that axb = cxd but ab # cd. (Hence “middle cancellation” is not
valid in groups.)

Let R be any rotation in some dihedral group and F any reflection
in the same group. Prove that RFR = F.

Let R be any rotation in some dihedral group and F, any reflection
in the same group. Prove that FRF = R™! for all integers k.

Suppose that G is a group with the property that for every choice
of elements in G, axb = cxd implies ab = cd. Prove that G is
Abelian. (“Middle cancellation” implies commutativity.)

In the dihedral group D , let R = R, and let F be any reflection.
Write each of the following products in the form R' or R'F, where
0=i<n.

a. InD,, FR™*FR°

b. In Dy, R3FR*FR™?

c. In D, FROFR™*F

Prove that if G is a group with the property that the square of every
element is the identity, then G is Abelian. (This exercise is referred
to in Chapter 26.)

Prove that the set of all 3 X 3 matrices with real entries of the form

1 a b
0 1 ¢
0O 0 1

is a group. (Multiplication is defined by

1 a b 1 a b 1 a+a” b'+ac’+b
0 1 ¢ 01 ¢ |=|0 1 c'+c
0 0 1 0 0 1 0 0 1

This group, sometimes called the Heisenberg group after the
Nobel Prize—winning physicist Werner Heisenberg, is intimately re-
lated to the Heisenberg Uncertainty Principle of quantum physics.)
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37. Prove the assertion made in Example 19 that the set {1, 2, ...,
n — 1} is a group under multiplication modulo » if and only if n is
prime.

38. In a finite group, show that the number of nonidentity elements
that satisfy the equation x> = e is a multiple of 4. If the stipulation
that the group be finite is omitted, what can you say about the
number of nonidentity elements that satisfy the equation x> = e?

39. Let G = {{a a}\a ER,a# O}. Show that G is a group under
a a

matrix multiplication. Explain why each element of G has an inverse
even though the matrices have 0 determinant. (Compare with Exam-
ple 10.)

Almost immediately after the war, Johnny [Von Neumann] and | also began
to discuss the possibilities of using computers heuristically to try to obtain
insights into questions of pure mathematics. By producing examples and by
observing the properties of special mathematical objects, one could hope to
obtain clues as to the behavior of general statements which have been
tested on examples.

S. M. ULAM, Adventures of a Mathematician

Software for the computer exercises in this chapter is available at the web-
site:

http://www.d.umn.edu/~jgallian

1. This software prints the elements of U(n) and the inverse of each
element.

2. This software determines the size of U(k). Run the program for
k=29,27,81,243,25, 125,49, 121. On the basis of this output, try
to guess a formula for the size of U(p") as a function of the prime
p and the integer n. Run the program for k = 18, 54, 162, 486, 50,
250, 98, 242. Make a conjecture about the relationship between the
size of U(2p") and the size of U(p"), where p is a prime greater
than 2.

3. This software computes the inverse of any element in GL(2, Zp),
where p is a prime.

4. This software determines the number of elements in GL(2, Zp) and
SL(2, Zp). (The technical term for the number of elements in a group
is the order of the group.) Run the program for p = 3, 5,7, and 11.


http://www.d.umn.edu/~jgallian
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Do you see a relationship between the orders of GL(2, Z ) and
SL(2, Zp) and p — 1? Does this relationship hold for p = 2? Based
on these examples, does it appear that p always divides the order
of SL(2, ZP)? What about p — 1?7 What about p + 1?7 Guess a
formula for the order of SL(2, Zp). Guess a formula for the order
of GL(2, Z).
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Finite Groups;

Subgroups

In our own time, in the period 1960-1980, we have seen particle physics
emerge as the playground of group theory.
FREEMAN DYSON

Terminology and Notation

As we will soon discover, finite groups—that is, groups with finitely
many elements—have interesting arithmetic properties. To facilitate
the study of finite groups, it is convenient to introduce some terminol-
ogy and notation.

Definition Order of a Group
The number of elements of a group (finite or infinite) is called its
order. We will use |G| to denote the order of G.

Thus, the group Z of integers under addition has infinite order,
whereas the group U(10) = {1, 3, 7, 9} under multiplication modulo
10 has order 4.

Definition Order of an Element

The order of an element g in a group G is the smallest positive integer
n such that g" = e. (In additive notation, this would be ng = 0.) If no
such integer exists, we say that g has infinite order. The order of an
element g is denoted by Igl.

So, to find the order of a group element g, you need only compute the
sequence of products g, g%, g°, . . ., until you reach the identity for the first
time. The exponent of this product (or coefficient if the operation is addi-
tion) is the order of g. If the identity never appears in the sequence, then
g has infinite order.

B EXAMPLE 1 Consider U(15) = {1, 2, 4, 7, 8, 11, 13, 14} under
multiplication modulo 15. This group has order 8. To find the order of
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the element 7, say, we compute the sequence 7! = 7,72 = 4, 73 = 13,
74 =1, so |71 = 4. To find the order of 11, we compute 11! = 11,
112 = 1, so I111 = 2. Similar computations show that |11 = 1, 12| = 4,
4] = 2,181 = 4, 1131 = 4, 114] = 2. [Here is a trick that makes these
calculations easier. Rather than compute the sequence 13!, 132, 133,
134, we may observe that 13 = —2 mod 15, so that 13> = (=2)> = 4,
133=—-2-4=-8,13*=(—2)(—8) = 1.1 |

B EXAMPLE 2 Consider Z,, under addition modulo 10. Since 1 -2 = 2,
2:2=43-2=6,4-2=28,5-2 =0, we know that |2| = 5. Similar
computations show that [0l = 1, 171 = 10, I5| = 2,161 = 5. (Here 2 - 2 is
an abbreviation for 2 + 2, 3 - 2 is an abbreviation for 2 + 2 + 2, etc.) 1

B EXAMPLE 3 Consider Z under ordinary addition. Here every nonzero
element has infinite order, since the sequence a, 2a, 3a, . . . never includes
O whena # 0. |

The perceptive reader may have noticed among our examples of
groups in Chapter 2 that some are subsets of others with the same
binary operation. The group SL(2, R) in Example 17, for instance, is
a subset of the group GL(2, R) in Example 9. Similarly, the group of
complex numbers {1, —1, i, —i} under multiplication is a subset of
the group described in Example 14 for n equal to any multiple of 4.
This situation arises so often that we introduce a special term to de-
scribe it.

Definition Subgroup
If a subset H of a group G is itself a group under the operation of G, we
say that H is a subgroup of G.

We use the notation H = G to mean that H is a subgroup of G. If we
want to indicate that H is a subgroup of G but is not equal to G itself,
we write H < G. Such a subgroup is called a proper subgroup. The
subgroup {e} is called the trivial subgroup of G; a subgroup that is not
{e} is called a nontrivial subgroup of G.

Notice that Z under addition modulo 7 is not a subgroup of Z under
addition, since addition modulo 7 is not the operation of Z.

Subgroup Tests

When determining whether or not a subset H of a group G is a sub-

" The website www.google.com provides a convenient way to do modular arithmetic.
For example, to compute 13* mod 15, just type 134 mod 15 in the search box.


www.google.com
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group of G, one need not directly verify the group axioms. The next
three results provide simple tests that suffice to show that a subset of a
group is a subgroup.

I Theorem 3.1 One-Step Subgroup Test

Let G be a group and H a nonempty subset of G. If ab~"is in H
whenever a and b are in H, then H is a subgroup of G. (In additive
notation, if a — b is in H whenever a and b are in H, then H is a
subgroup of G.)

PROOF Since the operation of H is the same as that of G, it is clear
that this operation is associative. Next, we show that e is in H. Since H
is nonempty, we may pick some x in H. Then, letting a = x and b = x in
the hypothesis, we have e = xx~! = ab~!is in H. To verify that x! is
in H whenever x is in H, all we need to do is to choose ¢ = ¢ and b =
x in the statement of the theorem. Finally, the proof will be complete
when we show that H is closed; that is, if x, y belong to H, we must
show that xy is in H also. Well, we have already shown that y~! is in H
whenever y is; so, lettinga = xand b = y~!, we have xy = x(y 1)~! =
ab~'is in H. |

Although we have dubbed Theorem 3.1 the “One-Step Subgroup
Test,” there are actually four steps involved in applying the theorem.
(After you gain some experience, the first three steps will be routine.)
Notice the similarity between the last three steps listed below and the
three steps involved in the Principle of Mathematical Induction.

1. Identify the property P that distinguishes the elements of H; that is,
identify a defining condition.

2. Prove that the identity has property P. (This verifies that H is
nonempty.)

3. Assume that two elements a and b have property P.

4. Use the assumption that a and b have property P to show that
ab~! has property P.

The procedure is illustrated in Examples 4 and 5.

I EXAMPLE 4 Let G be an Abelian group with identity e. Then H =
{x € G | x> = ¢} is a subgroup of G. Here, the defining property of H
is the condition x> = e. So, we first note that e* = e, so that H is non-
empty. Now we assume that a and b belong to H. This means that a> = e
and b*> = e. Finally, we must show that (ab~')*> = e. Since G is
Abelian, (ab™")? = ab lab™! = a*(b™")? = (B> = ee”! = e.
Therefore, ab™! belongs to H and, by the One-Step Subgroup Test, H
is a subgroup of G. |



60

Groups

In many instances, a subgroup will consist of all elements that have
a particular form. Then the property P is that the elements have that
particular form. This is illustrated in the following example.

B EXAMPLE 5 Let G be an Abelian group under multiplication with
identity e. Then H = {x*> | x € G} is a subgroup of G. (In words, H is
the set of all “squares.”’) Since e? = e, the identity has the correct form.
Next, we write two elements of H in the correct form, say, a> and b*>. We
must show that a%(b?)~! also has the correct form; that is, a%(b*) ! is the
square of some element. Since G is Abelian, we may write a*(b*)~! as
(ab™1)2, which is the correct form. Thus, H is a subgroup of G. |

Beginning students often prefer to use the next theorem instead of
Theorem 3.1.

I Theorem 3.2 Two-Step Subgroup Test

Let G be a group and let H be a nonempty subset of G. If ab is in H
whenever a and b are in H (H is closed under the operation), and a™'
is in H whenever a is in H (H is closed under taking inverses), then H
is a subgroup of G.

PROOF By Theorem 3.1, it suffices to show that a, b € H implies
ab™! € H. So, we suppose that a, b € H. Since H is closed under
taking inverses, we also have b~! € H. Thus, ab~!' € H by closure un-
der multiplication. |

When applying the “Two-Step Subgroup Test,” we proceed exactly
as in the case of the “One-Step Subgroup Test,” except we use the as-
sumption that a and b have property P to prove that ab has property P
and that a™! has property P.

How do you prove that a subset of a group is not a subgroup? Here
are three possible ways, any one of which guarantees that the subset is
not a subgroup:

1. Show that the identity is not in the set.
2. Exhibit an element of the set whose inverse is not in the set.
3. Exhibit two elements of the set whose product is not in the set.

B EXAMPLE 6 Let G be the group of nonzero real numbers under
multiplication, H = {x € G | x = 1 or x is irrational} and K =
{x € G| x = 1}. Then H is not a subgroup of G, since V2 € H
but V2 -\V2 =2 & H. Also, K is not a subgroup, since 2 € K but
27 E K. |
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When dealing with finite groups, it is easier to use the following
subgroup test.

§I Theorem 3.3 Finite Subgroup Test

Let H be a nonempty finite subset of a group G. If H is closed under
the operation of G, then H is a subgroup of G.

PROOF In view of Theorem 3.2, we need only prove that ™! € H
whenever @ € H. If a = e, then a™! = a and we are done. If a # e,
consider the sequence a, a2, . ... By closure, all of these elements
belong to H. Since H is finite, not all of these elements are distinct. Say
a = a andi > j. Then, a7/ = e; and since a # e, i — j > 1. Thus,
aa’ /7! = a7/ = e and, therefore, a7 ' =a . But,i —j—1=1
implies @ /~! € H and we are done. |

Examples of Subgroups

The proofs of the next few theorems show how our subgroup tests
work. We first introduce an important notation. For any element a from
a group, we let (a) denote the set {a" | n € Z}. In particular, observe
that the exponents of a include all negative integers as well as 0 and the
positive integers (a’ is defined to be the identity).

1 Theorem 3.4 (a) Is a Subgroup

Let G be a group, and let a be any element of G. Then, {a) is a sub-
group of G.

PROOF Since a € {(a), {a) is not empty. Let a", a" € {(a). Then,
a(a”)~' = a"~™ € (a); so, by Theorem 3.1, {a) is a subgroup of G. |

The subgroup (a) is called the cyclic subgroup of G generated by a. In
the case that G = (a), we say that G is cyclic and a is a generator of G.
(A cyclic group may have many generators.) Notice that although the
list ..., a2 a', d a', @® ... has infinitely many entries, the set
{a" | n € Z} might have only finitely many elements. Also note that,

since ala/ = a'™ = a/*' = dala’, every cyclic group is Abelian.

1 EXAMPLE 7 In U(10), (3) = {3,9, 7, 1} = U(10), for 3! = 3,
32=9,33=7,3=1,3=3.3=1-3,30=3*-32=9 . ;3 1=7
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(since 3 -7 =1),372
2

)33 =334=13%=34.31=
1:7,376=3"4-3" =

9,.... |

B EXAMPLE 8 In Z , (2) = {2, 4, 6, 8, 0}. Remember, a" means na
when the operation is addition. |

B EXAMPLE 9 In Z, (—1) = Z. Here each entry in the list ...,
—2(—1), —1(—1),0(—1), 1(—1),2(—1), . . . represents a distinct group
element. |

8 EXAMPLE 10 In D, the dihedral group of order 2n, let R denote a
rotation of 360/n degrees. Then,

n — — n — n+2 — 2
R'=Ry.=e, R*'=R  R*=R

Similarly, R"! = R""1,R™2 = R*2, ... ,so that (R) = {e, R, ...,
R"1}. We see, then, that the powers of R “cycle back” periodically
with period n. Visually, raising R to successive positive powers is the
same as moving counterclockwise around the following circle one
node at a time, whereas raising R to successive negative powers is the
same as moving around the circle clockwise one node at a time.

R'=e

R =R R ! =R!

R = R? & o2 o2

In Chapter 4 we will show that I{a)| = lal; that is, the order of the
subgroup generated by a is the order of a itself. (Actually, the definition
of lal was chosen to ensure the validity of this equation.)

We next consider one of the most important subgroups.

Definition Center of a Group
The center, Z(G), of a group G is the subset of elements in G that
commute with every element of G. In symbols,

Z(G) = {a € G | ax = xa for all x in G}.

[The notation Z(G) comes from the fact that the German word for
center is Zentrum. The term was coined by J. A. de Seguier in 1904.]

I Theorem 3.5 Center Is a Subgroup

The center of a group G is a subgroup of G.
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PROOF For variety, we shall use Theorem 3.2 to prove this result.
Clearly, e € Z(G), so Z(G) is nonempty. Now, suppose a, b € Z(G).
Then (ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab) for all x in G;
and, therefore, ab € Z(G).

Next, assume that a € Z(G). Then we have ax = xa for all x in G.
What we want is a~'x = xa~! for all x in G. Informally, all we need do
to obtain the second equation from the first one is simultaneously to
bring the a’s across the equals sign:

TN
ax = xa
NS

becomes xa~! = a~'x. (Be careful here; groups need not be commuta-
tive. The a on the left comes across as a~! on the left, and the a on the
right comes across as a~! on the right.) Formally, the desired equation
can be obtained from the original one by multiplying it on the left and
right by a™!, like so:

a Yax)a ' = a Y(xa)a !,
(a'ayxa ' = a 'x(aa™"),
exa” ' = a lxe,
xa '=alx.
This shows that a~! € Z(G) whenever a is. |

For practice, let’s determine the centers of the dihedral groups.

§ EXAMPLE 11 Forn = 3,

{Ry, Ri3y} when n is even,

Z(D,) =
(D) {{RO} when n is odd.

To verify this, first observe that since every rotation in D, is a power
of R, rotations commute with rotations. We now investigate when a
rotation commutes with a reflection. Let R be any rotation in D, and let
F be any reflection in D, . Observe that since RF is a reflection we have
RF = (RF)"' = F'R™! = FR™'. Thus it follows that R and F commute
if and only if FR = RF = FR™'. By cancellation, this holds if and only if
R=R'"ButR=R 'onlywhenR =R orR =R, and R . isin D
only when n is even. So, we have proved that Z(D ) = {R} when n is

odd and Z(D,) = {R, R g,} when n is even. |

Although an element from a non-Abelian group does not necessarily
commute with every element of the group, there are always some
elements with which it will commute. For example, every element a
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commutes with all powers of a. This observation prompts the next def-
inition and theorem.

Definition CentralizerofainG

Let a be a fixed element of a group G. The centralizer of a in G, C(a), is
the set of all elements in G that commute with a. In symbols, C(a) =
{g€ Glga=ag}

B EXAMPLE 12 In D, we have the following centralizers:

C(R) = D, = C(R,,).
C(Ryy) = (R, Ry R g Ry} = C(Ryy),
CH) = {RO’ H, R180’ V} = C(V),
C(D) = {Ry, D, R i, D'} = C(D'). N

Notice that each of the centralizers in Example 12 is actually a sub-
group of D,. The next theorem shows that this was not a coincidence.

I Theorem 3.6 C(a) Is a Subgroup

For each a in a group G, the centralizer of a is a subgroup of G.

PROOF A proof similar to that of Theorem 3.5 is left to the reader to
supply (Exercise 25). |

Notice that for every element a of a group G, Z(G) C C(a). Also,
observe that G is Abelian if and only if C(a) = G for all a in G.

The purpose of proof is to understand, not to verify.
ARNOLD ROSS

1. For each group in the following list, find the order of the group
and the order of each element in the group. What relation do you
see between the orders of the elements of a group and the order of
the group?

Z, U0, U12), UQR0), D,

2. Let Q be the group of rational numbers under addition and let O*
be the group of nonzero rational numbers under multiplication.
In Q, list the elements in (3). In Q%*, list the elements in (3 ).



11.

12.

13.

14.

15.

16.

17.

18.
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. Let Q and Q* be as in Exercise 2. Find the order of each element

in Q and in Q%*.

. Prove that in any group, an element and its inverse have the

same order.

. Without actually computing the orders, explain why the two ele-

ments in each of the following pairs of elements from Z, ) must
have the same order: {2, 28}, {8, 22}. Do the same for the follow-
ing pairs of elements from U(15): {2, 8}, {7, 13}.

. Suppose that a is a group element and a® = e. What are the possi-

bilities for |a|? Provide reasons for your answer.

. If a is a group element and a has infinite order, prove that a™ # a”

when m # n.

. Let x belong to a group. If x* # e and x° = ¢, prove that x* # ¢ and

x> # e. What can we say about the order of x?

. Show that if a is an element of a group G, then lal = IGI.
10.

Show that U(14) = (3) = (5). [Hence, U(14) is cyclic.] Is
U(14) = (11)?

Show that U(20) # (k) for any k in U(20). [Hence, U(20) is not
cyclic.]

Prove that an Abelian group with two elements of order 2 must
have a subgroup of order 4.

Find groups that contain elements a and b such that lal = 1bl = 2
and

a. labl =3, b. labl =4, c. labl = 5.
Can you see any relationship among lal, 1bl, and lab!?

Suppose that H is a proper subgroup of Z under addition and H
contains 18, 30, and 40. Determine H.

Suppose that H is a proper subgroup of Z under addition and that H
contains 12, 30 and 54. What are the possibilities for H?

Prove that the dihedral group of order 6 does not have a subgroup
of order 4.

For each divisor k > 1 of n, let U (n) = {x € U(n) | x mod k = 1}.
[For example, U,(21) = {1, 4, 10, 13, 16, 19} and U,(21) = {1, 8}.]
List the elements of U,(20), U(20), U4(30), and U,,(30). Prove that
U,(n) is a subgroup of U(n). Let H = {x € U(10) | xmod 3 = 1}. Is
H a subgroup of U(10)? (This exercise is referred to in Chapter 8.)
If H and K are subgroups of G, show that H N K is a subgroup of
G. (Can you see that the same proof shows that the intersection
of any number of subgroups of G, finite or infinite, is again a
subgroup of G?)
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19.

20.
21.

22,

23.

24.

25.
26.

27.
28.
29.

Let G be a group. Show that Z(G) = N __.C(a). [This means the
intersection of all subgroups of the form C(a).]

Let G be a group, and let a € G. Prove that C(a) = C(a™).

For any group element a and any integer k, show that C(a) C C(a*).
Use this fact to complete the following statement: “In a group, if R
is an integer and x commutes with a, then . . . .’ Is the converse true?

Complete the partial Cayley group table given below.
1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 1 4 3 6 5 8 7
3 3 4 2 1 7 8 6 5
4 4 3 1 2 8 7 5 6
5 5 6 8 7 1
6 ' 6 5 7 8 1
7 7 8 5 6 1
8 8§ 7 6 5 1
Suppose G is the group defined by the following Cayley table.
1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 |2 1 8 7 6 5 4 3
3 /3 4 5 6 7 8 1 2
4 | 4 3 2 1 8 7 6 5
S |5 6 7 8 1 2 3 4
6 | 6 5 4 3 2 1 8 7
717 8 1 2 3 4 5 6
8§ |8 7 6 5 4 3 2 1

a. Find the centralizer of each member of G.

b. Find Z(G).

c. Find the order of each element of G. How are these orders arith-
metically related to the order of the group?

If a and b are distinct group elements, prove that either a> # b* or
a’ # b’
Prove Theorem 3.6.

If H is a subgroup of G, then by the centralizer C(H) of H we mean
the set {x € G | xh = hx for all h € H}. Prove that C(H) is a sub-
group of G.

Must the centralizer of an element of a group be Abelian?
Must the center of a group be Abelian?

Let G be an Abelian group with identity e and let n be some fixed in-
teger. Prove that the set of all elements of G that satisfy the equation
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31.

32.

33.

34.

35.

36.

37.

38.

39.
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x" = e is a subgroup of G. Give an example of a group G in which
the set of all elements of G that satisfy the equation x* = e does not
form a subgroup of G. (This exercise is referred to in Chapter 11.)

Suppose a belongs to a group and lal = 5. Prove that C(a) = C(a?).
Find an element a from some group such that lal = 6 and C(a) #
C(ad).

Determine all finite subgroups of R*, the group of nonzero real
numbers under multiplication.

Suppose n is an even positive integer and H is a subgroup of Z .
Prove that either every member of H is even or exactly half of the
members of H are even.

Suppose a group contains elements a and b such that lal = 4,
Ibl = 2, and a®b = ba. Find lab|.

Suppose a and b are group elements such that |a| = 2, b # e, and
aba = b?. Determine |b|.

Let a be a group element of order n, and suppose that d is a posi-
tive divisor of n. Prove that |a?| = n/d.

0 1

] from
-1 -1

SL(2, R). Find |Al, IBI, and IABI. Does your answer surprise you?

—1
Consider the elements A:[(l) O} and BZ{

11
Consider the element A = L) J in SL(2, R). What is the order of

11
A?If we view A = [0 1] as a member of SL(2, Zp) (p is a prime),

what is the order of A?
For any positive integer n and any angle 6, show that in the group
SL(2, R),

[cos 6 — sin 0]1 B {cos nd — sin ne]

sin 6 cos 0 sin no cos nf

Use this formula to find the order of
cos 60°  — sin 60° cos V2° —sin V2°

Lin 60° cos 600]a [sin 2° cos 2°}'

cosf — sind

(Geometrically, [ .
sin 6 cos 0

] represents a rotation of the plane
0 degrees.)
Let G be the symmetry group of a circle. Show that G has elements

of every finite order as well as elements of infinite order.
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40.

41.
42,
43.
44.

45.

46.

47.

48.

49.
50.

51.

52,

53.

Let x belong to a group and |x| = 6. Find Ix?I, Ix3], Ix*, and 1x°|. Let
y belong to a group and Iyl = 9. Find Iyl fori = 2, 3, ..., 8. Do
these examples suggest any relationship between the order of the
power of an element and the order of the element?

D, has seven cyclic subgroups. List them. Find a subgroup of D, of
order 4 that is not cyclic.

U(15) has six cyclic subgroups. List them.
Prove that a group of even order must have an element of order 2.

Suppose G is a group that has exactly eight elements of order 3.
How many subgroups of order 3 does G have?

Let H be a subgroup of a finite group G. Suppose that g belongs to
G and n is the smallest positive integer such that g" € H. Prove that
n divides Igl.

Compute the orders of the following groups.

a. UQ3), U4), U(12)

b. U(5), U(7), U(35)

c. U4, US), UR0)

d. U@3), U(5), U(15)

On the basis of your answers, make a conjecture about the relation-
ship among |1U(r)l, 1U(s)!, and 1U(rs)!.

Let R* be the group of nonzero real numbers under multiplication
and let H = {x € R* | x? is rational }. Prove that H is a subgroup of
R*. Can the exponent 2 be replaced by any positive integer and still
have H be a subgroup?

Compute 1U(4)I, 1U(10)I, and [U(40)I. Do these groups provide a
counterexample to your answer to Exercise 46? If so, revise your
conjecture.

Find a cyclic subgroup of order 4 in U(40).

Find a noncyclic subgroup of order 4 in U(40).

b
Let G = { [a d] |a, b, c,d ez } under addition. Let H =
c

b
{[a d}e Gla+b+c+d= O}.ProvethatHisasubgroupofG.
c

What if O is replaced by 1?

Let H = {A € GL(2, R)l det A is an integer power of 2}. Show that
H is a subgroup of GL(2, R).

Let H be a subgroup of R under addition. Let K = {2¢ | a € H}.
Prove that K is a subgroup of R* under multiplication.
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Let G be a group of functions from R to R*, where the operation
of G is multiplication of functions. Let H = {f € G | f(2) = 1}.
Prove that H is a subgroup of G. Can 2 be replaced by any real
number?

0
Let G = GL(2, R) and H = { {g b} | a and b are nonzero inte-

gers ¢ under the operation of matrix multiplication. Prove or

disprove that H is a subgroup of GL(2, R).

LetH = {a + bila,b€&€ R, ab=0}. Prove or disprove that H is a
subgroup of C under addition.

Let H= {a + bila, b € R, a*> + b> = 1}. Prove or disprove that
H is a subgroup of C* under multiplication. Describe the elements
of H geometrically.

The smallest subgroup containing a collection of elements S is the
subgroup H with the property that if K is any subgroup containing
S then K also contains H. (So, the smallest subgroup containing S is
contained in every subgroup that contains S.) The notation for this
subgroup is (S). In the group Z, find

a. (8, 14)

b. (8, 13)

c. (6, 15)

d. {(m, n)

e. (12,18, 45).

In each part, find an integer k such that the subgroup is (k).

Let G = GL(2, R).

cse([1 1)
wrse(} 1)

c. Find Z(G).

Let G be a finite group with more than one element. Show that G
has an element of prime order.

Let a belong to a group and lal = m. If n is relatively prime to m,
show that a can be written as the nth power of some element in the
group.

Let G be a finite Abelian group and let @ and b belong to G. Prove
that the set (a, b) = {a'b/| i, j € Z} is a subgroup of G. What can
you say about l(a, b)| in terms of |al and 1517
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Computer Exercises

A Programmer’s Lament

I really hate this damned machine;
| wish that they would sell it

It never does quite what | want
but only what | tell it.

DENNIE L. VAN TASSEL, The Compleat Computer

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines the cyclic subgroups of U(n) generated
by each k in U(n) (n < 100). Run the program for n = 12, 15, and
30. Compare the order of the subgroups with the order of the group
itself. What arithmetic relationship do these integers have?

2. The program lists the elements of Z that generate all of Z —that s,
those elements k, 0 =< k = n — 1, for which Z = (k). How does this
set compare with U(n)? Make a conjecture.

3. This software does the following: For each pair of elements a and b
from U(n) (n < 100), it prints lal, |bl, and labl on the same line. Run
the program for several values of n. Is there an arithmetic relation-
ship between labl and lal and 151?

4. This exercise repeats Exercise 3 for Z using a + b in place of ab.

5. This software computes the order of elements in GL(2, Zp). Enter
several choices for matrices A and B. The software returns 1Al, |BI,
IABI, IBAI, IA"'BAI, and 1B~ 'ABI. Do you see any relationship be-
tween |Al, |Bl and 1ABI? Do you see any relationship between |AB|
and |IBAI? Make a conjecture about this relationship. Test your con-
jecture for several other choices for A and B. Do you see any rela-
tionship between 1Bl and IA~'BAI? Do you see any relationship
between IAl and |IB~!ABI? Make a conjecture about this relation-
ship. Test your conjecture for several other choices for A and B.

Suggested Readings

Ruth Berger, “Hidden Group Structure,” Mathematics Magazine 78
(2005): 45-48.


http://www.d.umn.edu/~jgallian
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In this note, the author investigates groups obtained from U(n) by mul-
tiplying each element by some & in U(n). Such groups have identities
that are not obvious.

J. Gallian and M. Reid, “Abelian Forcing Sets,” American Mathematical
Monthly 100 (1993): 580-582.

A set S is called Abelian forcing if the only groups that satisfy (ab)" =
a"b" for all a and b in the group and all n in § are the Abelian ones.
This paper characterizes the Abelian forcing sets.

Gina Kolata, “Perfect Shuffles and Their Relation to Math,” Science 216
(1982): 505-506.

This is a delightful nontechnical article that discusses how group the-
ory and computers were used to solve a difficult problem about shuf-
fling a deck of cards. Serious work on the problem was begun by an
undergraduate student as part of a programming course.

Suggested Software

Allen Hibbard and Kenneth Levasseur, Exploring Abstract Algebra with
Mathematica, New York: Springer-Verlag, 1999.

This book, intended as a supplement for a course in abstract algebra,
consists of 14 group labs, 13 ring labs, and documentation for the
Abstract Algebra software on which the labs are based. The software uses
the Mathematica language, and only a basic familiarity with the program
is required. The software can be freely downloaded at http://www
.central.edu/eaam/ and can be used independently of the book. This arti-
cle can be downloaded at http://www.d.umn.edu/~jgallian/forcing.pdf


http://www.central.edu/eaam/and
http://www.central.edu/eaam/and
http://www.central.edu/eaam/and
http://www.d.umn.edu/~jgallian/forcing.pdf

Cyclic Groups

The notion of a “group,” viewed only 30 years ago as the epitome of
sophistication, is today one of the mathematical concepts most widely
used in physics, chemistry, biochemistry, and mathematics itself.

ALEXEY SOSINSKY, 1991

Properties of Cyclic Groups

72

Recall from Chapter 3 that a group G is called cyclic if there is an ele-
ment a in G such that G = {a" | n € Z}. Such an element a is called a
generator of G. In view of the notation introduced in the preceding
chapter, we may indicate that G is a cyclic group generated by a by
writing G = (a).

In this chapter, we examine cyclic groups in detail and determine
their important characteristics. We begin with a few examples.

B EXAMPLE 1 The set of integers Z under ordinary addition is cyclic.
Both 1 and —1 are generators. (Recall that, when the operation is addi-
tion, 1” is interpreted as

T+ 1+ +1

n terms
when 7 is positive and as

DD+ (D)

Inl terms
when 7 is negative.) |
B EXAMPLE 2 The set Z, = {0, 1, ..., n — 1} forn = 1 is a
cyclic group under addition modulo n. Again, 1 and —1 = n — 1 are
generators. |
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Unlike Z, which has only two generators, Z, may have many genera-
tors (depending on which n we are given).

B EXAMPLE 3 Z; = (1) = (3) = (5) = (7). To verify, for instance, that
Zg = (3), we note that (3) = {3,3 + 3,3 + 3 + 3, ...} is the set {3, 6,
1,4,7,2,5,0} = Zg. Thus, 3 is a generator of Zg. On the other hand, 2
is not a generator, since (2) = {0, 2,4, 6} # Zs. |

I EXAMPLE 4 (See Example 11 in Chapter 2.)
U10) = {1, 3, 7,9} = {39 31, 33, 32} = (3). Also, {1, 3, 7,9} =
{7°, 73, 7', 7%} = (7). So both 3 and 7 are generators for U(10). |

Quite often in mathematics, a “nonexample” is as helpful in under-
standing a concept as an example. With regard to cyclic groups, U(8)
serves this purpose; that is, U(8) is not a cyclic group. How can we ver-
ify this? Well, note that U(8) = {1, 3, 5, 7}. But

(1= {1}

3)=1{31)
G)=1{51)
=171}

so U(8) # (a) for any a in U(8).
With these examples under our belts, we are now ready to tackle
cyclic groups in an abstract way and state their key properties.

I Theorem 4.1 Criterionfora = a/

Let G be a group, and let a belong to G. If a has infinite order, then
a' = & ifand only if i = j. If a has finite order, say, n, then (a) =
{e,a,d? ..., a" "} and a’ = &/ if and only if n divides i —j.

PROOF If a has infinite order, there is no nonzero n such that a” is the
identity. Since a’ = a/ implies @’/ = e, we must have i — j = 0, and the
first statement of the theorem is proved.

Now assume that lal = n. We will prove that (a) = {e, a,...,a" '}.
Certainly, the elements e, a, . . ., a"~ ! are in ().

Now, suppose that a* is an arbitrary member of (a). By the division
algorithm, there exist integers g and r such that

k=gn+r with 0=r<n.
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Then a* = a?" = a?a” = (a")%a” = ea” = a’, so that a* € {e, a,
a’,...,a" '}. This proves that (a) = {e, a,a?, ...,a" '}.

Next, we assume that ' = a/ and prove that n divides i — j. We
begin by observing that @’ = @/ implies a’/ = e. Again, by the division
algorithm, there are integers g and r such that

i—j=qn+r with O=r<n.

Then a'™7/ = a9""", and therefore e = @'/ = q"™" = (a")a” = ela’ =
ea” = a'. Since n is the least positive integer such that a” is the identity,
we must have » = 0, so that n divides i — .

Conversely, if i — j = ng, then @'/ = a"1 = ¢? = ¢, so that
a =a. |

Theorem 4.1 reveals the reason for the dual use of the notation and
terminology for the order of an element and the order of a group.

1 Corollary 1 lal = [{(a)|

For any group element a, lal = Ka)!.

One special case of Theorem 4.1 occurs so often that it deserves
singling out.

1 Corollary 2 a* = e Implies That lal Divides k

Let G be a group and let a be an element of order nin G. If a* = e,
then n divides k.

PROOF Since a* = e = a°, we know by Theorem 4.1 that n divides
k— 0. |

Theorem 4.1 and its corollaries for the case lal = 6 are illustrated in
Figure 4.1.

What is important about Theorem 4.1 in the finite case is that it says
that multiplication in () is essentially done by addition modulo n. That
is, if (i + j) mod n = k, then a’a’ = a*. Thus, no matter what group G
is, or how the element a is chosen, multiplication in (@) works the same
as addition in Z, whenever lal = n. Similarly, if a has infinite order,
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a®=a’=a®
-1_ . 5_ 11
a—S:a:a7 a =a =a
2_ ,4_ 10
at=a2=g8 a“=a"=a
...a’3=a3=a°...
Figure 4.1

then multiplication in {(a) works the same as addition in Z, since a'a’ =
a'*/ and no modular arithmetic is done.

For these reasons, the cyclic groups Z, and Z serve as prototypes for
all cyclic groups, and algebraists say that there is essentially only one
cyclic group of each order. What is meant by this is that, although
there may be many different sets of the form {a" | n € Z}, there is
essentially only one way to operate on these sets. Algebraists do not
really care what the elements of a set are; they care only about the
algebraic properties of the set—that is, the ways in which the elements
of a set can be combined. We will return to this theme in the chapter
on isomorphisms (Chapter 6).

The next theorem provides a simple method for computing la*|
knowing only lal, and its first corollary provides a simple way to tell
when {(a’) = {(a/).

I Theorem4.2 {(g*) = (@8dnh)

Let a be an element of order n in a group and let k be a positive
integer. Then {(a¥) = (a&4"%) and |a¥| = n/ged(n,k).

PROOF To simplify the notation, let d = gcd(n,k) and let k = dr.
Since af = (a?)", we have by closure that {a*) C (a?). By Theorem 0.2
(the ged theorem), there are integers s and ¢ such that d = ns + kt. So,
a® = a¥th = gva = (a"y(d") = e(d’) = (a")' € (a*). This proves
(a?y C {a"). So, we have verified that (aX) = (@20},

We prove the second part of the theorem by showing first that la¢l =
n/d for any divisor d of n. Clearly, (a?)? = a" = e, so that la’l = n/d. On
the other hand, if i is a positive integer less than n/d, then (a)’ # e by de-
finition of lal. We now apply this fact with d = gcd(n,k) to obtain la*l =
a) = 1{agedmh)| = |gedb] = p/ged(n k). |

The advantage of Theorem 4.2 is that it allows us to replace one
generator of a cyclic subgroup with a more convenient one. For example,
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if lal = 30, we have (a*%) = (a?), (a®) = (a), (a®*) = (a?), (a*') = (a®).
From this we can easily see that a**| = 30 and la**| = 15. Moreover, if
one wants to list the elements of, say, (a'), it is easier to list the elements
of {(@®) instead. (Try it doing it both ways!).

Theorem 4.2 establishes an important relationship between the order
of an element in a finite cyclic group and the order of the group.

1 Corollary 1 Orders of Elements in Finite Cyclic Groups

In a finite cyclic group, the order of an element divides the order
of the group.

1 Corollary 2 Criterion for {(a’) = (a/)and ld'| = |a/|

Let lal = n. Then {da’) = (a)) if and only if gcd(n, i) = gcd(n, j)
and \d!| = |aJ if and only if gcd(n, i) = ged(n, j) .

PROOF Theorem 4.2 shows that {a’) = (a2d®)) and {(a’) = {a2cdt)),
so that the proof reduces to proving that (a¢d")) = (g&«d)) if and
only if ged(n, i) = gcd(n, j). Certainly, ged(n, i) = gcd(n, j) implies
that (qed®D) = (geedD) On the other hand, (a&dD) = (geedni)

implies that 1a2¢d)| = |g2ed™)| 5o that by the second conclusion of
Theorem 4.2, we have n/gcd(n, i) = n/ged(n, j), and therefore ged(n, i) =
ged(n, j). L

The second part of the corollary follows from the first part and
Corollary 1 of Theorem 4.1.

The next two corollaries are important special cases of the preceding
corollary.

I Corollary 3 Generators of Finite Cyclic Groups

Let lal = n. Then {(a) = {a’) if and only if gcd(n, j) = 1 and
lal = Ka’)| if and only if gcd(n, j) = 1.

I Corollary 4 Generators of Z,,

An integer k in Z,, is a generator of Z,, if and only if gcd(n, k) = 1.

The value of Corollary 3 is that once one generator of a cyclic group has
been found, all generators of the cyclic group can easily be determined.
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For example, consider the subgroup of all rotations in Dg. Clearly, one
generator is Rgy. And, since IRq)| = 6, we see by Corollary 3 that the only
other generator is (Rg)’ = Ry Of course, we could have readily deduced
this information without the aid of Corollary 3 by direct calculations. So,
to illustrate the real power of Corollary 3, let us use it to find all genera-
tors of the cyclic group U(50). First, note that direct computations show
that 1U(50)I = 20 and that 3 is one of its generators. Thus, in view of
Corollary 3, the complete list of generators for U(50) is

3 mod 50 = 3, 3" mod 50 = 47,
33 mod 50 = 27, 313 mod 50 = 23,
37 mod 50 = 37, 37 mod 50 = 13,
3% mod 50 = 33, 39 mod 50 = 17.

Admittedly, we had to do some arithmetic here, but it certainly entailed
much less work than finding all the generators by simply determining
the order of each element of U(50) one by one.

The reader should keep in mind that Theorem 4.2 and its corollaries
apply only to elements of finite order.

Classification of Subgroups
of Cyclic Groups

The next theorem tells us how many subgroups a finite cyclic group has
and how to find them.

I Theorem 4.3 Fundamental Theorem of Cyclic Groups

Every subgroup of a cyclic group is cyclic. Moreover, if {a)| = n,
then the order of any subgroup of {a) is a divisor of n; and, for each
positive divisor k of n, the group {a) has exactly one subgroup of
order k—namely, {a"'*).

Before we prove this theorem, let’s see what it means. Understand-
ing what a theorem means is a prerequisite to understanding its proof.
Suppose G = (a) and G has order 30. The first and second parts of the
theorem say that if H is any subgroup of G, then H has the form (a**) for
some k that is a divisor of 30. The third part of the theorem says that G
has one subgroup of each of the orders 1, 2, 3, 5, 6, 10, 15, and 30—and
no others. The proof will also show how to find these subgroups.

PROOF Let G = {a) and suppose that H is a subgroup of G. We must
show that H is cyclic. If it consists of the identity alone, then clearly H is
cyclic. So we may assume that H # {e}. We now claim that H contains
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an element of the form ', where ¢ is positive. Since G = (a), every
element of H has the form a'; and when o' belongs to H with ¢ < 0, then
a~"belongs to H also and —¢ is positive. Thus, our claim is verified. Now
let m be the least positive integer such that a” € H. By closure, (¢™) C H.
We next claim that H = (a™). To prove this claim, it suffices to let b be an
arbitrary member of H and show that b is in (a™). Since b € G = {(a), we
have b = a* for some k. Now, apply the division algorithm to k and m to
obtain integers ¢ and r such that k = mg + r where 0 < r < m. Then a* =
amitr = gMig’, so that " = a ™a*. Since a* = b € H and a ™ =
(a™)"4is in H also, a” € H. But, m is the least positive integer such that
a" € H,and 0 < r < m, so r must be 0. Therefore, b = a* = o™ =
(@™ € (a™). This proves the assertion of the theorem that every sub-
group of a cyclic group is cyclic.

To prove the next portion of the theorem, suppose that I{a)l = n and
H is any subgroup of (a). We have already shown that H = (a™), where
m is the least positive integer such that @” € H. Using e = b = a" as in
the preceding paragraph, we have n = mgq.

Finally, let k be any positive divisor of n. We will show that (a"/*) is
the one and only subgroup of (@) of order k. From Theorem 4.2, we see
that (a"*) has order n/gcd(n, n/k) = n/(n/k) = k. Now let H be any
subgroup of {(a) of order k. We have already shown above that H = {(a™),
where m is a divisor of n. Then m = gcd(n, m) and k = |a” = 1a=40| =
nlged (n, m) = n/m. Thus, m = n/k and H = {a"¥). |

Returning for a moment to our discussion of the cyclic group {a),
where a has order 30, we may conclude from Theorem 4.3 that the sub-
groups of {a) are precisely those of the form (a™), where m is a divisor
of 30. Moreover, if k is a divisor of 30, the subgroup of order k is
(@®”%y. So the list of subgroups of {a) is:

(a) = {e,a,a? ..., ad*>°) order 30,
(@* = {e,a? a*, ..., a*) order 15,
(@ ={e,a’ a5 ..., a")} order 10,
(@) = {e,a’, a'% a', a®, a®} order 6,
(a® = {e, a% a'?, a'®, a**} order 5,

(a'% = {e, a'%, a®°} order 3,
(@) = {e, a'} order 2,
(@) = {e} order 1.

In general, if (@) has order n and k divides n, then (a"/¥) is the unique
subgroup of order k.

Taking the group in Theorem 4.3 to be Z, and a to be 1, we obtain
the following important special case.
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1 Corollary Subgroups of Z,

For each positive divisor k of n, the set (n/k) is the unique subgroup
of Z,, of order k; moreover, these are the only subgroups of Z,,.

B EXAMPLE 5 The list of subgroups of Z; is

(1)=1{0,1,2,...,29} order 30,
2y =1{0,2,4,...,28} order 15,
(3)=1{0,3,6,...,27} order 10,
(5) = {0, 5, 10, 15, 20, 25} order 6,
(6) = {0, 6,12, 18, 24} order 5,
(10) = {0, 10, 20} order 3,
(15) = {0, 15} order 2,
(30) = {0} order 1. ]

By combining Theorems 4.2 and 4.3, we can easily count the num-
ber of elements of each order in a finite cyclic group. For convenience,
we introduce an important number-theoretic function called the Euler
phi function. Let ¢(1) = 1, and for any integer n > 1, let ¢p(n) denote
the number of positive integers less than n and relatively prime to n.
Notice that by definition of the group U(n), |U(n)l = ¢(n). The first 12
values of ¢(n) are given in Table 4.1.

Table 4.1 Values of ¢(n)
n ‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘

¢(n)‘1‘1‘2‘2‘4‘2‘6‘4‘6‘4 ‘10‘4‘

1 Theorem 4.4 Number of Elements of Each Order in a Cyclic Group

If d is a positive divisor of n, the number of elements of order d in
a cyclic group of order n is ¢(d).

PROOF By Theorem 4.3, the group has exactly one subgroup of
order d—call it (a). Then every element of order d also generates the sub-
group {a) and, by Corollary 3 of Theorem 4.2, an element a* generates
(a) if and only if gcd(k, d) = 1. The number of such elements is precisely

b(d). [
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Notice that for a finite cyclic group of order n, the number of elements
of order d for any divisor d of n depends only on d. Thus, Zg, Zs4,, and
Zsooo0 €ach have ¢(8) = 4 elements of order 8.

Although there is no formula for the number of elements of each
order for arbitrary finite groups, we still can say something important
in this regard.

1 Corollary Number of Elements of Order d in a Finite Group

In a finite group, the number of elements of order d is divisible

by ¢(d).

PROOF If a finite group has no elements of order d, the statement is
true, since ¢(d) divides 0. Now suppose that @« € G and lal = d. By
Theorem 4.4, we know that (a) has ¢(d) elements of order d. If all
elements of order d in G are in {a), we are done. So, suppose that there
is an element b in G of order d that is not in {a). Then, {b) also has ¢(d)
elements of order d. This means that we have found 2¢(d) elements of
order d in G provided that {(a) and {b) have no elements of order d in
common. If there is an element ¢ of order d that belongs to both (a) and
(b), then we have {(a) = (c¢) = (b), so that b € {a), which is a contradic-
tion. Continuing in this fashion, we see that the number of elements of
order d in a finite group is a multiple of ¢(d). |

On its face, the value of Theorem 4.4 and its corollary seem limited
for large values of n because it is tedious to determine the number of
positive integers less than or equal to n and relatively prime to n
by examining them one by one. However, the following properties of the
¢ function make computing ¢(n) simple: For any prime p, ¢(p") =
p" — p" ! (see Exercise 71) and for relatively prime m and n, ¢(mn)
= ¢(m)¢p(n). Thus, $(40) = ¢B)P(5) =4 -4 =16;¢(75) =
d(5H)P(3) = (25 — 5) - 2 = 40.

The relationships among the various subgroups of a group can be
illustrated with a subgroup lattice of the group. This is a diagram that in-
cludes all the subgroups of the group and connects a subgroup H at one
level to a subgroup K at a higher level with a sequence of line segments
if and only if H is a proper subgroup of K. Although there are many
ways to draw such a diagram, the connections between the subgroups
must be the same. Typically one attempts to present the diagram in an
eye-pleasing fashion. The lattice diagram for Z3 is shown in Figure 4.2.
Notice that (10) is a subgroup of both (2) and (5), but (6) is not a sub-
group of (10).
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<1>,

I

<5>

<2>
<3>
<10>
<6>

<15>

/

<0>

Figure 4.2 Subgroup lattice of Z,,.

The precision of Theorem 4.3 can be appreciated by comparing the
ease with which we are able to identify the subgroups of Z;, with that of
doing the same for, say, U(30) or Ds,. And these groups have relatively
simple structures among noncyclic groups.

We will prove in Chapter 7 that a certain portion of Theorem 4.3
extends to arbitrary finite groups; namely, the order of a subgroup di-
vides the order of the group itself. We will also see, however, that a finite
group need not have exactly one subgroup corresponding to each divisor
of the order of the group. For some divisors, there may be none at all,
whereas for other divisors, there may be many. Indeed, D,, the dihedral
group of order 8, has five subgroups of order 2 and three of order 4.

One final remark about the importance of cyclic groups is appropri-
ate. Although cyclic groups constitute a very narrow class of finite
groups, we will see in Chapter 11 that they play the role of building
blocks for all finite Abelian groups in much the same way that primes
are the building blocks for the integers and that chemical elements are
the building blocks for the chemical compounds.

It is not unreasonable to use the hypothesis.
ARNOLD ROSS

1. Find all generators of Zs, Zg, and Z.

2. Suppose that {(a), (b), and {c) are cyclic groups of orders 6, 8, and
20, respectively. Find all generators of {(a), (b), and {c).

3. List the elements of the subgroups (20) and (10) in Z,. Let a be a
group element of order 30. List the elements of the subgroups (a*°)
and{a'").
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4.

10.

11.
12.

13.

14.

15.

16.

17.
18.

19.

List the elements of the subgroups (3) and (15) in Z,5. Let a be a
group element of order 18. List the elements of the subgroups (a*)
and (a').

. List the elements of the subgroups (3) and (7) in U(20).
. What do Exercises 3, 4, and 5 have in common? Try to make a gen-

eralization that includes these three cases.

. Find an example of a noncyclic group, all of whose proper sub-

groups are cyclic.

. Let a be an element of a group and let lal = 15. Compute the or-

ders of the following elements of G.

a. a, ab a°, a'?

b. @, a'?

c. a? a*, a8, a

. How many subgroups does Z,, have? List a generator for each of

these subgroups. Suppose that G = (a) and lal = 20. How many
subgroups does G have? List a generator for each of these sub-
groups.

In Z,, list all generators for the subgroup of order 8. Let G = {(a)
and let lal = 24. List all generators for the subgroup of order 8.
Let G be a group and let a € G. Prove that (a~ ') = (a).

In Z find all generators of the subgroup (3). If a has infinite order,
find all generators of the subgroup (a’).

In Z,, find a generator for (21) N (10). Suppose that lal = 24. Find
a generator for (a*') N (a'%). In general, what is a generator for the
subgroup (a@™) N {(a™)?

Suppose that a cyclic group G has exactly three subgroups: G
itself, {e}, and a subgroup of order 7. What is IGI? What can you
say if 7 is replaced with p where p is a prime?

Let G be an Abelian group and let H = {g € Gl Igl divides 12}.
Prove that H is a subgroup of G. Is there anything special about 12
here? Would your proof be valid if 12 were replaced by some other
positive integer? State the general result.

Find a collection of distinct subgroups {a,), {a,), . . . , {a,) of Z,
with the property that (a,) C {(a,) C - - - C {a,) with n as large as
possible.

Complete the following statement: |lal = |a?| if and only if lal . . . .

If a cyclic group has an element of infinite order, how many ele-
ments of finite order does it have?

List the cyclic subgroups of U(30).
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Suppose that G is an Abelian group of order 35 and every element

of G satisfies the equation x*> = e. Prove that G is cyclic. Does

your argument work if 35 is replaced with 33?

Let G be a group and let a be an element of G.

a. If a'?> = ¢, what can we say about the order of a?

b. If a” = e, what can we say about the order of a?

¢. Suppose that |G| = 24 and that G is cyclic. If a® # e and a'? # e,
show that {a) = G.

Prove that a group of order 3 must be cyclic.

Let Z denote the group of integers under addition. Is every sub-

group of Z cyclic? Why? Describe all the subgroups of Z. Let a be

a group element with infinite order. Describe all subgroups of (a).

For any element a in any group G, prove that (a) is a subgroup of

C(a) (the centralizer of a).

If d is a positive integer, d # 2, and d divides n, show that the num-

ber of elements of order d in D, is ¢(d). How many elements of

order 2 does D,, have?

Find all generators of Z. Let a be a group element that has infinite

order. Find all generators of (a).

Prove that C*, the group of nonzero complex numbers under multi-

plication, has a cyclic subgroup of order n for every positive integer 7.

Let a be a group element that has infinite order. Prove that {(a’) =

(a’) if and only if i = =*j.

List all the elements of order 8 in Zgyyy- How do you know your

list is complete? Let a be a group element such that lal = 8000000.

List all elements of order 8 in {(a). How do you know your list is

complete?

Suppose a and b belong to a group, a has odd order, and aba™! =

b~!. Show that b* = e.

Let G be a finite group. Show that there exists a fixed positive integer

n such that " = e for all a in G. (Note that n is independent of a.)

Determine the subgroup lattice for Z;,.

Determine the subgroup lattice for Z,

primes.

:;» Where p and g are distinct
Determine the subgroup lattice for Zs.

Determine the subgroup lattice for Z,,, where p is a prime and 7 is
some positive integer.

Prove that a finite group is the union of proper subgroups if and
only if the group is not cyclic.

Show that the group of positive rational numbers under multiplica-

tion is not cyclic.
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39.

40.

41.

42.
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48.

49.

50.

51.
52.

Consider the set {4, 8, 12, 16}. Show that this set is a group under
multiplication modulo 20 by constructing its Cayley table. What
is the identity element? Is the group cyclic? If so, find all of its
generators.

Give an example of a group that has exactly 6 subgroups (including
the trivial subgroup and the group itself). Generalize to exactly n
subgroups for any positive integer n.

Let m and n be elements of the group Z. Find a generator for the
group (m) N (n).

Suppose that a and b are group elements that commute and have
orders m and n. If {(a) N (b) = {e}, prove that the group contains an
element whose order is the least common multiple of m and n.
Show that this need not be true if ¢ and » do not commute.

Prove that an infinite group must have an infinite number of sub-
groups.

Let p be a prime. If a group has more than p — 1 elements of order p,
why can’t the group be cyclic?

Suppose that G is a cyclic group and that 6 divides |G|. How many
elements of order 6 does G have? If 8 divides |G|, how many ele-
ments of order 8 does G have? If a is one element of order 8, list
the other elements of order 8.

List all the elements of Z,, that have order 10. Let |x| = 40. List all
the elements of (x) that have order 10.

Reformulate the corollary of Theorem 4.4 to include the case when
the group has infinite order.

Determine the orders of the elements of D;; and how many there
are of each.

If G is a cyclic group and 15 divides the order of G, determine the
number of solutions in G of the equation x> = e. If 20 divides
the order of G, determine the number of solutions of x20 = e.
Generalize.

If G is an Abelian group and contains cyclic subgroups of orders 4
and 5, what other sizes of cyclic subgroups must G contain?
Generalize.

If G is an Abelian group and contains cyclic subgroups of orders 4
and 6, what other sizes of cyclic subgroups must G contain?
Generalize.

Prove that no group can have exactly two elements of order 2.
Given the fact that U(49) is cyclic and has 42 elements, deduce the
number of generators that U(49) has without actually finding any of
the generators.
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Let a and b be elements of a group. If lal = 10 and bl = 21, show
that {a) N (b) = {e}.

Let a and b belong to a group. If lal and 15| are relatively prime,
show that (a) N (b) = {e}.

Let a and b belong to a group. If lal = 24 and |1bl = 10, what are
the possibilities for [{a) N (b)I?

Prove that U(2") (n = 3) is not cyclic.

Suppose that a group G has at least nine elements x such that x* =
e. Can you conclude that G is not cyclic? What if G has at least five
elements x such that x* = ¢? Generalize.

Prove that Z, has an even number of generators if n > 2. What
does this tell you about ¢(n)?

If Ia°l = 12, what are the possibilities for lal? If la*l = 12, what
are the possibilities for lal?

Suppose that [x| = n. Find a necessary and sufficient condition on
rand s such that (x") C {x*).

Suppose a is a group element such thata®®| = 10 and |a*| = 20.
Determine lal.

Let a be group element such thatlal = 48. For each part find a di-
visor k of 48 such that

a. (a®') = (a")

b. (a") = (d*)

c. {a'®y = (d").

Let p be a prime. Show that in a cyclic group of order p* —1, every
element is a pth power (that is, every element can be written in the
form a” for some a).

Prove that H = {{

GL(2, R).
Let a and b belong to a group. If lal = 12, 1bl = 22, and {a) N (b) #
{e}, prove that a® = b'!.

1 n

0 1] |nEZ} is a cyclic subgroup of

Suppose that G is a finite group with the property that every non-
identity element has prime order (for example, D5 and Ds). If Z(G)
is not trivial, prove that every nonidentity element of G has the
same order.

Let G be the set of all polynomials of the form ax> + bx + ¢ with
coefficients from the set {0, 1, 2}. We can make G a group under
addition by adding the polynomials in the usual way, except that
we use modulo 3 to combine the coefficients. With this operation,
prove that G is a group of order 27 that is not cyclic.



86 Groups

68. Let r, and r, be rational numbers. Prove that the group G =
{n;r; + nyryIn, and n, are integers} under addition is cyclic. Gen-
eralize to the case where you have ry, r,, . . ., r, rationals.

69. Let a and b belong to some group. Suppose that lal = m and
|bl = n and m and n are relatively prime. If ¢* = b* for some inte-
ger k, prove that mn divides k.

70. For every integer n greater than 2, prove that the group U(n* — 1)
is not cyclic.

71. Prove that for any prime p and positive integer n, ¢(p") =
pn _ pn—l.

72. Give an example of an infinite group that has exactly two elements
of order 4.

Computer Exercises

The nerds are running the world now.

JOE PISCOPO

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines if U(n) is cyclic. Run the program for
n = 8§, 32,64, and 128. Make a conjecture. Run the program for n =
3,9,27,81,243,5,25,125,7,49, 11, and 121. Make a conjecture.
Run the program for n = 12, 20, 28, 44, 52, 15, 21, 33, 39, 51, 57,
69, 35, 55, 65, and 85. Make a conjecture.

2. For any pair of positive integers m and n, let Z,, D Z, = {(a, b) |
a€Z,, b€ Z,}. For any pair of elements (a, b) and (¢, d) in Z,, ®
Z,, define (a, b) + (¢, d) = ((a + ¢) mod m, (b + d) mod n). [For
example, in Z; D Z,, we have (1, 2) + (2, 3) = (0, 1).] This soft-
ware checks whether or not Z,, & Z, is cyclic. Run the program for
the following choices of m and n: (2, 2), (2, 3), (2,4), (2,5), (3, 4),
(3,5),(3,6),(3,7),(3,8),(3,9), and (4, 6). On the basis of this out-
put, guess how m and n must be related for Z,, © Z, to be cyclic.

3. In this exercise, a, b € U(n). Define {(a, by = {a'b/ 1 0 =i < lal,
0 = j < Ibl}. This software computes the orders of {a, b), {a), (b),
and (@) N (b). Run the program for the following choices of a, b,
and n: (21, 101, 550), (21, 49, 550), (7, 11, 100), (21, 31, 100), and
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(63,77, 100). On the basis of your output, make a conjecture about
arithmetic relationships among I{a, b)!, I{a)|, I{b)!, and {a) N (b)I.
. For each positive integer n, this software gives the order of U(n)
and the order of each element in U(n). Do you see any relationship
between the order of U(n) and the order of its elements? Run the
program for n = 8, 16, 32, 64, and 128. Make a conjecture about
the number of elements of order 2 in U(2%) when & is at least 3.
Make a conjecture about the number of elements of order 4 in
U(2%) when k is at least 4. Make a conjecture about the number of
elements of order 8 in U(2¥) when k is at least 5. Make a conjecture
about the maximum order of any element in U(2¥) when k is at least
3. Try to find a formula for an element of order 4 in U(2¥) when k is
at least 4.

. For each positive integer n, this software lists the number of ele-
ments of U(n) of each order. For each order d of some element of
U(n), this software lists ¢(d) and the number of elements of order d.
(Recall that ¢(d) is the number of positive integers less than or
equal to d and relatively prime to d). Do you see any relationship
between the number of elements of order d and ¢(d)? Run the pro-
gram forn = 3,9, 27, 81, 5, 25, 125, 7, 49, and 343. Make a con-
jecture about the number of elements of order d and ¢(d) when n is
a power of an odd prime. Run the program for n = 6, 18, 54, 162,
10, 50, 250, 14, 98, and 686. Make a conjecture about the number
of elements of order d and ¢(d) when n is twice a power of an odd
prime. Make a conjecture about the number of elements of various
orders in U( p*) and U(2p*) where p is an odd prime.

. For each positive integer n, this software gives the order of U(n).
Run the program for n = 9, 27, 81, and 243. Try to guess a formula
for the order of U(3*) when k is at least 2. Run the program for n =
18, 54, 162, and 486. How does the order of U(2 - 3*) appear to be re-
lated to the order of U(3%)? Run the program for n = 25, 125, and
625. Try to guess a formula for the order of U(5%) when k is at least 2.
Run the program for n = 50, 250, and 1250. How does the order of
U(2 - 5) appear to be related to the order of U(5%)? Run the program
for n = 49 and 343. Try to guess a formula for the order of U(7*)
when £ is at least 2. Run the program for n = 98 and 686. How does
the order of U(2 - 7%) appear to be related to the order of U(7%)?
Based on your guesses for U(3%), U(5%), and U(7*), guess a formula
for the order of U(p*) when p is an odd prime and k is at least 2.
What about the order of U(2p*) when p is an odd prime and k is at
least 2. Does your formula also work when & is 1?
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Suggested Reading

Deborah L. Massari, “The Probability of Regenerating a Cyclic Group,”
Pi Mu Epsilon Journal 7 (1979): 3-6.

In this easy-to-read paper, it is shown that the probability of a ran-
domly chosen element from a cyclic group being a generator of the
group depends only on the set of prime divisors of the order of the
group, and not on the order itself. This article, written by an under-
graduate student, received first prize in a Pi Mu Epsilon

Paper Contest.



J. J. Sylvester

| really love my subject.

J. J. SYLVESTER

JAMES JOSEPH SYLVESTER was the most influ-
ential mathematician in America in the 19th
century. Sylvester was born on September 3,
1814, in London and showed his mathemati-
cal genius early. At the age of 14, he studied
under De Morgan and won several prizes for
his mathematics, and at the unusually young
age of 25, he was elected a Fellow of the
Royal Society.

After receiving B.A. and M.A. degrees
from Trinity College in Dublin in 1841,
Sylvester began a professional life that was
to include academics, law, and actuarial ca-
reers. In 1876, at the age of 62, he was ap-
pointed to a prestigious position at the newly
founded Johns Hopkins University. During
his seven years at Johns Hopkins, Sylvester
pursued research in pure mathematics
with tremendous vigor and enthusiasm.
He also founded the American Journal of
Mathematics, the first journal in America
devoted to mathematical research. Sylvester
returned to England in 1884 to a professor-
ship at Oxford, a position he held until his
death on March 15, 1897.

Sylvester’s major contributions to
mathematics were in the theory of equations,
matrix theory, determinant theory, and in-
variant theory (which he founded with
Cayley). His writings and lectures—flowery
and eloquent, pervaded with poetic flights,
emotional expressions, bizarre utterances,
and paradoxes—reflected the personality of
this sensitive, excitable, and enthusiastic

man. We quote three of his students.” E. W.
Davis commented on Sylvester’s teaching
methods.

Sylvester’s methods! He had none. “Three lec-
tures will be delivered on a New Universal
Algebra,” he would say; then, “The course
must be extended to twelve.” It did last all the
rest of that year. The following year the course
was to be Substitutions-Theorie, by Netto. We
all got the text. He lectured about three times,
following the text closely and stopping sharp
at the end of the hour. Then he began to think
about matrices again. “I must give one lecture
a week on those,” he said. He could not con-
fine himself to the hour, nor to the one lecture
a week. Two weeks were passed, and Netto
was forgotten entirely and never mentioned
again. Statements like the following were not
infrequent in his lectures: “I haven’t proved
this, but I am as sure as I can be of anything
that it must be so. From this it will follow,
etc.” At the next lecture it turned out that what
he was so sure of was false. Never mind, he
kept on forever guessing and trying, and
presently a wonderful discovery followed,
then another and another. Afterward he would
go back and work it all over again, and sur-
prise us with all sorts of side lights. He then
made another leap in the dark, more treasures
were discovered, and so on forever.

F. Cajori, Teaching and History of Mathematics in the U.S., Washington, 1890, 265-266.
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Sylvester’s enthusiasm for teaching and his
influence on his students are captured in the
following passage written by Sylvester’s first
student at Johns Hopkins, G. B. Halsted.

A short, broad man of tremendous vitality, . . .
Sylvester’s capacious head was ever lost in
the highest cloud-lands of pure mathematics.
Often in the dead of night he would get his
favorite pupil, that he might communicate

the very last product of his creative thought.
Everything he saw suggested to him some-
thing new in the higher algebra. This transmu-
tation of everything into new mathematics
was a revelation to those who knew him
intimately. They began to do it themselves.

Another characteristic of Sylvester, which
is very unusual among mathematicians, was
his apparent inability to remember mathemat-
ics! W. P. Durfee had the following to say.

90

Sylvester had one remarkable peculiarity. He
seldom remembered theorems, propositions,
etc., but had always to deduce them when he
wished to use them. In this he was the very
antithesis of Cayley, who was thoroughly
conversant with everything that had been
done in every branch of mathematics.

I remember once submitting to Sylvester
some investigations that I had been engaged
on, and he immediately denied my first state-
ment, saying that such a proposition had never
been heard of, let alone proved. To his aston-
ishment, I showed him a paper of his own in
which he had proved the proposition; in fact, I
believe the object of his paper had been the
very proof which was so strange to him.

For more information about Sylvester,

visit:

http://www-groups.dcs.st-and
.ac.uk/~history/


http://www-groups.dcs.st-and.ac.uk/~history/
http://www-groups.dcs.st-and.ac.uk/~history/
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Supplementary Exercises for Chapters 1-4

If you really want something in this life, you have to work for it—Now quiet,
they’re about to announce the lottery numbers!

HOMER SIMPSON

True/False questions for Chapters 1-4 are available on the web at:
http://www.d.umn.edu/~jgallian/ TF

1. Let G be a group and let H be a subgroup of G. For any fixed x in

G, define xHx ™' = {xhx~! | h € H}. Prove the following.

a. xHx!is a subgroup of G.

b. If H is cyclic, then xHx™ ! is cyclic.

c. If H is Abelian, then xHx ! is Abelian.

The group xHx ! is called a conjugate of H. (Note that conjuga-
tion preserves structure.)

2. Let G be a group and let H be a subgroup of G. Define N(H) =
{x € G| xHx™' = H}. Prove that N(H) (called the normalizer of
H) is a subgroup of G."

3. Let G be a group. For each a € G, define cl(a) = {xax 'l x € G}.
Prove that these subsets of G partition G. [cl(a) is called the
conjugacy class of a.]

4. The group defined by the following table is called the group of
quaternions. Use the table to determine each of the following:

a. The center

b. cl(a)

c. cl(b)

d. All cyclic subgroups

e a a2 a b ba ba’>  ba?
e e a a? a? b ba ba*>  ba’
a a a? a e ba® b ba ba?
a2 a? a e a ba? ba? b ba
a a e a a? ba ba? ba®> b
b b ba ba? ba’ a? a e a
ba ba ba? ba’ b a a? a e
ba? ba? ba® b ba e a a? a’
ba? ba® b ba ba? a? e a a?

"This very important subgroup was first used by L. Sylow in 1872 to prove the exis-
tence of certain kinds of subgroups in a group. His work is discussed in Chapter 24.
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10.

11.

12.
13.
14.
15.

16.

17.

18.

19.

20.

. (Conjugation preserves order.) Prove that, in any group, Ixax 'l =

lal. (This exercise is referred to in Chapter 24.)

. Prove that, in any group, labl = |bal.
. If a, b, and c are elements of a group, give an example to show that

it need not be the case that labcl = Ichal.

. Let @ and b belong to a group G. Prove that there is an element x in

G such that xax = b if and only if ab = ¢ for some element ¢ in G.

. Prove that if a is the only element of order 2 in a group, then a lies

in the center of the group.

Let G be the plane symmetry group of the infinite strip of equally
spaced H’s shown below.
H H

H H H

1 1

1 1

i i
Axis 1 Axis2

1 1

1 1

Let x be the reflection about Axis 1 and let y be the reflection about
Axis 2. Calculate Ixl, Iyl, and Ixyl. Must the product of elements of
finite order have finite order?

What are the orders of the elements of D,s? How many elements
have each of these orders?

Prove that a group of order 4 is Abelian.

Prove that a group of order 5 must be cyclic.

Prove that an Abelian group of order 6 must be cyclic.

Let G be an Abelian group and let n be a fixed positive integer. Let
G" = {g" | g € G}. Prove that G" is a subgroup of G. Give an ex-
ample showing that G" need not be a subgroup of G when G is
non-Abelian. (This exercise is referred to in Chapter 11.)

Let G = {a + b\/2}, where a and b are rational numbers not
both 0. Prove that G is a group under ordinary multiplication.
(1969 Putnam Competition) Prove that no group is the union of
two proper subgroups. Does the statement remain true if “two” is
replaced by “three”?

Prove that the subset of elements of finite order in an Abelian
group forms a subgroup. (This subgroup is called the forsion sub-
group.) Is the same thing true for non-Abelian groups?

Let p be a prime and let G be an Abelian group. Show that the set
of all elements whose orders are powers of p is a subgroup of G.

Suppose that a and b are group elements. If 15| = 2 and bab = a*,
determine the possibilities forlal.
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35.
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Suppose that a finite group is generated by two elements a and b
(that is, every element of the group can be expressed as some prod-
uct of a’s and b’s). Given that a’= b? = e and ba? = ab, construct
the Cayley table for the group. We have already seen an example
of a group that satisfies these conditions. Name it.

If a is an element of a group and lal = n, prove that C(a) = C(d"
when £ is relatively prime to n.

Let x and y belong to a group G. If xy € Z(G), prove that xy = yx.

Suppose that H and K are nontrivial subgroups of Q under addi-
tion. Show that H N K is a nontrivial subgroup of Q. Is this true if
Q is replaced by R?

Let H be a subgroup of G and let g be an element of G. Prove that
N(gHg ") = gN(H)g~'. See Exercise 2 for the notation.

Let H be a subgroup of a group G and let Igl = n. If g" belongs to
H and m and n are relatively prime, prove that g belongs to H.

Find a group that contains elements a and b such that lal = 2,
bl = 11, and labl = 2.

Suppose that G is a group with exactly eight elements of order 10.
How many cyclic subgroups of order 10 does G have?

(1989 Putnam Competition) Let S be a nonempty set with an asso-
ciative operation that is left and right cancellative (xy = xz implies
y = z, and yx = zx implies y = z). Assume that for every a in S the
set {a"ln=1,2,3,...}is finite. Must S be a group?

Let H,, H,, H;, . . . be a sequence of subgroups of a group with the
property that H; C H, C H; . ... Prove that the union of the se-
quence is a subgroup.

Let R* be the group of nonzero real numbers under multiplication
and let H ={g € R*| some nonzero integer power of g is a rational
number }. Prove that H is a subgroup of R*.

Suppose that a and b belong to a group, a and b commute, and lal
and 1b| are relatively prime. Prove that labl = lallbl. Give an exam-
ple showing that labl need not be lallbl when a and b commute but
lal and |b! are not relatively prime. (Don’t use a € (b).)

Let H = {A € GL(2, R) | det A is rational }. Prove or disprove that
H is a subgroup of GL(2, R). What if “rational” is replaced by “an
integer”?

Suppose that G is a group that has exactly one nontrivial proper
subgroup. Prove that G is cyclic and |G| = p?, where p is prime.
Suppose that G is a group and G has exactly two nontrivial proper
subgroups. Prove that G is cyclic and |Gl = pq, where p and g are
distinct primes, or that G is cyclic and |G| = p3, where p is prime.
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36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

If la®l = 1b?1, prove or disprove that lal = |bl.

(1995 Putnam Competition) Let S be a set of real numbers that is
closed under multiplication. Let 7 and U be disjoint subsets of S
whose union is S. Given that the product of any three (not neces-
sarily distinct) elements of 7 is in T and that the product of any
three elements of U is in U, show that at least one of the two sub-
sets T and U is closed under multiplication.

If p is an odd prime, prove that there is no group that has exactly p
elements of order p.

Give an example of a group G with infinitely many distinct sub-
groups H, H,, Hs, . . . suchthat H; C H, C H;. . ..

Suppose a and b are group elements and b # e. If a~'ba = b? and
lal = 3, find 1bl. What is b1, if lal = 5?7 What can you say about
Ibl in the case where lal = k?

Let a and b belong to a group G. Show that there is an element g in
G such that g~ abg = ba.

Suppose G is a group and x*y? = y3x® for every x and y in G. Let
H = {x € Gl Ixl is relatively prime to 3}. Prove that elements of H
commute with each other and that H is a subgroup of G. Is your
argument valid if 3 is replaced by an arbitrary positive integer n?
Explain why or why not.

Let G be a finite group and let S be a subset of G that contains
more than half of the elements of G. Show that every element of G
can be expressed in the form s,s, where s, and s, belong to S.

Let G be a group and let f be a function from G to some set. Show
that H = {g € Gl f(xg) = f (x) for all x € G} is a subgroup of G.
In the case that G is the group of real numbers under addition and
f(x) = sin x, describe H.

Let G be a cyclic group of order n and let H be the subgroup of
order d. Show that H = {x € Gl Ix| divides d}.

Let a be an element of maximum order from a finite Abelian group
G. Prove that for any element b in G, 15! divides lal. Show by
example that this need not be true for finite non-Abelian groups.
Define an operation * on the set of integers by a *b =a + b — 1.
Show that the set of integers under this operation is a cyclic group.
Let n be an integer greater than 1. Find a noncyclic subgroup of
U(4n) of order 4 that contains the element 2n — 1.



Permutation Groups

Wigner’s discovery about the electron permutation group was just the
beginning. He and others found many similar applications and nowadays
group theoretical methods—especially those involving characters and
representations—pervade all branches of quantum mechanics.

GEORGE MACKEY, Proceedings of the
American Philosophical Society

Definition and Notation

In this chapter, we study certain groups of functions, called permutation
groups, from a set A to itself. In the early and mid-19th century, groups
of permutations were the only groups investigated by mathematicians.
It was not until around 1850 that the notion of an abstract group was in-
troduced by Cayley, and it took another quarter century before the idea
firmly took hold.

Definitions Permutation of A, Permutation Group of A

A permutation of a set A is a function from A to A that is both one-
to-one and onto. A permutation group of a set A is a set of permuta-
tions of A that forms a group under function composition.

Although groups of permutations of any nonempty set A of objects
exist, we will focus on the case where A is finite. Furthermore, it is
customary, as well as convenient, to take A to be a set of the form
{1,2,3,...,n} for some positive integer n. Unlike in calculus, where
most functions are defined on infinite sets and are given by formulas,
in algebra, permutations of finite sets are usually given by an explicit
listing of each element of the domain and its corresponding functional
value. For example, we define a permutation « of the set {1, 2, 3,4} by
specifying

a(l) =2, a(2) =3, a3) =1, a(d) = 4.

95
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A more convenient way to express this correspondence is to write « in

array form as
{1 23 4}
a = .
231 4

Here a(j) is placed directly below j for each j. Similarly, the permuta-
tion B of the set {1, 2, 3,4, 5, 6} given by

B) =5, B2)=3, BB =1, BA =06, BO) =2, B(6)=4
is expressed in array form as

[123456}

P=l5 31624

Composition of permutations expressed in array notation is carried
out from right to left by going from top to bottom, then again from top
to bottom. For example, let

'12345}
0’:

2 4 3 5 1
and
_'12345}
Y7541 23/
then
— D 1
12345]i[12345
| 1 2345
o iy -
| 42135
5412324351

On the right we have 4 under 1, since (yo)(1) = y(a(1)) = y(2) = 4,
so yo sends 1 to 4. The remainder of the bottom row yo is obtained in
a similar fashion.

We are now ready to give some examples of permutation groups.

I EXAMPLE 1 Symmetric Group S, Let §; denote the set of all one-
to-one functions from {1, 2, 3} to itself. Then S, under function com-
position, is a group with six elements. The six elements are

{123} [123} ) {123}
&€ = 5 a = 5 a” = 5
123 2 31 312
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(123 1203 L 123
B_Lsz}’ “B_LlJ’ O‘B—[szl]'

1 3
Note that Ba = [3 ) J = a’B # af, so that S, is non-Abelian. |

The relation Ba = a8 can be used to compute other products in AN
without resorting to the arrays. For example, Ba? = (Ba)a = (a?B)a =
a*(Ba) = aX(@’p) = a'B = ap.

Example 1 can be generalized as follows.

B EXAMPLE 2 SymmetricGroupS, LetA = {1,2,...,n}. The set
of all permutations of A is called the symmetric group of degree n and is
denoted by S . Elements of §_have the form

1 2 ... n
a(l) a(2) ...a(n) ]

It is easy to compute the order of S . There are n choices of a(1). Once
a(1) has been determined, there are n — 1 possibilities for a(2) [since
« is one-to-one, we must have a(1) # «(2)]. After choosing a(2), there
are exactly n — 2 possibilities for a(3). Continuing along in this fashion,
we see that § hasn(n — 1) - - -3 -2 -1 = n! elements. We leave it to the
reader to prove that S, is non-Abelian when n = 3 (Exercise 41). |

The symmetric groups are rich in subgroups. The group S, has 30
subgroups, and S, has well over 100 subgroups.

I EXAMPLE 3 Symmetries of a Square As a third example, we
associate each motion in D, with the permutation of the locations of each
of the four corners of a square. For example, if we label the four corner
positions as in the figure below and keep these labels fixed for reference,
we may describe a 90° counterclockwise rotation by the permutation

3 2

4 1

_{1234]
P23 41/
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whereas a reflection across a horizontal axis yields

123 4
¢_{2143]'

These two elements generate the entire group (that is, every element is
some combination of the p’s and ¢’s).

When D, is represented in this way, we see that it is a subgroup
of §,. |

Cycle Notation

There is another notation commonly used to specify permutations. It is
called cycle notation and was first introduced by the great French math-
ematician Cauchy in 1815. Cycle notation has theoretical advantages in
that certain important properties of the permutation can be readily de-
termined when cycle notation is used.

As an illustration of cycle notation, let us consider the permutation

_[123456}
““ 21465 3

This assignment of values could be presented schematically as follows:

1 3 5
o o
o o
6 4
5 \/
o o

Although mathematically satisfactory, such diagrams are cumber-
some. Instead, we leave out the arrows and simply write a = (1, 2)
(3,4, 6)(5). As a second example, consider

'8_[123456}
531624/

In cycle notation, B can be written (2, 3, 1, 5)(6, 4) or (4, 6)(3, 1, 5, 2),
since both of these unambiguously specify the function 3. An expres-
sion of the form (a,, a,, ..., a,) is called a cycle of length m or an
m-cycle.
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A multiplication of cycles can be introduced by thinking of a cycle
as a permutation that fixes any symbol not appearing in the cycle.
Thus, the cycle (4, 6) can be thought of as representing the
1 23456

1 23654
by thinking of them as permutations given in array form. Consider the
following example from Sg. Let a = (13)(27)(456)(8) and B =
(1237)(648)(5). (When the domain consists of single-digit integers, it is
common practice to omit the commas between the digits.) What
is the cycle form of «B? Of course, one could say that a3 =
(13)(27)(456)(8)(1237)(648)(5), but it is usually more desirable to ex-
press a permutation in a disjoint cycle form (that is, the various cycles
have no number in common). Well, keeping in mind that function com-
position is done from right to left and that each cycle that does not con-
tain a symbol fixes the symbol, we observe that: (5) fixes 1; (648) fixes 1;
(1237) sends 1 to 2; (8) fixes 2; (456) fixes 2; (27) sends 2 to 7; and (13)
fixes 7. So the net effect of @8 is to send 1 to 7. Thus we begin
af=(17"---)---.Now, repeating the entire process beginning with 7,
we have, cycle by cycle, righttoleft, 7 > 7—>7—>1->1—>51—>1->3,
so that ¢ = (173 - - -) - - - . Ultimately, we have a8 = (1732)(48)(56).
The important thing to bear in mind when multiplying cycles is to “keep
moving” from one cycle to the next from right to left. (Warning: Some au-
thors compose cycles from left to right. When reading another text, be
sure to determine which convention is being used.)

To be sure you understand how to switch from one notation to the
other and how to multiply permutations, we will do one more example
of each.

If array notations for « and 3, respectively, are

{12345} [12345]
and
21354 54123

then, in cycle notation, o = (12)(3)(45), B
(12)(3)(45)(153)(24).

To put af in disjoint cycle form, observe that (24) fixes 1; (153)
sends 1 to 5; (45) sends 5 to 4; and (3) and (12) both fix 4. So, 3 sends
1 to 4. Continuing in this way we obtain a8 = (14)(253).

One can convert a3 back to array form without converting each
cycle of @f3 into array form by simply observing that (14) means 1 goes
to 4 and 4 goes to 1; (253) means 2 - 5,5 — 3,3 — 2.

One final remark about cycle notation: Mathematicians prefer not to
write cycles that have only one entry. In this case, it is understood that any

permutation { } In this way, we can multiply cycles

(153)(24), and a8 =
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missing element is mapped to itself. With this convention, the permutation
« above can be written as (12)(45). Similarly,

{12345}
a:
32415

can be written a = (134). Of course, the identity permutation consists
only of cycles with one entry, so we cannot omit all of these! In this
case, one usually writes just one cycle. For example,

_{12345}
12345

can be written as € = (5) or € = (1). Just remember that missing
elements are mapped to themselves.

Properties of Permutations

We are now ready to state several theorems about permutations and
cycles. The proof of the first theorem is implicit in our discussion of
writing permutations in cycle form.

I Theorem 5.1 Products of Disjoint Cycles

Every permutation of a finite set can be written as a cycle or as a
product of disjoint cycles.

PROOF Let o be a permutation on A = {1, 2, ..., n}. To write « in
disjoint cycle form, we start by choosing any member of A, say a,, and let

a, = a(a),  a; = ala(a)) = aay),

and so on, until we arrive at a, = a"(a,) for some m. We know that such
an m exists because the sequence a,, a(a,), az(al), . . . must be finite;
so there must eventually be a repetition, say a'(a,) = a/(a,) for some
iand j with i <. Then a; = a™(a,), where m = j — i. We express this
relationship among a,, a,, . . ., a, as

a=(a;,a,...,a,)" "".

The three dots at the end indicate the possibility that we may not have
exhausted the set A in this process. In such a case, we merely choose
any element b, of A not appearing in the first cycle and proceed to cre-
ate a new cycle as before. That is, we let b, = a(b,), by = ozz(bl), and so
on, until we reach b, = ak(bl) for some k. This new cycle will have no
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elements in common with the previously constructed cycle. For, if so,
then a’(a,) = a’/(b,) for some i and j. But then a’~/(a,) = b, and there-
fore b, = a, for some ¢. This contradicts the way b, was chosen.
Continuing this process until we run out of elements of A, our permuta-
tion will appear as

a=(a,a,...,a)b,b, ....,b) - (c,cp...,C).

In this way, we see that every permutation can be written as a product
of disjoint cycles. 1

§I Theorem 5.2 Disjoint Cycles Commute

If the pair of cycles a = (a, a,, ..., a,)and B = (b,,b,, ..., b,)
have no entries in common, then o3 = Ba.

PROOF For definiteness, let us say that « and 8 are permutations of
the set

S={a,ay,...,a,b,b,....b,c,c,...,c}

where the ¢’s are the members of S left fixed by both « and 3 (there
may not be any ¢’s). To prove that a3 = Lo, we must show that (a3)(x) =
(Ba)(x) for all x in S. If x is one of the a elements, say a,, then

(@B)(a) = a(B(a)) = a(a) = a,,,

since B fixes all a elements. (We interpret @, | as a, if i = m.) For the
same reason,

(Ba)(a) = Bla(a)) = Bla,,,) = a,,,.

Hence, the functions of a3 and Ba agree on the a elements. A similar
argument shows that ¢ and Ba agree on the b elements as well.
Finally, suppose that x is a ¢ element, say c,. Then, since both @ and 8
fix ¢ elements, we have

(aB)(c) = a(B(c)) = alc) = ¢,

and

Ba)(c) = Bla(c)) = B(c) = c;.
This completes the proof. |

In demonstrating how to multiply cycles, we showed that the
product (13)(27)(456)(8)(1237)(648)(5) can be written in disjoint cycle
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form as (1732)(48)(56). Is economy in expression the only advantage
to writing a permutation in disjoint cycle form? No. The next theorem
shows that the disjoint cycle form has the enormous advantage of
allowing us to “eyeball” the order of the permutation.

B Theorem 5.3 Order of a Permutation (Ruffini—1799)

The order of a permutation of a finite set written in disjoint cycle
form is the least common multiple of the lengths of the cycles.

PROOF First, observe that a cycle of length n has order n. (Verify this
yourself.) Next, suppose that « and 8 are disjoint cycles of lengths m
and n, and let k be the least common multiple of m and n. It follows from
Theorem 4.1 that both o and B* are the identity permutation & and, since
a and B commute, (aB)* = a*B is also the identity. Thus, we know by
Corollary 2 to Theorem 4.1 (a* = e implies that lal divides k) that the
order of af3—Ilet us call it ~—must divide k. But then (aB)’ = a/B" = &,
so that &’ = 37". However, it is clear that if & and 8 have no common
symbol, the same is true for a” and 87, since raising a cycle to a power
does not introduce new symbols. But, if «’ and 87 are equal and have
no common symbol, they must both be the identity, because every sym-
bol in «' is fixed by 8~ and vice versa (remember that a symbol not ap-
pearing in a permutation is fixed by the permutation). It follows, then,
that both m and n must divide ¢. This means that &, the least common
multiple of m and n, divides ¢ also. This shows that k = .

Thus far, we have proved that the theorem is true in the cases
where the permutation is a single cycle or a product of two disjoint
cycles. The general case involving more than two cycles can be han-
dled in an analogous way. |

Theorem 5.3 is an enomously powerful tool for calculating the or-
ders of permuations. We demonstrate this in the next example.

I EXAMPLE 4 To determine the orders of the 5040 elements of S;, we
need only consider the possible disjoint cycle structures of the
elements of S;. For convenience, we denote an n-cycle by (r). Then, ar-
ranging all possible disjoint cycle structures of elements of S,
according to longest cycle lengths left to right, we have
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Now, from Theorem 5.3 we see that the orders of the elements of S,
are 7, 6,10, 5,12, 4, 3, 2, and 1. To do the same for the 10! = 3,628,800
elements of S;, would be nearly as simple. |

As we will soon see, a particularly important kind of permutation is
a cycle of length 2—that is, a permutation of the form (ab) where
a # b. Many authors call these permutations transpositions, since the
effect of (ab) is to interchange or transpose a and b.

I Theorem 5.4 Product of 2-Cycles

Every permutation in S, n > 1, is a product of 2-cycles.

PROOF First, note that the identity can be expressed as (12)(12), and
so it is a product of 2-cycles. By Theorem 5.1, we know that every per-
mutation can be written in the form

(a]a2 [N ak)(ble [N bt) .« o (C1C2 [N Cs)'
A direct computation shows that this is the same as

(a,a)(a,a,_,) -+ (a,a,)(b,b)(D\b,_,) - + - (D,b,)
s (ee)lee ) (e

This completes the proof. |

The decompositions in the following example demonstrate this technique.
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§I EXAMPLES

(12345) = (15)(14)(13)(12)
(1632)(457) = (12)(13)(16)(47)(45) N

The decomposition of a permutation into a product of 2-cycles given
in the proof of Theorem 5.4 is not the only way a permutation can be
written as a product of 2-cycles. Although the next example shows that
even the number of 2-cycles may vary from one decomposition to an-
other, we will prove in Theorem 5.5 (first proved by Cauchy) that there
is one aspect of a decomposition that never varies.

§ EXAMPLE 6

(12345) = (54)(53)(52)(51)
(12345) = (54)(52)(21)(25)(23)(13) |

We isolate a special case of Theorem 5.5 as a lemma.

Ife = B,B, - - - B,, where the B’s are 2-cycles, then r is even.

PROOF Clearly, r # 1, since a 2-cycle is not the identity. If r = 2, we
are done. So, we suppose that r > 2, and we proceed by induction.
Since (ij) = (ji), the product B, _,8, can be expressed in one of the fol-
lowing forms shown on the right:

e = (ab)(ab)
(ab)(bc) = (ac)(ab)
(ac)(cb) = (bc)(ab)
(ab)(cd) = (cd)(ab).

If the first case occurs, we may delete 8, B8, from the original product
to obtain € = 3,8, * - - B,_,. In the other three cases, we replace the
form of B,_, B, on the right by its counterpart on the left to obtain a new
product of r 2-cycles that is still the identity, but where the rightmost
occurrence of the integer a is in the second-from-the-rightmost 2-cycle
of the product instead of the rightmost 2-cycle. We now repeat the proce-
dure just described with B,_,B, |, and, as before, we obtain a product of
(r — 2) 2-cycles equal to the identity or a new product of r 2-cycles,
where the rightmost occurrence of a is in the third 2-cycle from the right.
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Continuing this process, we must obtain a product of (r — 2) 2-cycles
equal to the identity, because otherwise we have a product equal to the
identity in which the only occurrence of the integer a is in the leftmost 2-
cycle, and such a product does not fix a, whereas the identity does. Hence,
by the Second Principle of Mathematical Induction, » — 2 is even, and r
is even as well. |

B Theorem 5.5 Always Even or Always Odd

If a permutation « can be expressed as a product of an even (odd)
number of 2-cycles, then every decomposition of « into a product of
2-cycles must have an even (odd) number of 2-cycles. In symbols, if

a:BIBZ...Br and a:fylfy2...fys’

where the B’s and the y’s are 2-cycles, then r and s are both even or
both odd.

PROOF Observe that 3,8, - - - B, = v,v, - * - v, implies

e = 7172 e ’)/XBr_l e ,82_131_1
=YYy VB BBy

since a 2-cycle is its own inverse. Thus, the lemma on page 104 guar-
antees that s + r is even. It follows that r and s are both even or both
odd. |

Definition Even and Odd Permutations

A permutation that can be expressed as a product of an even number
of 2-cycles is called an even permutation. A permutation that can

be expressed as a product of an odd number of 2-cycles is called an
odd permutation.

Theorems 5.4 and 5.5 together show that every permutation can be
unambiguously classified as either even or odd. The significance of this
observation is given in Theorem 5.6.

I Theorem 5.6 Even Permutations Form a Group

The set of even permutations in S, forms a subgroup of S,

PROOF This proof is left to the reader (Exercise 13). |

The subgroup of even permutations in S, arises so often that we give
it a special name and notation.
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Definition Alternating Group of Degree n
The group of even permutations of n symbols is denoted by A, and is
called the alternating group of degree n.

The next result shows that exactly half of the elements of S (n > 1)
are even permutations.

B Theorem5.7

Forn > 1, A, has order n!/2.

PROOF For each odd permutation «, the permutation (12)« is even
and (12)a # (12)8 when a # B. Thus, there are at least as many even
permutations as there are odd ones. On the other hand, for each
even permutation «, the permutation (12)« is odd and (12)a # (12)8
when « # (3. Thus, there are at least as many odd permutations as there
are even ones. It follows that there are equal numbers of even and odd
permutations. Since IS | = n!, we have IA | = n!/2. |

The names for the symmetric group and the alternating group of degree
n come from the study of polynomials over n variables. A symmetric
polynomial in the variables x;, x,, . . ., x, is one that is unchanged under
any transposition of two of the variables. An alternating polynomial is
one that changes signs under any transposition of two of the variables. For
example, the polynomial x, x,x, is unchanged by any transposition of two
of the three variables, whereas the polynomial (x, —x,)(x, = x)(x,— x;)
changes signs when any two of the variables are transposed. Since every
member of the symmetric group is the product of transpositions, the sym-
metric polynomials are those that are unchanged by members of the sym-
metric group. Likewise, since any member of the alternating group is the
product of an even number of transpositions, the alternating polynomials
are those that are unchanged by members of the alternating group and
change sign by the other permutations of S .

The alternating groups are among the most important examples of
groups. The groups A, and A, will arise on several occasions in later
chapters. In particular, A has great historical significance.

A geometric interpretation of A is given in Example 7, and a multi-
plication table for A is given as Table 5.1.

I EXAMPLE 7 ROTATIONS OF A TETRAHEDRON The 12 rota-
tions of a regular tetrahedron can be conveniently described with the
elements of A,. The top row of Figure 5.1 illustrates the identity and
three 180° “edge” rotations about axes joining midpoints of two edges.
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Table 5.1 The Alternating Group A, of Even Permutations of {1, 2, 3, 4}

(In this table, the permutations of A, are designated as «|, @, . . .
the table represents «,. For example, a; ag = a.)

, @, and an entry k inside

@ o e @ @ & @ G Gy G Gy G

MW=a, | 1 2 3 4 5 6 7 8 9 10 11 12
(12)(34) = a, 2 1 4 3 6 5 8 7 10 9 12 11
aedH=ea, | 3 4 1 2 7 8 5 6 11 12 9 10
a9e)H=e, | 4 3 2 1 8 7 6 5 12 11 10 9
3)=e, | 5 8 6 7 9 12 10 1 1 4 2 3
(243) = o 6 7 5 8 10 11 9 12 2 3 1 4
(142) = a, 7 6 8 5 11 10 12 9 3 2 4 1
B4)=e, | 8 5 7 6 12 9 11 10 4 1 3 2
32)=e, | 9 11 12 10 1 3 4 2 5 7 8 6
4)=a,| 10 12 11 9 2 4 3 1 6 8§ T 5
@)=a,| 11 9 10 12 3 1 2 4 7 5 6 8
24=a,| 12 10 9 11 4 2 1 3 8 6 5 1

1 1 1 1
(1) (12)(34) (13)(24) (14)(23)
— A k \
5 Y
5 4 5 b 4 ) E 4 5 4
3 3 3 3

)

(142)

;

2

(123)
! 4
3

Figure 5.1 Rotations of a regular tetrahedron.

1
(134)
:
3
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The second row consists of 120° “face” rotations about axes joining a ver-
tex to the center of the opposite face. The third row consists of —120° (or
240°) “face” rotations. Notice that the four rotations in the second row can
be obtained from those in the first row by left-multiplying the four in the
first row by the rotation (123), whereas those in the third row can be ob-
tained from those in the first row by left-multiplying the ones in the first
row by (132). |

Many molecules with chemical formulas of the form AB,, such as
methane (CH,) and carbon tetrachloride (CCl,), have A, as their sym-
metry group. Figure 5.2 shows the form of one such molecule.

Many games and puzzles can be analyzed using permutations.

Figure 5.2 A tetrahedral AB, molecule.

I EXAMPLE 8 (Loren Larson) A Sliding Disk Puzzle
Consider the puzzle shown below (the space in the middle is empty).

By sliding disks from one position to another along the lines
indicated without lifting or jumping, can we obtain the following
arrangement?
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To answer this question, we view the positions as numbered in the
first figure above and consider two basic operations. Let r denote the
following operation: Move the disk in position 1 to the center position,
then move the disk in position 6 to position 1, the disk in position 5 to
position 6, the disk in position 4 to position 5, the disk in position 3 to
position 4, then the disk in the middle position to position 3. Let s
denote the operation: Move the disk in position 1 to the center position,
then move the disk in position 2 to position 1, then move the disk in po-
sition 3 to position 2, and finally move the disk in the center to position 3.
In permutation notation, we have r = (13456) and s = (132). The
permutation for the arrangement we seek is (16523). Clearly, if we can
express (16523) as a string of r’s and s’s, we can achieve the desired
arangement. Rather than attempt to find an appropriate combination of
r’s and s’s by hand, it is easier to employ computer software that is de-
signed for this kind of problem. One such software program is GAP (see
Suggested Software at the end of this chapter). With GAP, all we need to
do is use the following commands:

gap> G := SymmetricGroup(6);
gap>r:= (1,3,4,5,6); s := (1, 3, 2);
gap> K := Subgroup(G,[r,s]);
gap>> Factorization(K,(1,6,5,2,3));

The first three lines inform the computer that our group is the
subgroup of S, generated by r = (13456) and s = (132). The fourth
line requests that (16523) be expressed in terms of r and s. The re-
sponse to the command

gap>> Size (K);

tells us that the order of the subgroup generated by r and s is 360. Then,
observing that r and s are even permutations and that 14| = 360, we
deduce that r and s can achieve any arrangement that corresponds to an
even permutation. |
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GAP can even compute the 43,252,003,274,489,856,000 (43+ quin-
tillion) permutations of the Rubik’s Cube! Labeling the faces of the
cube as shown here,

1

6

2
top
7

9
12
14

10
left
15

11
13
16

17
20
22

18
front
23

19
21
24

25
28
30

26
right
31

27
29
32

33
36
38

34
rear
39

35
37
40

41
44
46

42
bottom
47

43
45
48

the group of permutations of the cube is generated by the following ro-
tations of the six layers:

top = (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)

left = (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)

front = (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)

right = (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)

rear = (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)

bottom = (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)
(16,24,32,40)

A Check Digit Scheme Based on D,

In Chapter 0, we presented several schemes for appending a check digit
to an identification number. Among these schemes, only the Interna-
tional Standard Book Number method was capable of detecting all
single-digit errors and all transposition errors involving adjacent digits.
However, recall that this success was achieved by introducing the al-
phabetical character X to handle the case where 10 was required to
make the dot product 0 modulo 11.

In contrast, in 1969, J. Verhoeff [2] devised a method utilizing the
dihedral group of order 10 that detects all single-digit errors and all
transposition errors involving adjacent digits without the necessity of
avoiding certain numbers or introducing a new character. To describe
this method, consider the permutation o = (01589427)(36) and the di-
hedral group of order 10 as represented in Table 5.2. (Here we use 0
through 4 for the rotations, 5 through 9 for the reflections, and * for the
operation of D.)
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Table 5.2 Multiplication for D,

* 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 0 6 7 8 9 5
2 2 3 4 0 1 7 8 9 5 6
3 3 4 0 1 2 8 9 5 6 7
4 4 0 1 2 3 9 5 6 7 8
5 5 9 8 7 6 0 4 3 2 1
6 6 5 9 8 7 1 0 4 3 2
7 7 6 5 9 8 2 1 0 4 3
8 8 7 6 5 9 3 2 1 0 4
9 9 8 7 6 5 4 3 2 1 0

Verhoeft’s idea is to view the digits 0 through 9 as the elements of the
group D, and to replace ordinary addition with calculations done in D..
In particular, to any string of digits a,a, . . . a,_,, we append the check
digit a, so that o(a)) * o*(a,) * -+ * d" *a,_,) * 0" Ya,_,) *
o"(a,) = 0. [Here 0%(x) = 0 (0(x)), 0°(x) = 0(0*(x)), and so on.]
Since o has the property that o’ (a) # o (b) if a # b, all single-digit er-
rors are detected. Also, because

a*o(b) #b*o(a) ifa # b, (1)

as can be checked on a case-by-case basis (see Exercise 49), it follows
that all transposition errors involving adjacent digits are detected [since
Equation (1) implies that o(a) * o'*'(b) # o(b) * " (a) if a # b].

From 1990 until 2002, the German government used a minor modi-
fication of Verhoeft’s check-digit scheme to append a check digit to the
serial numbers on German banknotes. Table 5.3 gives the values of the
functions o, o2, . . ., 0'” needed for the computations. [The functional
value o/ (j) appears in the row labeled with -’ and the column labeled j.]
Since the serial numbers on the banknotes use 10 letters of the alphabet in
addition to the 10 decimal digits, it is necessary to assign numerical val-
ues to the letters to compute the check digit. This assignment is shown in
Table 5.4.

To any string of digits a,a, . . . a,, corresponding to a banknote serial
number, the check digit a, is chosen such that o (a,) * az(az) doeee ok
%(ay) * 0'%a,,) * a,, = 0 [instead of o'(a,) * 0%(a,) * - + - * 0'%a,,) *
a'!(a,;) = 0 as in the Verhoeff scheme].
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Table 5.3 Powers of o

0 1 2 3 4 5 6 7 8 9
o 1 5 7 6 2 8 3 0 9 4
o? 5 8 0 3 7 9 6 1 4 2
ol 8 9 1 6 0 4 3 5 2 7
ot 9 4 5 3 1 2 6 8 7 0
o’ 4 2 8 6 5 7 3 9 0 1
af 2 7 9 3 8 0 6 4 1 5
o’ 7 0 4 6 9 1 3 2 5 8
ol 0 1 2 3 4 5 6 7 8 9
o’ 1 5 7 6 2 8 3 0 9 4
ol? 5 8 0 3 7 9 6 1 4 2

Table 5.4 Letter Values

A D G K L N S U Y zZ

0 1 2 3 4 5 6 7 8 9

To trace through a specific example, consider the banknote (featur-
ing the mathematician Gauss) shown in Figure 5.3 with the number
AG8536827U7. To verify that 7 is the appropriate check digit, we ob-
serve that o (0) * a2(2) * 03(8) * o*(5) * d3(3) * 0%(6) * o7(8) *
o3 %N *xc'%(T)*T=1%0%2%2%x6%6%x5%«2%0*] =
7 = 0, as it should be. [To illustrate how to use the multiplication table
for Dy, we compute 1 # 0 2% 2 = (1*0)*2%2=1%2%2=
(1x2)*x2=3%2=0.]

AGB536827U7

ZEHN DEUTSCHE MARK

Figure 5.3 German banknote with serial number AG8536827U and check digit 7.

One shortcoming of the German banknote scheme is that it does not
distinguish between a letter and its assigned numerical value. Thus, a
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substitution of 7 for U (or vice versa) and the transposition of 7 and U
are not detected by the check digit. Moreover, the banknote scheme
does not detect all transpositions of adjacent characters involving the
check digit itself. For example, the transposition of D and 8 in posi-
tions 10 and 11 is not detected. Both of these defects can be avoided by
using the Verhoeff method with D, the dihedral group of order 36, to
assign every letter and digit a distinct value together with an appropri-
ate function o (see Gallian [1]). Using this method to append a check
character, all single-position errors and all transposition errors involv-
ing adjacent digits will be detected.

1. Find the order of each of the following permutations.
a. (14)
b. (147)
c. (14762)
d. (aay - @)
2. Write each of the following permutations as a product of disjoint
cycles.
a. (1235)(413)
b. (13256)(23)(46512)
c. (12)(13)(23)(142)
3. What is the order of each of the following permutations?
a. (124)(357)
b. (124)(3567)
(124)(35)
. (124)(357869)
. (1235)(24567)
f. (345)(245)

-]
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4.

10.

11.

12.
13.
14.

15.

16.

17.

What is the order of each of the following permutations?
{1 2345 6}
215463

b[1234567}
17612345

. What is the order of the product of a pair of disjoint cycles of

lengths 4 and 67

. Show that A  contains an element of order 15.
. What are the possible orders for the elements of S, and A,? What

about A,? (This exercise is referred to in Chapter 25.)

. What is the maximum order of any elementin A ,?
. Determine whether the following permutations are even or odd.

a. (135)

b. (1356)

c. (13567)

d. (12)(134)(152)

e. (1243)(3521)

Show that a function from a finite set S to itself is one-to-one if and
only if it is onto. Is this true when S is infinite? (This exercise is re-
ferred to in Chapter 6.)

Let n be a positive integer. If n is odd, is an n-cycle an odd or an
even permutation? If n is even, is an n-cycle an odd or an even per-
mutation?

If « is even, prove that &~ ! is even. If « is odd, prove that o~ ! is odd.
Prove Theorem 5.6.

In S , let @ be an r-cycle, B an s-cycle, and y a r-cycle. Complete
the following statements: «f3 is even if and only if r + s is ;
afByisevenifand onlyif r + s + tis

Let a and B belong to S, . Prove that af is even if and only if «
and 3 are both even or both odd.

Associate an even permutation with the number +1 and an odd
permutation with the number —1. Draw an analogy between the
result of multiplying two permutations and the result of multiply-
ing their corresponding numbers +1 or —1.

Let

[123456} {123456}
o= and B = .
213546 6 1 2 435



18.

19.

20.

21.

22,

23.

24.

25.

26.
27.
28.
29.

30.
31.

32,

““1234517386
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Compute each of the following.
a. a!

b. Ba

c. af

Let

12345678} {12345678
= and B = .
1 387 6524

Write «, 3, and af3 as

a. products of disjoint cycles,

b. products of 2-cycles.

Show that if H is a subgroup of § , then either every member of H
is an even permutation or exactly half of the members are even.
(This exercise is referred to in Chapter 25.)

Compute the order of each member of A,. What arithmetic rela-
tionship do these orders have with the order of A,?

Give two reasons why the set of odd permutations in S, is not a
subgroup.

Let a and B belong to S . Prove that a !B~ 'af is an even
permutation.

Use Table 5.1 to compute the following.

a. The centralizer of a; = (13)(24).

b. The centralizer of a;, = (124).

How many elements of order 5 are in S.,?

How many elements of order 4 does Sq have? How many elements
of order 2 does S have?

Prove that (1234) is not the product of 3-cycles.

Let B € S, and suppose B* = (2143567). Find B.

Let B = (123)(145). Write 8% in disjoint cycle form.

Find three elements o in S9 with the property that o3 =
(157)(283)(469).

What cycle is (a,a, * = - a ) '?

Let G be a group of permutations on a set X. Let a € X and define
stab(a) = {a € Gla(a) = a}. We call stab(a) the stabilizer of a in
G (since it consists of all members of G that leave a fixed). Prove
that stab(a) is a subgroup of G. (This subgroup was introduced by
Galois in 1832.) This exercise is referred to in Chapter 7.
LetB=(1,3,5,7,9,8, 6)(2, 4, 10). What is the smallest positive
integer n for which g* = 737
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33.

34.

35.
36.

37.

38.
39.

40.

41.
42,

43.

44.
45.
46.

47.

48.
49.

50.

51.

52,

Leta = (1,3,5,7,9)(2, 4, 6)(8, 10). If a™ is a 5-cycle, what can
you say about m?

Let H= {B € §IB(1) = 1 and B(3) = 3}. Prove that H is a sub-
group of S.. How many elements are in H? Is your argument valid
when 5 is replaced by any n = 3? How many elements are in H
when 5 is replaced by any n = 3?

How many elements of order 5 are there in A;?

In S, find a cyclic subgroup of order 4 and a noncyclic subgroup
of order 4.

Suppose that B8 is a 10-cycle. For which integers i between 2 and
10 is B/ also a 10-cycle?

In S, find elements « and B such that lal = 2, 1Bl = 2, and laBl = 3.
Find group elements a and B such that lal = 3, I8l = 3, and
laBl = 5.

Represent the symmetry group of an equilateral triangle as a group
of permutations of its vertices (see Example 3).

Prove that S is non-Abelian for all n = 3.

Let o and 3 belong to S . Prove that BaB~" and « are both even or
both odd.

Show that A5 has 24 elements of order 5, 20 elements of order 3, and
15 elements of order 2. (This exercise is referred to in Chapter 25.)
Find a cyclic subgroup of Ag that has order 4.

Find a noncyclic subgroup of Ag that has order 4.

Suppose that H is a subgroup of S, of odd order. Prove that H is a
subgroup of A,,.

Show that every element in A for n = 3 can be expressed as a
3-cycle or a product of three cycles.

Show that for n = 3, Z(S) = {&}.

Verify the statement made in the discussion of the Verhoeff check
digit scheme based on D, that a s o(b) # b * o (a) for distinct a and
b. Use this to prove that oi(a) = o™'(b) # ci(b) + o™'(a) for all i.
Prove that this implies that all transposition errors involving adjacent
digits are detected.

Use the Verhoeff check-digit scheme based on D to append a
check digit to 45723.

Prove that every element of § (n > 1) can be written as a product
of elements of the form (1k).

(Indiana College Mathematics Competition) A card-shuffling ma-
chine always rearranges cards in the same way relative to the order
in which they were given to it. All of the hearts arranged in order



53.
54.

55.

56.

57.

58.

59.
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from ace to king were put into the machine, and then the shuffled
cards were put into the machine again to be shuffled. If the cards
emerged in the order 10, 9, Q, 8, K, 3,4, A, 5,7, 6, 2, 7, in what
order were the cards after the first shuffle?

Show that a permutation with odd order is an even permutation.

Let G be a group. Prove or disprove that H = {g? | g € G} is a sub-
group of G. (Compare with Example 5 in Chapter 3.)

Determine integers n for which H = {a € A,l&” = &} is a sub-
group of A,,.

Given that 8 and vy are in S, with By = (1432), yB = (1243) and
B(1) = 4, determine 3 and .

Why does the fact that the orders of the elements of A, are 1, 2, and
3 imply that 1Z(A I = 1?7

Label the four locations of tires on an automobile with the labels
1,2, 3, and 4, clockwise. Let a represent the operation of switching
the tires in positions 1 and 3 and switching the tires in positions
2 and 4. Let b represent the operation of rotating the tires in posi-
tions 2, 3, and 4 clockwise and leaving the tire in position 1 as is.
Let G be the group of all possible combinations of a and b. How
many elements are in G?

Shown below are four tire rotation patterns recommended by the
Dunlop Tire Company. Explain how these patterns can be repre-
sented as permutations in S, and find the smallest subgroup of §,
that contains these four patterns. Is the subgroup Abelian?

X Tires to
the Driven Axle
Rear Wheel Drive Front Wheel Drive
Vehicles Vehicles
fl eroNT ) fl rroNT )
Modified Modified X

X

4 Wheel Drive
Vehicles Alternate Pattern

fl eronT ff) | oM |

X Normal
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Computer Exercises

Science is what we understand well enough to explain to a computer.
Art is everything else we do.
DONALD KNUTH, The Art of Computer Programming, 1969

Software for Computer Exercise 1 in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines whether the two permutations (1x) and
(123 ... n) generate S, for various choices of x and n (that is,
whether every element of S can be expressed as some product of
these permutations). For n = 4, run the program for x = 2, 3, and
4. For n = 5, run the program for x = 2, 3, 4, and 5. For n = 6, run
the program for x = 2, 3, 4, 5, and 6. For n = 8, run the program
forx =2,3,4,5,6,7, and 8. Conjecture a necessary and sufficient
condition involving x and n for (1x) and (123 . . . n) to generate S, .

2. Use a software package (see Suggested Software on page 120) to
express the following permutations in terms of the » and s given in
Example 8. (For GAP, the prompt brk> means that the permuta-
tion entered is not in the group. In this situation, use Control-D to
return to the main prompt. Be advised that GAP composes permu-
tations from left to right as opposed to our method of right to left.)
a. (456)

b. (23)
c. (12)(34)
d. (12)(34)(56)
3. Repeat Example 8 for the puzzle shown here.


http://www.d.umn.edu/~jgallian
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Augustin Cauchy

You see that little young
man? Well! He will supplant
all of us in so far as we are
mathematicians.
Spoken by Lagrange
to Laplace About the
11-year-old Cauchy

AUGUSTIN Louis CAUCHY was born on
August 21, 1789, in Paris. By the time
he was 11, both Laplace and Lagrange had
recognized Cauchy’s extraordinary talent
for mathematics. In school he won prizes for
Greek, Latin, and the humanities. At the age
of 21, he was given a commission in
Napoleon’s army as a civil engineer. For the
next few years, Cauchy attended to his engi-
neering duties while carrying out brilliant
mathematical research on the side.

In 1815, at the age of 26, Cauchy was
made Professor of Mathematics at the Ecole
Polytechnique and was recognized as the
leading mathematician in France. Cauchy
and his contemporary Gauss were among
the last mathematicians to know the whole
of mathematics as known at their time, and
both made important contributions to nearly

This stamp was issued by France
in Cauchy’s honor.

every branch, both pure and applied, as well
as to physics and astronomy.

Cauchy introduced a new level of rigor
into mathematical analysis. We owe our
contemporary notions of limit and continu-
ity to him. He gave the first proof of the
Fundamental Theorem of Calculus. Cauchy
was the founder of complex function theory
and a pioneer in the theory of permutation
groups and determinants. His total written
output of mathematics fills 24 large volumes.
He wrote more than 500 research papers
after the age of 50. Cauchy died at the age of
67 on May 23, 1857.

For more information about Cauchy,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Isomorphisms

The basis for poetry and scientific discovery is the ability to comprehend
the unlike in the like and the like in the unlike.

JACOB BRONOWSKI

Motivation

Suppose an American and a German are asked to count a handful of ob-
jects. The American says, “One, two, three, four, five, . ..,” whereas the
German says “Eins, zwei, drei, vier, fiinf, . . .” Are the two doing different
things? No. They are both counting the objects, but they are using differ-
ent terminology to do so. Similarly, when one person says: “Two plus
three is five” and another says: “Zwei und drei ist fiinf,” the two are in
agreement on the concept they are describing, but they are using different
terminology to describe the concept. An analogous situation often occurs
with groups; the same group is described with different terminology. We
have seen two examples of this so far. In Chapter 1, we described the sym-
metries of a square in geometric terms (e.g., R), whereas in Chapter 5 we
described the same group by way of permutations of the corners. In both
cases, the underlying group was the symmetries of a square. In Chapter 4,
we observed that when we have a cyclic group of order n generated by a,
the operation turns out to be essentially that of addition modulo n, since
a'a* = d¥, where k = (r + s) mod n. For example, each of U(43) and U(49)
is cyclic of order 42. So, each has the form {(a), where a’a* = a " 9mod42,

Definition and Examples

122

In this chapter, we give a formal method for determining whether two
groups defined in different terms are really the same. When this is the
case, we say that there is an isomorphism between the two groups. This
notion was first introduced by Galois about 175 years ago. The term
isomorphism is derived from the Greek words isos, meaning “same” or
“equal,” and morphe, meaning “form.” R. Allenby has colorfully



6 | Isomorphisms 123

defined an algebraist as “a person who can’t tell the difference between
isomorphic systems.”

Definition Group Isomorphism -

An isomorphism ¢ from a group G to a group G is a one-to-one map-
ping (or function) from G onto G that preserves the group operation.
That is,

¢(ab) = p(a)p(b) for alla, bin G.

If there is an isomorphism from G onto G, we say that G and G are
isomorphic and write G = G.

This definition can be visualized as shown in Figure 6.1. The pairs
of dashed arrows represent the group operations.

P(a)p(b)

Figure 6.1

It is implicit in the definition of isomorphism that isomorphic
groups have the same order. It is also implicit in the definition of
isomorphism that the operation on the left side of the equal sign is that
of G, whereas the operation on the right side is that of G. The four
cases involving - and + are shown in Table 6.1.

Table 6.1
G Operation G Operation Operation Preservation
: ¢dla - b) = ¢P(a) - $(b)
: + dla - b) = dla) + $(b)
+ : dla +b) = ¢a) - $(b)
+ + dla +b) = ¢la) + d(b)

There are four separate steps involved in proving that a group G is
isomorphic to a group G.

Step 1 “Mapping.” Define a candidate for the isomorphism; that is, de-
fine a function ¢ from G to G.

Step 2 “1-1.” Prove that ¢ is one-to-one; that is, assume that ¢(a) =
¢(b) and prove that a = b.
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Step 3 “Onto.” Prove that ¢ is onto; that is, for any element g in G,
find an element g in G such that ¢(g) = g.

Step 4 “O.P”” Prove that ¢ is operation-preserving; that is, show that
d(ab) = ¢p(a)¢p(b) for all a and b in G.

None of these steps is unfamiliar to you. The only one that may appear
novel is the fourth one. It requires that one be able to obtain the same
result by combining two elements and then mapping, or by mapping
two elements and then combining them. Roughly speaking, this says
that the two processes—operating and mapping—can be done in either
order without affecting the result. This same concept arises in calculus
when we say

lim(f(x) - g(x)) = limf(x) limg(x)

or

b b b
f<f+g>dx - dex ; Jgdx.

a

Before going any further, let’s consider some examples.

B EXAMPLE 1 Let G be the real numbers under addition and let G be
the positive real numbers under multiplication. Then G and G are iso-
morphic under the mapping ¢(x) = 2*. Certainly, ¢ is a function from
G to G. To prove that it is one-to-one, suppose that 2* = 2”. Then log, 2* =
log, 2%, and therefore x = y. For “onto,” we must find for any positive
real number y some real number x such that ¢(x) = y; that is, 2* = y.
Well, solving for x gives log, y. Finally,

Plx +y) =270 =220 = P(0)P(y)

for all x and y in G, so that ¢ is operation-preserving as well. |

B EXAMPLE 2 Any infinite cyclic group is isomorphic to Z. Indeed, if
a is a generator of the cyclic group, the mapping a* — k is an
isomorphism. Any finite cyclic group (a) of order n is isomorphic
to Z under the mapping a* — k mod n. That these correspondences are
functions and are one-to-one is the essence of Theorem 4.1. Obviously,
the mappings are onto. That the mappings are operation-preserving
follows from Exercise 11 in Chapter O in the finite case and from the
definitions in the infinite case. |
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B EXAMPLE 3 The mapping from R under addition to itself given by
¢(x) = x* is not an isomorphism. Although ¢ is one-to-one and onto, it
is not operation-preserving, since it is not true that (x + y)* = x3 + 3
for all x and y. 1

I EXAMPLE 4 U(10) = Z, and U(5) = Z,. To verify this, one need
only observe that both U(10) and U(5) are cyclic of order 4. Then ap-
peal to Example 2. |

# EXAMPLE 5 U(10) # U(12). This is a bit trickier to prove. First,
note that x> = 1 for all x in U(12). Now, suppose that ¢ is an isomor-
phism from U(10) onto U(12). Then,

$9) = ¢3 - 3) = $3)¢p3) =1

and

o) = o(1 - 1) = (Hp(1) = 1.

Thus, ¢(9) = ¢(1), but 9 # 1, which contradicts the assumption that
¢ is one-to-one. |

B EXAMPLE 6 There is no isomorphism from Q, the group of rational
numbers under addition, to Q°, the group of nonzero rational numbers
under multiplication. If ¢ were such a mapping, there would be a ra-
tional number a such that ¢(a) = —1. But then

—1 = ¢(a) = ¢pGza + 30) = pGa)b(za) = [PpGa)]
However, no rational number squared is —1. |

B EXAMPLE 7 Let G = SL(2, R), the group of 2 X 2 real matrices
with determinant 1. Let M be any 2 X 2 real matrix with determinant 1.
Then we can define a mapping from G to G itself by ¢, (A) = MAM ™!
for all A in G. To verify that ¢,, is an isomorphism, we carry out the
four steps.

Step 1 ¢,, is a function from G to G. Here, we must show that ¢, (A)
is indeed an element of G whenever A is. This follows from properties
of determinants:

det (MAM™") = (det M)(det A)(det M) ' =1-1-1"1=1.

Thus, MAM~'is in G.

Step 2 ¢,, is one-to-one. Suppose that ¢, (A) = ¢, (B). Then MAM ! =
MBM~! and, by left and right cancellation, A = B.
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Step 3 ¢,, is onto. Let B belong to G. We must find a matrix A in G
such that ¢, (A) = B. How shall we do this? If such a matrix A is to ex-
ist, it must have the property that MAM~! = B. But this tells us exactly
what A must be! For we can solve for A to obtain A = M~ 'BM and
verify that ¢, (A) = MAM~' = M(M~'BM)M~' = B.

Step 4 ¢,,is operation-preserving. Let A and B belong to G. Then,

$,(AB) = M(ABYM™" = MA(M~'M)BM ™"
= (MAM~"YMBM™") = ¢, (A)d,(B).

The mapping ¢,, is called conjugation by M. |

Cayley’s Theorem

Our first theorem is a classic result of Cayley. An important generaliza-
tion of it will be given in Chapter 25.

I Theorem 6.1 Cayley’s Theorem (1854)

Every group is isomorphic to a group of permutations.

PROOF To prove this, let G be any group. We must find a group G of
permutations that we believe is isomorphic to G. Since G is all we have
to work with, we will have to use it to construct G. For any g in G,
define a function T, from G to G by

Tg(x) = gx for all x in G.

(In words, T, is just multiplication by g on the left.) We leave it as an
exercise (Exercise 23) to prove that Tg is a permutation on the set of
elements of G. Now, let G = {Tg | g € G}. Then, G is a group under
the operation of function composition. To verify this, we first observe
that for any g and /2 in G we have TgTh(x) =T g(Th(x)) = Tg(hx) = g(hx) =
(gh)x = h(x) so that T T, = T . From this it follows that T, is the
identity and (T )yl = T (see Exermse 9). Since function composition
is associative, we have verlﬁed all the conditions for G to be a group.

The isomorphism ¢ between G and G is now ready-made. For every
g in G, define ¢(g) = T,. If I, =T, then Tg(Q = T,(e) or ge = he.
Thus, g = h and ¢ is one-to-one. By the way G was constructed, we
see that ¢ is onto. The only condition that remains to be checked is that
¢ is operation-preserving. To this end, let a and b belong to G. Then

P(ab) =T, =TT, = d(a)p(b). |
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The group G constructed above is called the left regular representa-
tion of G.

B EXAMPLE 8 For concreteness, let us calculate the left regular repre-
sentation U(12) for U(12) = {1, 5, 7, 11}. Writing the permutations of
U(12) in array form, we have (remember, 7 is just multiplication by x)

[15711} {15 711]
T1= P T5= 9

157 11 51 11 7
T_[l 5711} T_{15711]
Tol7 11 50 "l 75 1)

It is instructive to compare the Cayley table for U(12) and its left regu-
lar representation U(12).

vz | 1 5 7 Uy, or,oT, T,
1 1 5 7 11 T, |1, T, T, T,

5 5 T B 7 r |7 7 T T
7 7 11 1 5 5 5 1 11 7
T7 T7 Tl] Tl TS

1 | 7 1 e - T T

N
w

It should be abundantly clear from these tables that U(12) and U(12)
are only notationally different. |

Cayley’s Theorem is important for two contrasting reasons. One is
that it allows us to represent an abstract group in a concrete way. A sec-
ond is that it shows that the present-day set of axioms we have adopted
for a group is the correct abstraction of its much earlier predecessor—a
group of permutations. Indeed, Cayley’s Theorem tells us that abstract
groups are not different from permutation groups. Rather, it is the
viewpoint that is different. It is this difference of viewpoint that has
stimulated the tremendous progress in group theory and many other
branches of mathematics in the 20th century.

It is sometimes very difficult to prove or disprove, whichever the
case may be, that two particular groups are isomorphic. For example, it
requires somewhat sophisticated techniques to prove the surprising fact
that the group of real numbers under addition is isomorphic to the
group of complex numbers under addition. Likewise, it is not easy
to prove the fact that the group of nonzero complex numbers under
multiplication is isomorphic to the group of complex numbers with ab-
solute value of 1 under multiplication. In geometric terms, this says
that, as groups, the punctured plane and the unit circle are isomorphic.
(See reference 1.)
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Properties of Isomorphisms

Our next two theorems give a catalog of properties of isomorphisms
and isomorphic groups.

I Theorem 6.2 Properties of Isomorphisms Acting on Elements

Suppose that ¢ is an isomorphism from a group G onto a group G.
Then

1. ¢ carries the identity of G to the identity of G.

2. For every integer n and for every group element a in G, ¢(a") =
[¢(@)]".

3. For any elements a and b in G, a and b commute if and only if
¢(a) and ¢(b) commute.

4. G = {(a) if and only if G = {p(a)).

5. lal = I¢p(a)l for all ain G (isomorphisms preserve orders).

6. For a fixed integer k and a fixed group element b in G, the
equation x* = b has the same number of solutions in G as does
the equation x* = ¢(b) in G.

7. If G is finite, then G and G have exactly the same number of
elements of every order.

PROOF We will restrict ourselves to proving only properties 1, 2, and 4,
but observe that property 5 follows from properties 1 and 2, property 6
follows from property 2, and property 7 follows from property 5. For
convenience, let us denote the identity in G by e and the identity in G
by e. Then, since e = ee, we have

P(e) = dlee) = d(e)d(e).

Also, because ¢(e) € G, we have d(e) = ed(e), as well. Thus, by can-
cellation, e = ¢ (e). This proves property 1.

For positive integers, property 2 follows from the definition of an

isomorphism and mathematical induction. If n is negative, then —n is
positive, and we have from property 1 and the observation about the
positive integer case that e = ¢(e) = P(g"g™") = Pp(g)P(g™") =
b (g")(¢p(g))". Thus, multiplying both sides on the right by (¢(g))", we
have (¢(g))" = ¢(g"). Property 1 takes care of the case n = 0.
__ To prove property 4, let G = {a) and note that, by closure, (¢(a)) C
G. Because ¢ is onto, for any element b in G, there is an element a* in
G such that ¢(a*) = b. Thus, b = (¢(a))* and so b € (P(a)). This
proves that G = (¢(a)).

Now suppose that G = (¢(a)). Clearly, (a) C G. For any element
b in G, we have ¢(b) € (¢p(a)). So, for some integer k we have
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d(b) = (d(a))* = P(a*). Because ¢ is one-to-one, b = a*. This proves
that (@) = G. |

When the group operation is addition, property 2 of Theorem 6.2 is
d(na) = n¢(a); property 4 says that an isomorphism between two
cyclic groups takes a generator to a generator.

Property 6 is quite useful for showing that two groups are not iso-
morphic. Often b is picked to be the identity. For example, consider C*
and R*. Because the equation x* = 1 has four solutions in C* but only
two in R*, no matter how one attempts to define an isomorphism from
C* to R*, property 6 cannot hold.

I Theorem 6.3 Properties of Isomorphisms Acting on Groups

Suppose that ¢ is an isomorphism from a group G onto a group G.
Then

1. ¢~1is an isomorphism from G onto G.

2. G is Abelian if and only if G is Abelian.

3. Gis cyclic if and only if G is cyclic.

4. If K is a subgroup of G, then $(K) = {¢p(k) |k E K} isa
subgroup of G.

PROOF Properties 1 and 4 are left as exercises (Exercises 21 and 22).
Property 2 is a direct consequence of property 3 of Theorem 6.2.
Property 3 follows from property 4 of Theorem 6.2 and property 1 of
Theorem 6.3. |

Theorems 6.2 and 6.3 show that isomorphic groups have many prop-
erties in common. Actually, the definition is precisely formulated so
that isomorphic groups have all group-theoretic properties in common.
By this we mean that if two groups are isomorphic, then any property
that can be expressed in the language of group theory is true for one if
and only if it is true for the other. This is why algebraists speak of iso-
morphic groups as “equal” or “the same.” Admittedly, calling such
groups equivalent, rather than the same, might be more appropriate, but
we bow to long-standing tradition.

Automorphisms

Certain kinds of isomorphisms are referred to so often that they have
been given special names.
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Definition Automorphism
An isomorphism from a group G onto itself is called an automorphism
of G.

The isomorphism in Example 7 is an automorphism of SL(2, R).
Two more examples follow.

B EXAMPLE 9 The function ¢ from C to C given by ¢(a + bi) =
a — bi is an automorphism of the group of complex numbers under
addition. The restriction of ¢ to C* is also an automorphism of the
group of nonzero complex numbers under multiplication. (See
Exercise 25.) 1

B EXAMPLE 10 Let R? = {(a, b) | a, b € R}. Then ¢(a, b) = (b, a)
is an automorphism of the group R? under componentwise addition.
Geometrically, ¢ reflects each point in the plane across the line y = x.
More generally, any reflection across a line passing through the
origin or any rotation of the plane about the origin is an automor-
phism of R?. |

The isomorphism in Example 7 is a particular instance of an auto-
morphism that arises often enough to warrant a name and notation of
its own.

Definition Inner Automorphism Induced by a
Let G be a group, and let a € G. The function ¢, defined by ¢ (x) =
axa~! for all x in G is called the inner automorphism of G induced by a.

We leave it for the reader to show that ¢ is actually an automor-
phism of G. (Use Example 7 as a model.)

B EXAMPLE 11 The action of the inner automorphism of D, induced
by R, is given in the following table.

PRy,

x = RyxRy™
Ry = RyRRy™" =R,
Ry = RyRyRo ™" = Ry,
Rigy = RoRgRoy™' = Rigg
Ryp = RyRyoRog ™ = Ry
H — RyHR, '=V
V> R,VR,'=H
D - RyDR, =D

’ ’ -1 —
D" — RyD'Ry,~' =D |
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When G is a group, we use Aut(G) to denote the set of all auto-
morphisms of G and Inn(G) to denote the set of all inner automor-
phisms of G. The reason these sets are noteworthy is demonstrated by
the next theorem.

1 Theorem 6.4 Aut(G) and Inn(G) Are Groups’

The set of automorphisms of a group and the set of inner
automorphisms of a group are both groups under the operation
of function composition.

PROOF The proof of Theorem 6.4 is left as an exercise (Exercise 15).
|

The determination of Inn(G) is routine. If G = {e, a, b, c. . . .}, then
Inn(G) = {¢,, . ¢,, ¢, .. .}. This latter list may have duplications,
however, since ¢, may be equal to ¢, even though a # b (see Exercise
33). Thus, the only work involved in determining Inn(G) is deciding
which distinct elements give the distinct automorphisms. On the other
hand, the determination of Aut(G) is, in general, quite involved.

I EXAMPLE 12 Inn(D4)

To determine Inn(D,), we first observe that the complete list of inner
automorphisms is ¢, . ¢, b, b . by, by, G, and ¢ .. Our job is
to determine the repetitions in this list. Since Ry, € Z(D,), we have
b ) = RigoxR (7' = x, so that ¢, = ¢, . Also, ¢, (x) =
RypgXRy0 ™" = RygR g0 XR 5" 'Ryy ™ = RygxRyy ™! = by (x). Similarly,
since H = R,V and D" = R (D, we have ¢, = ¢, and ¢, = ¢,
This proves that the previous list can be pared down to ¢ R b Roy? by
and ¢,. We leave it to the reader to show that these are distinct

(Exercise 13). |

B EXAMPLE 13 Aut(Z,)

To compute Aut(Z, ), we try to discover enough information about an
element a of Aut(Z, ) to determine how @ must be defined. Because Z
is so simple, this is not difficult to do. To begin with, observe that once
we know a(1), we know a(k) for any k, because

"The group Aut(G) was first studied by O. Holder in 1893 and, independently, by
E. H. Moore in 1894.
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ak)=a(l+1+---+1)
k terms
=a(l) +a(l) + -+ a(l) = ka(l).

k terms

So, we need only determine the choices for «(1) that make « an
automorphism of Z, . Since property 5 of Theorem 6.2 tells us that
la(1)l = 10, there are four candidates for a(1):

a(l) =1; a(l) = 3; a(l) =17, a(l) =9.

To distinguish among the four possibilities, we refine our notation by
denoting the mapping that sends 1 to 1 by @, 1 to 3 by ar;, 1 to 7 by a,
and 1 to 9 by a,. So the only possibilities for Aut(Z, ) are «,, a;, a,, and
a,. But are all these automorphisms? Clearly, «, is the identity. Let us
check a;. Since x mod 10 = y mod 10 implies 3x mod 10 = 3y mod 10,
a3 is well defined. Moreover, because a;(1) = 3 is a generator of Z,, it
follows that a, is onto (and, by Exercise 10 in Chapter 5, it is also one-
to-one). Finally, since a;(a + b) = 3(a + b) = 3a + 3b = ay(a) + a,(b),
we see that a is operation-preserving as well. Thus, a; € Aut(Z,). The
same argument shows that a; and a, are also automorphisms.

This gives us the elements of Aut(Z, ) but not the structure. For in-
stance, what is a,a,? Well, (a;a)(1) = a3(3) =3 -3 =9 = ay(1), so
oy, = ay. Similar calculations show that o = a, and a;* = a, s0
that la,| = 4. Thus, Aut(Z,) is cyclic. Actually, the following Cayley
tables reveal that Aut(Z,) is isomorphic to U(10).

7

U(10) ‘ 1 3 9 Aut(Z,) ‘ a, a, a, a,
1 1 3 7 9 a, a a, a, a,
3 3 9 1 7 a, a, a, a, a
7 7 1 9 3 a, a, a, a, a
9 9 7 3 1 a, a a, a, a,

[ |

With Example 13 as a guide, we are now ready to tackle the group
Aut(Z ). The result is particularly nice, since it relates the two kinds of
groups we have most frequently encountered thus far—the cyclic
groups Z and the U-groups U(n).

I Theorem 6.5 Aut(Z ) = U(n)

For every positive integer n, Aut(Z) is isomorphic to U(n).



6 | Isomorphisms 133

PROOF As in Example 13, any automorphism « is determined by the
value of a(1), and a(1) € U(n). Now consider the correspondence
from Aut(Z ) to U(n) given by T: @ — a(1). The fact that a(k) = ka(1)
(see Example 13) implies that 7 is a one-to-one mapping. For if @ and
B belong to Aut(Z ) and a(1) = B(1), then a(k) = ka(1) = kB(1) =
B(k) for all kin Z , and therefore a = B.

To prove that T is onto, let » € U(n) and consider the mapping a
from Z to Z defined by a(s) = sr (mod n) for all s in Z . We leave it as
an exercise to verify that a is an automorphism of Z (see Exercise 17).
Then, since T(a) = a(1) = r, T is onto U(n).

Finally, we establish the fact that 7 is operation-preserving. Let «,
B € Aut(Z). We then have

T(aP) = (@B)() = aB(1) =a(l + 1+ ---+1)

B(1) terms
=a(l) +all) + -+ al) = a(1)B(1)

B(1) terms
= T()T(B).

This completes the proof. |

Being a mathematician is a bit like being a manic depressive: you spend
your life alternating between giddy elation and black despair.
STEVEN G. KRANTZ, A Primer of Mathematical Writing

1. Find an isomorphism from the group of integers under addition to
the group of even integers under addition.

2. Find Aut(Z).

3. Let R* be the group of positive real numbers under multiplication.
Show that the mapping ¢(x) = V/x is an automorphism of R*.

4. Show that U(8) is not isomorphic to U(10).

5. Show that U(8) is isomorphic to U(12).

6. Prove that the notion of group isomorphism is transitive. That is, if
G, H, and K are groups and G = H and H = K, then G = K.

7. Prove that S, is not isomorphic to D,,.

8. Show that the mapping a —log,ya is an isomorphism from R*
under multiplication to R under addition.

9. In the notation of Theorem 6.1, prove that T, is the identity and

-1 —
that (Tg) =T,.
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10.

11.
12.
13.

14.
15.
16.

17.

18.

19.

20.

21.
22,
23.

24.
25.

26.

Let G be a group. Prove that the mapping a(g) = g~ ! forall gin G
is an automorphism if and only if G is Abelian.

For inner automorphisms (bg, ¢,, and qﬁgh, prove that qﬁgqﬁh = (bgh.
Find two groups G and H such that G # H, but Aut(G) = Aut(H).
Prove the assertion in Example 12 that the inner automorphisms
d)RO, qugo, ¢, and ¢, of D, are distinct.

Find Aut(Zy).

If G is a group, prove that Aut(G) and Inn(G) are groups.

Prove that the mapping from U(16) to itself given by x — x* is an
automorphism. What about x — x> and x — x’? Generalize.

Let r € U(n). Prove that the mapping a: Z — Z defined by a(s) =
srmod n for all s in Z is an automorphism of Z . (This exercise is
referred to in this chapter.)

1 a
The group { L) J

What if Z is replaced by R?

If ¢ and y are isomorphisms from the cyclic group (a) to some
group and ¢(a) = y(a), prove that p = y.

Suppose that ¢: Z5, — Zs, is an automorphism with ¢(11) = 13.
Determine a formula for ¢ (x).

Prove Property 1 of Theorem 6.3.
Prove Property 4 of Theorem 6.3.

Referring to Theorem 6.1, prove that Tg is indeed a permutation on
the set G.

Prove or disprove that U(20) and U(24) are isomorphic.

ac Z} is isomorphic to what familiar group?

Show that the mapping ¢(a + bi) = a — bi is an automorphism of
the group of complex numbers under addition. Show that ¢ pre-
serves complex multiplication as well—that is, ¢(xy) = d(x)d(y)
for all x and y in C. (This exercise is referred to in Chapter 15.)

Let
G = {a + bV/2 | a, b rational }

{7
H =

b a
Show that G and H are isomorphic under addition. Prove that G
and H are closed under multiplication. Does your isomorphism

preserve multiplication as well as addition? (G and H are examples
of rings—a topic we will take up in Part 3.)

and

a, b rational }



27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
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Prove that Z under addition is not isomorphic to Q under addition.

Prove that the quaternion group (see Exercise 4, Supplementary Exer-
cises for Chapters 1-4) is not isomorphic to the dihedral group D,.

Let C be the complex numbers and
{5
M=
b a
Prove that C and M are isomorphic under addition and that C* and
M*, the nonzero elements of M, are isomorphic under multiplication.
Let R" = {(a, a,, ..., a,) | a, € R}. Show that the mapping ¢:
(a,,a,, ...,a)—>(—a,, —a,, ..., —a,)is an automorphism of

the group R” under componentwise addition. This automorphism
is called inversion. Describe the action of ¢ geometrically.

Consider the following statement: The order of a subgroup divides
the order of the group. Suppose you could prove this for finite
permutation groups. Would the statement then be true for all finite
groups? Explain.

Suppose that G is a finite Abelian group and G has no element of
order 2. Show that the mapping g — g? is an automorphism of G.
Show, by example, that if G is infinite the mapping need not be an
automorphism.

Let G be a group and let g € G. If z € Z(G), show that the inner
automorphism induced by g is the same as the inner automorphism
induced by zg (that is, that the mappings qbg and qbzg are equal).

a,bER}.

If a and g are elements of a group, prove that C(a) is isomorphic to
C(gag ™).

Suppose that g and % induce the same inner automorphism of a
group G. Prove that h~'g € Z(G).

Combine the results of Exercises 33 and 35 into a single “if and
only if” theorem.

Let a belong to a group G and let lal be finite. Let ¢, be the auto-
morphism of G given by ¢ (x) = axa™'. Show that I¢ | divides lal.
Exhibit an element a from a group for which 1 <'¢ | <lal.

Let G = {0, =2, *4, £6, ...} and H = {0, £3, £6, =9, .. .}.
Show that G and H are isomorphic groups under addition. Does
your isomorphism preserve multiplication? Generalize to the case
when G = (m) and H = (n), where m and n are integers.
Suppose that ¢ is an automorphism of D, such that ¢p(Roy) = R,
and ¢ (V) = V. Determine ¢ (D) and ¢(H).

In Aut(Z,), let «; denote the automorphism that sends 1 to i where
ged(i, 9) = 1. Write a; and a¢ as permutations of {0, 1,...,8} in
disjoint cycle form. [For example, a, = (0)(124875)(36).]
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41.

42,

43.

44.

45.

46.

47.

Write the permutation corresponding to Ry, in the left regular rep-
resentation of D, in cycle form.

Show that every automorphism ¢ of the rational numbers Q under
addition to itself has the form ¢(x) = x¢(1).

Prove that Q*, the group of positive rational numbers under multi-
plication, is isomorphic to a proper subgroup.

Prove that Q, the group of rational numbers under addition, is not
isomorphic to a proper subgroup of itself.

Prove that every automorphism of R*, the group of nonzero real
numbers under multiplication, maps positive numbers to positive
numbers and negative numbers to negative numbers.

Let G be a finite group. Show that in the disjoint cycle form of the
right regular representation 7,(x) = xg of G each cycle has
length|g|.

Give a group-theoretic proof that Q under addition is not isomor-
phic to R* under multiplication.

Reference

1.

J. R. Clay, “The Punctured Plane Is Isomorphic to the Unit
Circle,” Journal of Number Theory 1 (1964): 500-501.

Computer Exercise

There is only one satisfying way to boot a computer.

J. H. GOLDFUSS

Software for the computer exercise in this chapter is available at the
website:

1.

http://www.d.umn.edu/~jgallian

This software computes the order of Aut(D ). Run the program for
n =13,5,7, and 11. Make a conjecture about the order when 7 is
prime. Run the program for n = 4, 8, 16, and 32. Make a conjecture
about the order when # is a power of 2. Run the program when n =
6, 10, 14, and 22. Make a conjecture about the order when # is twice
a prime. Run the program for n = 9, 15, 21, and 33. Make a conjec-
ture about the order when n is 3 times a prime. Try to deduce a gen-
eral formula for the order of Aut(D,).
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Arthur Cayley

Cayley is forging the weapons for future
generations of physicists.
PETER TAIT

ARTHUR CAYLEY was born on August 16,
1821, in England. His genius showed itself at
an early age. He published his first research
paper while an undergraduate of 20, and in
the next year he published eight papers.
While still in his early twenties, he originated
the concept of n-dimensional geometry.

After graduating from Trinity College,
Cambridge, Cayley stayed on for three years
as a tutor. At the age of 25, he began a 14-
year career as a lawyer. During this period,
he published approximately 200 mathemati-
cal papers, many of which are now classics.

In 1863, Cayley accepted the newly es-
tablished Sadlerian professorship of mathe-
matics at Cambridge University. He spent
the rest of his life in that position. One of his
notable accomplishments was his role in the
successful effort to have women admitted to
Cambridge.

Among Cayley’s many innovations in
mathematics were the notions of an abstract
group and a group algebra, and the matrix
concept. He made major contributions to
geometry and linear algebra. Cayley and his
lifelong friend and collaborator J. J. Sylvester
were the founders of the theory of invariants,
which was later to play an important role in
the theory of relativity.

Cayley’s collected works comprise 13
volumes, each about 600 pages in length.
He died on January 26, 1895.

To find more information about Cayley,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Cosets and Lagrange's

Theorem

It might be difficult, at this point, for students to see the extreme
importance of this result [Lagrange’s Theorem]. As we penetrate the subject
more deeply they will become more and more aware of its basic character.

I. N. HERSTEIN, Topics in Algebra

Properties of Cosets

In this chapter, we will prove the single most important theorem in finite
group theory—Lagrange’s Theorem. But first, we introduce a new and
powerful tool for analyzing a group—the notion of a coset. This notion
was invented by Galois in 1830, although the term was coined by
G. A. Miller in 1910.

Definition Cosetof HinG

Let G be a group and let H be a subset of G. For any a € G, the set

{ah | h € H} is denoted by aH. Analogously, Ha = {ha | h € H} and
aHa ' = {aha ' | h € H}. When H is a subgroup of G, the set aH is called
the left coset of H in G containing a, whereas Ha is called the right coset
of H in G containing a. In this case, the element a is called the coset
representative of aH (or Ha). We use laH| to denote the number of ele-
ments in the set aH, and |Hal to denote the number of elements in Ha.

B EXAMPLE1 Let G = Syand H = {(1), (13)}. Then the left cosets of
Hin G are

(DH = H,
(12)7 = {(12), (12)(13)} = {(12), (132)} = (132)H,
(I3)H = {(13), (D} = H,
(23)H = {(23), (23)(13)} = {(23), (123)} = (123)H. i

138
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B EXAMPLE 2 Let# = {R, R y,} in D,, the dihedral group of order 8.

Then,
R =K,
Ry = {Ryp, Ryzy} = Ry,
R H = {R g0 Ry} =,
VI ={V,H} = HX,
DX ={D,D'} = D'¥. |

B EXAMPLE3 Let H = {0, 3, 6} in Z; under addition. In the case that
the group operation is addition, we use the notation a + H instead of
aH. Then the cosets of H in Z, are

0+H=1{0,3,6=3+H=6+H,
1+H={1,4,7)=4+H=7+H,
2+H=1{258=5+H=8+H. N

The three preceding examples illustrate a few facts about cosets that
are worthy of our attention. First, cosets are usually not subgroups.
Second, aH may be the same as bH, even though a is not the same as b.
Third, since in Example 1 (12)H = {(12), (132)} whereas H(12) =
{(12), (123)}, aH need not be the same as Ha.

These examples and observations raise many questions. When does
aH = bH? Do aH and bH have any elements in common? When does
aH = Ha? Which cosets are subgroups? Why are cosets important? The
next lemma and theorem answer these questions. (Analogous results
hold for right cosets.)

I Lemma Properties of Cosets

Let H be a subgroup of G, and let a and b belong to G. Then,

1. a € aH,

2. aH = Hifand only ifa € H,

3. aH = bH if and only ifa € bH

4. aH = bH oraH N bH = J,

5. aH = bH ifand only ifa™'b € H,

6. laH| = |bH|,

7. aH = Ha if and only if H = aHa ',

8. aH is a subgroup of G if and only if a € H.

PROOF

1. a = ae € aH.
2. To verify property 2, we first suppose that aH = H. Then a =
ae € aH = H. Next, we assume that ¢« € H and show that aH C H
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and H C aH. The first inclusion follows directly from the closure of
H.To show that H C aH, let h € H. Then, sincea € Hand h € H, we
know that a='h € H. Thus, h = eh = (aaYh = a(a™'h) € aH.

3. If aH = bH, then a = ae € aH = bH. Conversely, if a € bH we have
a = bh where h € H, and therefore aH = (bh)H = b(hH) = bH.

4. Property 4 follows directly from property 3, for if there is an ele-
ment ¢ in aH N bH, then cH = aH and cH = bH.

5. Observe that aH = bH if and only if H = a~'bH. The result now
follows from property 2.

6. To prove that laH| = |bH|, it suffices to define a one-to-one map-
ping from aH onto bH. Obviously, the correspondence ah — bh
maps aH onto bH. That it is one-to-one follows directly from the
cancellation property.

7. Note that aH = Ha if and only if (aH)a™' = (Ha)a ' = H(aa™") =
H—that is, if and only if aHa ' = H.

8. If aH is a subgroup, then it contains the identity e. Thus, aH N
eH # 0; and, by property 4, we have aH = eH = H. Thus, from
property 2, we have a € H. Conversely, if a € H, then, again by
property 2, aH = H. |

Although most mathematical theorems are written in symbolic form,
one should also know what they say in words. In the preceding lemma,
property 1 says simply that the left coset of H containing a does contain a.
Property 2 says that the H “absorbs” an element if and only if the ele-
ment belongs to H. Property 3 shows that a left coset of H is uniquely
determined by any one of its elements. In particular, any element of a
left coset can be used to represent the coset. Property 4 says—and this is
very important—that two left cosets of H are either identical or disjoint.
Property 5 shows how we may transfer a question about equality of left
cosets of H to a question about H itself and vice versa. Property 6 says
that all left cosets of H have the same size. Property 7 is analogous to
property 5 in that it shows how a question about the equality of the left
and right cosets of H containing a is equivalent to a question about the
equality of two subgroups of G. The last property of the lemma says that
H itself is the only coset of H that is a subgroup of G.

Note that properties 1, 4, and 6 of the lemma guarantee that the left
cosets of a subgroup H of G partition G into blocks of equal size.
Indeed, we may view the cosets of H as a partitioning of G into equiva-
lence classes under the equivalence relation defined by a ~ b if
aH = bH (see Theorem 0.6).

In practice, the subgroup H is often chosen so that the cosets parti-
tion the group in some highly desirable fashion. For example, if G is
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3-space R? and H is a plane through the origin, then the coset (a, b, ¢) +
H (addition is done componentwise) is the plane passing through the
point (a, b, ¢) and parallel to H. Thus, the cosets of H constitute a par-
tition of 3-space into planes parallel to H. If G = GL(2, R) and
H = SL(2, R), then for any matrix A in G, the coset AH is the set of all
2 X 2 matrices with the same determinant as A. Thus,

20
{0 J H is the set of all 2 X 2 matrices of determinant 2

and

1 2
[2 J H s the set of all 2 X 2 matrices of determinant —3.

Property 4 of the lemma is useful for actually finding the distinct
cosets of a subgroup. We illustrate this in the next example.

B EXAMPLE 4 To find the cosets of H = {1, 15} in G = U32) =
{1,3,5,7,9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31} we begin with
H = {1, 15}. We can find a second coset by choosing any element not
in H, say 3, as a coset representative. This gives the coset 3H = {3, 13}.
We find our next coset by choosing a representative not already appear-
ing in the two previously chosen cosets, say 5. This gives us the coset SH =
{5, 11}. We continue to form cosets by picking elements from U(32)
that have not yet appeared in the previous cosets as representatives of
the cosets until we have accounted for every element of U(32). We then
have the complete list of all distinct cosets of H. |

Lagrange’s Theorem and Consequences

We are now ready to prove a theorem that has been around for more
than 200 years—Ilonger than group theory itself! (This theorem was not
originally stated in group theoretic terms.) At this stage, it should come
as no surprise.

B Theorem 7.1 Lagrange’s Theorem': |H| Divides |G]|

If G is a finite group and H is a subgroup of G, then |H| divides |G|.
Moreover, the number of distinct left (right) cosets of Hin G is |G| /|HI.

fLagrange stated his version of this theorem in 1770, but the first complete proof was
given by Pietro Abbati some 30 years later.
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PROOF LetaH, a,H, ..., a H denote the distinct left cosets of H in
G. Then, for each a in G, we have aH = a,H for some i. Also, by prop-
erty 1 of the lemma, a € aH. Thus, each member of G belongs to one
of the cosets a,H. In symbols,

G=aHU"---UaH.
Now, property 4 of the lemma shows that this union is disjoint, so that
|Gl = la,H! + la,H| + - -+ + la _HI.
Finally, since la,H| = |H| for each i, we have |Gl = rlHI. |

We pause to emphasize that Lagrange’s Theorem is a subgroup can-
didate criterion; that is, it provides a list of candidates for the orders of
the subgroups of a group. Thus, a group of order 12 may have sub-
groups of order 12, 6, 4, 3, 2, 1, but no others. Warning! The converse
of Lagrange’s Theorem is false. For example, a group of order 12 need
not have a subgroup of order 6. We prove this in Example 5.

A special name and notation have been adopted for the number of
left (or right) cosets of a subgroup in a group. The index of a subgroup
H in G is the number of distinct left cosets of H in G. This number
is denoted by |G:HI. As an immediate consequence of the proof of
Lagrange’s Theorem, we have the following useful formula for the
number of distinct left (or right) cosets of H in G.

1 Corollary 1 |G:H| = |G|/|H]|

If G is a finite group and H is a subgroup of G, then |G:H| = |G|/|H|.

1 Corollary 2 |a| Divides |G|

In a finite group, the order of each element of the group divides the
order of the group.

PROOF Recall that the order of an element is the order of the subgroup
generated by that element. |

I Corollary 3 Groups of Prime Order Are Cyclic

A group of prime order is cyclic.
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PROOF Suppose that G has prime order. Let @ € G and a # e. Then,
l{a)! divides |G| and I{a)| # 1. Thus, I{a)l = |G| and the corollary
follows. |

1 Corollary4 a°l=e

Let G be a finite group, and let a € G. Then, a'°' = e.

PROOF By Corollary 2, |G| = lalk for some positive integer k. Thus,
a\GI — a\a\k — €k = e. |

I Corollary 5 Fermat’s Little Theorem

For every integer a and every prime p, a’? mod p = a mod p.

PROOF By the division algorithm, a = pm + r, where 0 = r < p.
Thus, a mod p = r, and it suffices to prove that ¥’ mod p = r. If r = 0,
the result is trivial, so we may assume that r € U(p). [Recall that
Ulp) ={1,2,...,p — 1} under multiplication modulo p.] Then, by the
preceding corollary, 7»~! mod p = 1 and, therefore, r” mod p = r. |

Fermat’s Little Theorem has been used in conjunction with comput-
ers to test for primality of certain numbers. One case concerned the
number p = 2?7 — 1. If p is prime, then we know from Fermat’s Little
Theorem that 10” mod p = 10 mod p and, therefore, 107" mod p =
100 mod p. Using multiple precision and a simple loop, a computer
was able to calculate 107! mod p = 102" mod p in a few seconds.
The result was not 100, and so p is not prime.

B EXAMPLE 5 The Converse of Lagrange’s Theorem Is Falsef
The group A, of order 12 has no subgroups of order 6. To verify this,
recall that A, has eight elements of order 3 (a, through «,, in the nota-
tion of Table 5.1) and suppose that H is a subgroup of order 6. Let a be
any element of order 3 in A,. Since H has index 2 in A, at most two of
the cosets H, aH, and a’H are distinct. But equality of any pair of these
three implies that aH = H, so that a € H. (For example, if H = a’H,
multiply on the left by a.) Thus, a subgroup of A, of order 6 would have
to contain all eight elements of order 3, which is absurd. |

"The first counterexample to the converse of Lagrange’s Theorem was given by Paolo
Ruffini in 1799.
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For any prime p > 2, we know that Z,, and D, are nonisomorphic
groups of order 2p. This naturally raises the question of whether there
could be other possible groups of these orders. Remarkably, with just
the simple machinery available to us at this point, we can answer this
question.

I Theorem 7.2 Classification of Groups of Order 2p

Let G be a group of order 2p, where p is a prime greater than 2. Then
G is isomorphic to Z, » OT D -

PROOF We assume that G does not have an element of order 2p and
show that G = Dp. We begin by first showing that G must have an
element of order p. By our assumption and Lagrange’s Theorem, any
nonidentity element of G must have order 2 or p. Thus, to verify our as-
sertion, we may assume that every nonidentity element of G has order 2.
In this case, we have for all a and b in the group ab = (ab) ' = b la™ ' =
ba, so that G is Abelian. Then, for any nonidentity elements a, b € G
with a # b, the set {e, a, b, ab} is closed and therefore is a subgroup of
G of order 4. Since this contradicts Lagrange’s Theorem, we have
proved that G must have an element of order p; call it a.

Now let b be any element not in {a). Then b{a) # (a) and G =
(a) U b{a). We next claim that |b| = 2. To see this, observe that since
(a) and b{a) are the only two distinct cosets of (a) in G, we must have
bXa) = {(a) or b¥a) = b{a). We may rule out bXa) = b{a), for then b{a) =
{(@). On the other hand, b*a) = {a) implies that b*> € {a) and, therefore,
Ib?l = 1 or |b*l = p. But |1b?| = p and |bl # 2p imply that |b| = p. Then
(b) = (b*) and therefore b € (a), which is a contradiction. Thus, any
element of G not in {(a) has order 2.

Next consider ab. Since ab & (a), our argument above shows that
labl = 2. Then ab = (ab)™' = b~ la~! = ba~'. Moreover, this relation
completely determines the multiplication table for G. [For example,
a*(ba*) = a*(ab)a* = a*(ba™Ya* = a(ab)a® = a(ba™")a®> = (ab)a* =
(ba~")a* = ba.] Since the multiplication table for all noncyclic groups
of order 2p is uniquely determined by the relation ab = ba™!, all
noncyclic groups of order 2p must be isomorphic to each other. But of
course, D , the dihedral group of order 2p, is one such group. |

As an immediate corollary, we have that S, the symmetric group of
degree 3, is isomorphic to D;.



7 | Cosets and Lagrange’s Theorem 145

An Application of Cosets
to Permutation Groups

Lagrange’s Theorem and its corollaries dramatically demonstrate the
fruitfulness of the coset concept. We next consider an application of
cosets to permutation groups.

Definition Stabilizer of a Point
Let G be a group of permutations of a set S. For each i in S, let stab (i) =
{¢ € G| (i) = i}. We call stab (i) the stabilizer of i in G.

The student should verify that stab (i) is a subgroup of G. (See
Exercise 31 in Chapter 5.)

Definition Orbit of a Point

Let G be a group of permutations of a set S. For each s in S, let orb(s) =
{¢(s) | ¢ € G}. The set orb(s) is a subset of S called the orbit of s
under G. We use lorb(s)! to denote the number of elements in orb(s).

Example 6 should clarify these two definitions.
I EXAMPLE 6 Let

G = {(1), (132)(465)(78), (132)(465), (123)(456),
(123)(456)(78), (78)}.

Then,

orby(1) = {1,3,2},  staby(1) = {(1), (78)},
orby(2) = {2, 1,3}, staby(2) = {(1), (78)},
orb (4) = {4,6,5),  staby(4) = {(1), (78)},
orb(7) = {7, 8}, stab(7) = {(1), (132)(465), (123)(456)}. W

B EXAMPLE 7 We may view D, as a group of permutations of a
square region. Figure 7.1(a) illustrates the orbit of the point p under D,,
and Figure 7.1(b) illustrates the orbit of the point g under D,. Observe

that stab,, (p) = {R,, D}, whereas stab,, () = {R,}. |
4 4
P o (] ° .
[ ) L]
L 2] [ ]
(@) (b)
Figure 7.1

The preceding two examples also illustrate the following theorem.
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B Theorem 7.3 Orbit-Stabilizer Theorem

Let G be a finite group of permutations of a set S. Then, for
any i from S, |G| = lorb(i)! Istab(i)!.

PROOF By Lagrange’s Theorem, IGl/Istab (i)l is the number of dis-
tinct left cosets of stab(i) in G. Thus, it suffices to establish a one-
to-one correspondence between the left cosets of stab (i) and the
elements in the orbit of i. To do this, we define a correspondence T
by mapping the coset ¢stab (i) to (i) under T. To show that T'is a well-
defined function, we must show that astab (i) = Bstab(i) implies a(i) =
B(i). But astab (i) = Bstab(i) implies a’lB € stab(i), so that
(a™'B) (i) = i and, therefore, B(i) = a(i). Reversing the argument from
the last step to the first step shows that 7' is also one-to-one. We conclude
the proof by showing that 7'is onto orb(i). Let j € orb(i). Then a(i) = j
for some a € G and clearly T(astab(i)) = a(i) = j, so that T'is onto. B

We leave as an exercise the proof of the important fact that the orbits
of the elements of a set S under a group partition S (Exercise 33).

The Rotation Group of a Cube
and a Soccer Ball

It cannot be overemphasized that Theorem 7.3 and Lagrange’s Theorem
(Theorem 7.1) are counting theorems.” They enable us to determine the
numbers of elements in various sets. To see how Theorem 7.3 works, we
will determine the order of the rotation group of a cube and a soccer ball.
That is, we wish to find the number of essentially different ways in
which we can take a cube or a soccer ball in a certain location in space,
physically rotate it, and then still occupy its original location.

B EXAMPLE 8 Let G be the rotation group of a cube. Label the six
faces of the cube 1 through 6. Since any rotation of the cube must carry
each face of the cube to exactly one other face of the cube and different
rotations induce different permutations of the faces, G can be viewed as
a group of permutations on the set {1, 2, 3, 4, 5, 6}. Clearly, there is
some rotation about a central horizontal or vertical axis that carries face
number 1 to any other face, so that lorb (1)l = 6. Next, we consider
stab(1). Here, we are asking for all rotations of a cube that leave face
number 1 where it is. Surely, there are only four such motions—
rotations of 0°, 90°, 180°, and 270°—about the line perpendicular to

TPeople who don’t count won’t count (Anatole France).
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the face and passing through its center (see Figure 7.2). Thus, by
Theorem 7.3, |G| = lorb (1)l Istab (1)l = 6 - 4 = 24. |

A
1
I
I

<

Figure 7.2 Axis of rotation of a cube.

Now that we know how many rotations a cube has, it is simple to de-
termine the actual structure of the rotation group of a cube. Recall that
S, is the symmetric group of degree 4.

I Theorem 7.4 The Rotation Group of a Cube

The group of rotations of a cube is isomorphic to S,,.

PROOF Since the group of rotations of a cube has the same order as
S, we need only prove that the group of rotations is isomorphic to a
subgroup of §,. To this end, observe that a cube has four diagonals and
that the rotation group induces a group of permutations on the four di-
agonals. But we must be careful not to assume that different rotations
correspond to different permutations. To see that this is so, all we need
do is show that all 24 permutations of the diagonals arise from rota-
tions. Labeling the consecutive diagonals 1, 2, 3, and 4, it is obvious
that there is a 90° rotation that yields the permutation o = (1234); an-
other 90° rotation about an axis perpendicular to our first axis yields
the permutation 8 = (1423). See Figure 7.3. So, the group of permuta-
tions induced by the rotations contains the eight-element subgroup
{e, a, &2, &, B2, BPa, B*a?, B*a’} (see Exercise 37) and af3, which has
order 3. Clearly, then, the rotations yield all 24 permutations since the
order of the rotation group must be divisible by both 8 and 3. |

I EXAMPLE 9 A traditional soccer ball has 20 faces that are regular
hexagons and 12 faces that are regular pentagons. (The technical term
for this solid is truncated icosahedron.) To determine the number of ro-
tational symmetries of a soccer ball using Theorem 7.3, we may choose
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our set S to be the 20 hexagons or the 12 pentagons. Let us say that S is
the set of 12 pentagons. Since any pentagon can be carried to any other
pentagon by some rotation, the orbit of any pentagon is S. Also, there
are five rotations that fix (stabilize) any particular pentagon. Thus, by
the Orbit-Stabilizer Theorem, there are 12 - 5 = 60 rotational symme-
tries. (In case you are interested, the rotation group of a soccer ball is
isomorphic to A,.) |

In 1985, chemists Robert Curl, Richard Smalley, and Harold Kroto
caused tremendous excitement in the scientific community when they
created a new form of carbon by using a laser beam to vaporize graphite.
The structure of the new molecule is composed of 60 carbon atoms
arranged in the shape of a soccer ball! Because the shape of the new mol-
ecule reminded them of the dome structures built by the architect
R. Buckminster Fuller, Curl, Smalley, and Kroto named their discovery
“buckyballs.” Buckyballs are the roundest, most symmetrical large mol-
ecules known. Group theory has been particularly useful in illuminating
the properties of buckyballs, since the absorption spectrum of a molecule
depends on its symmetries and chemists classify various molecular states
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according to their symmetry properties. The buckyball discovery spurred
a revolution in carbon chemistry. In 1996, Curl, Smalley, and Kroto
received the Nobel Prize in chemistry for their discovery.

| don’t know, Marge. Trying is the first step towards failure.

oo

10.

11.

12.

13.

14.

HOMER SIMPSON

. Let H = {(1), (12)(34), (13)(24), (14)(23)}. Find the left cosets of

Hin A, (see Table 5.1 on page 107).

. Let H be as in Exercise 1. How many left cosets of H in S, are

there? (Determine this without listing them.)
Let H = {0, =3, =6, =9, .. .}. Find all the left cosets of H in Z.

. Rewrite the condition a~'b € H given in property 5 of the lemma

on page 139 in additive notation. Assume that the group is Abelian.

. Let H be as in Exercise 3. Use Exercise 4 to decide whether or not

the following cosets of H are the same.
a. 11+ Hand 17+ H
b. -1+ Hand5+ H
c. 7+ Hand23 + H

. Let n be a positive integer. Let H = {0, £n, =2n, £3n, .. .}. Find

all left cosets of H in Z. How many are there?
Find all of the left cosets of {1, 11} in U(30).

. Suppose that a has order 15. Find all of the left cosets of {(@°) in (a).

Let lal = 30. How many left cosets of {(a*) in {a) are there? List them.

Let a and b be nonidentity elements of different orders in a group
G of order 155. Prove that the only subgroup of G that contains
a and b is G itself.

Let H be a subgroup of R”, the group of nonzero real numbers un-
der multiplication. If R* C H C R*, prove that H = R* or H = R".
Let C* be the group of nonzero complex numbers under multiplica-
tion and let H = {a + bi € C*| a*>+ b*> = 1}. Give a geometric de-
scription of the coset (3 + 4i)H. Give a geometric description of the
coset (¢ + di)H.

Let G be a group of order 60. What are the possible orders for the
subgroups of G?

Suppose that K is a proper subgroup of H and H is a proper sub-
group of G. If IKI = 42 and |G| = 420, what are the possible
orders of H?
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15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.
29.

30.

31.

32,

Let G be a group with |G| = pg, where p and g are prime. Prove
that every proper subgroup of G is cyclic.

Recall that, for any integer n greater than 1, ¢p(n) denotes the num-
ber of positive integers less than n and relatively prime to n. Prove
that if @ is any integer relatively prime to n, then a®® mod n = 1.
Compute 5'° mod 7 and 7' mod 11.

Use Corollary 2 of Lagrange’s Theorem (Theorem 7.1) to prove
that the order of U(n) is even when n > 2.

Suppose G is a finite group of order n and m is relatively prime to 7.
If g € Gand g" = e, prove that g = e.

Suppose H and K are subgroups of a group G. If |1Hl = 12 and
IKI = 35, find IH N KI. Generalize.

Suppose that H is a subgroup of S, and that H contains (12) and
(234.) Prove that H = §,.

Suppose that H and K are subgroups of G and there are elements
a and b in G such that aH < bK. Prove that H € K.

Suppose that G is an Abelian group with an odd number of elements.
Show that the product of all of the elements of G is the identity.
Suppose that G is a group with more than one element and G has
no proper, nontrivial subgroups. Prove that |Gl is prime. (Do not
assume at the outset that G 1is finite.)

Let IGI = 15. If G has only one subgroup of order 3 and only one
of order 5, prove that G is cyclic. Generalize to |Gl = pg, where p
and g are prime.

Let G be a group of order 25. Prove that G is cyclic or g° = e for
all gin G.

Let |Gl = 33. What are the possible orders for the elements of G?
Show that G must have an element of order 3.

Let IGI = 8. Show that G must have an element of order 2.

Can a group of order 55 have exactly 20 elements of order 11?
Give a reason for your answer.

Determine all finite subgroups of C*, the group of nonzero com-
plex numbers under multiplication.

Let H and K be subgroups of a finite group G with H C K C G.
Prove that IG:HI| = |G:K!| |K:H|.

Show that Q, the group of rational numbers under addition, has no
proper subgroup of finite index.



33.

34.

35.

36.

37.

38.
39.

40.

41.

42,

43.

44.

45.

46.
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Let G be a group of permutations of a set S. Prove that the orbits of
the members of S constitute a partition of S. (This exercise is re-
ferred to in this chapter and in Chapter 29.)

Prove that every subgroup of D of odd order is cyclic.

Let G = {(1), (12)(34), (1234)(56), (13)(24), (1432)(56), (56)(13),
(14)(23), (24)(56)}.

a. Find the stabilizer of 1 and the orbit of 1.

b. Find the stabilizer of 3 and the orbit of 3.

c. Find the stabilizer of 5 and the orbit of 5.

Let G be a group of order p” where p is prime. Prove that the center
of G cannot have order p"~ .

Prove that the eight-element set in the proof of Theorem 7.4 is a
group.

Prove that a group of order 12 must have an element of order 2.
Suppose that a group contains elements of orders 1 through 10.
What is the minimum possible order of the group?

Let G be a finite Abelian group and let n be a positive integer that
is relatively prime to |GI. Show that the mapping a — a" is an au-

tomorphism of G.

2

Show that in a group G of odd order, the equation x* = a has a

unique solution for all a in G.

Let G be a group of order pgr, where p, g, and r are distinct primes.
If H and K are subgroups of G with |Hl = pqg and |K| = gr, prove
that |[H N K1 = q.

Let G = GL(2,R) and H = SL(2, R). Let A € G and suppose that
det A = 2. Prove that AH is the set of all 2 X 2 matrices in G that
have determinant 2.

Let G be the group of rotations of a plane about a point P in the
plane. Thinking of G as a group of permutations of the plane, de-
scribe the orbit of a point Q in the plane. (This is the motivation for
the name “orbit.”)

Let G be the rotation group of a cube. Label the faces of the cube
1 through 6, and let H be the subgroup of elements of G that carry
face 1 to itself. If o is a rotation that carries face 2 to face 1, give a
physical description of the coset Ho.

The group D, acts as a group of permutations of the square regions
shown on the following page. (The axes of symmetry are drawn for
reference purposes.) For each square region, locate the points in
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the orbit of the indicated point under D,. In each case, determine
the stabilizer of the indicated point.

47. Let G = GL(2, R), the group of 2 X 2 matrices over R with nonzero
determinant. Let H be the subgroup of matrices of determinant *1.
If a, b € G and aH = bH, what can be said about det (a) and
det (b)? Prove or disprove the converse.

48. Calculate the orders of the following (refer to Figure 27.5 for illus-
trations):

a. The group of rotations of a regular tetrahedron (a solid with
four congruent equilateral triangles as faces)

b. The group of rotations of a regular octahedron (a solid with
eight congruent equilateral triangles as faces)

c. The group of rotations of a regular dodecahedron (a solid with
12 congruent regular pentagons as faces)

d. The group of rotations of a regular icosahedron (a solid with 20
congruent equilateral triangles as faces)

49. If G is a finite group with fewer than 100 elements and G has sub-
groups of orders 10 and 25, what is the order of G?

50. A soccer ball has 20 faces that are regular hexagons and 12 faces
that are regular pentagons. Use Theorem 7.3 to explain why a soc-
cer ball cannot have a 60° rotational symmetry about a line through
the centers of two opposite hexagonal faces.
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Computer Exercise

In the fields of observation chance favors only the prepared mind.
LOUIS PASTEUR

Software for the computer exercise in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines when Z is the only group of order 7z in
the case that n = pg where p and ¢ are distinct primes. Run the
software forn =3-5,3-7,3-11,3-13,3-17,3-31,5-7,5-11,
5-13,5-17,5-31,7-11,7-13,7-17,7-19, and 7 - 43. Conjec-
ture a necessary and sufficient condition about p and g for qu to
be the only group of order pg, where p and ¢ are distinct primes.


http://www.d.umn.edu/~jgallian

Joseph Lagrange

Lagrange is the Lofty Pyramid of the
Mathematical Sciences.

NAPOLEON BONAPARTE

JosepH Louts LAGRANGE was born in Italy of
French ancestry on January 25, 1736. He be-
came captivated by mathematics at an early
age when he read an essay by Halley on
Newton’s calculus. At the age of 19, he be-
came a professor of mathematics at the Royal
Artillery School in Turin. Lagrange made sig-
nificant contributions to many branches of
mathematics and physics, among them the
theory of numbers, the theory of equations,
ordinary and partial differential equations, the
calculus of variations, analytic geometry,
fluid dynamics, and celestial mechanics. His
methods for solving third- and fourth-degree
polynomial equations by radicals laid the
groundwork for the group-theoretic approach
to solving polynomials taken by Galois.
Lagrange was a very careful writer with a
clear and elegant style.

At the age of 40, Lagrange was appointed
Head of the Berlin Academy, succeeding
Euler. In offering this appointment, Frederick
the Great proclaimed that the “greatest king
in Europe” ought to have the “greatest mathe-
matician in Europe” at his court. In 1787,
Lagrange was invited to Paris by Louis XVI
and became a good friend of the king and his
wife, Marie Antoinette. In 1793, Lagrange
headed a commission, which included
Laplace and Lavoisier, to devise a new system
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This stamp was issued by
France in Lagrange’s honor
in1958.

of weights and measures. Out of this came
the metric system. Late in his life he was
made a count by Napoleon. Lagrange died on
April 10, 1813.

To find more information about Lagrange,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/


http://www-groups.dcs.st-and.ac.uk/~history/
http://www-groups.dcs.st-and.ac.uk/~history/

External Direct

Products

The universe is an enormous direct product of representations
of symmetry groups.

STEVEN WEINBERG

Definition and Examples

In this chapter, we show how to piece together groups to make larger
groups. In Chapter 9, we will show that we can often start with one
large group and decompose it into a product of smaller groups in much
the same way as a composite positive integer can be broken down into
a product of primes. These methods will later be used to give us a sim-
ple way to construct all finite Abelian groups.

Definition External Direct Product

Let G, G,, ..., G, be afinite collection of groups. The external direct
product of G, G,, ...,G,  writtenas G, ® G, D - - - ® G, is the set of
all n-tuples for which the ith component is an element of G, and the
operation is componentwise.

In symbols,
GDPG,D--- DG, ={(g.8----8) 08 E G},

where (g, &5, - . ., g)(&}, & - . ., &) is defined to be (gg}.
8,85 - - - » &,8,)- It is understood that each product g,g’ is performed
with the operation of G,. We leave it to the reader to show that the
external direct product of groups is itself a group (Exercise 1).

This construction is not new to students who have had linear algebra or
physics. Indeed, R?> = R ® R and R? = R @ R © R—the operation being
componentwise addition. Of course, there is also scalar multiplication, but

"Weinberg received the 1979 Nobel Prize in physics with Sheldon Glashow and Abdus
Salam for their construction of a single theory incorporating weak and electromagnetic
interactions.
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we ignore this for the time being, since we are interested only in the group
structure at this point.

I EXAMPLE 1

U®) @ U10) = {(1, 1), (1,3),(1,7),(1,9), (3, 1), (3, 3),
(3.7),3,9),65,1,(5,3), 5,7, 5,9),
(7, D),(7,3),(7,7), (7,9}

The product (3, 7)(7, 9) = (5, 3), since the first components are com-
bined by multiplication modulo 8, whereas the second components are
combined by multiplication modulo 10. |

I EXAMPLE 2
Z,®Z, = {(0,0),(0, 1),(0,2),(1,0), (1, 1), (1, 2)}.

Clearly, this is an Abelian group of order 6. Is this group related to an-
other Abelian group of order 6 that we know, namely, Z.? Consider the
subgroup of Z, @© Z, generated by (1, 1). Since the operation in each com-
ponent is addition, we have (1, 1) = (1, 1), 2(1, 1) = (0, 2), 3(1, 1) =
(1, 0), 4(1, 1) = (0, 1), 5(1, 1) = (1, 2), and 6(1, 1) = (0, 0). Hence
Z,® Z, is cyclic. It follows that Z, © Z, is isomorphic to Z. 1

In Theorem 7.2 we classified the groups of order 2p where p is an
odd prime. Now that we have defined Z, © Z,, it is easy to classify the
groups of order 4.

I EXAMPLE 3 Classification of Groups of Order 4

A group of order 4 is isomorphic to Z, or Z, @ Z,. To verify this, let G =
{e, a, b, ab}. If G is not cyclic, then it follows from Lagrange’s Theorem
that |a| = |b| = |ab| = 2. Then the mapping ¢ — (0, 0), a — (1, 0),
b— (0, 1), and ab — (1, 1) is an isomorphism from G onto Z, ® Z,. |

We see from Examples 2 and 3 that in some cases Z,, D Z,, is isomor-
phic to Z,,, and in some cases it is not. Theorem 8.2 provides a simple
characterization for when the isomorphism holds.

Properties of External Direct Products

Our first theorem gives a simple method for computing the order of an
element in a direct product in terms of the orders of the component
pieces.
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B Theorem 8.1 Order of an Element in a Direct Product

The order of an element in a direct product of a finite number of
finite groups is the least common multiple of the orders of the
components of the element. In symbols,

(g 8,5 - - -5 8! = lem(ig 1, Ig,l, ..., Ig D).
PROOF Denote the identity of G, by e.. Let s = lem(lg |, Ig,l, ..., Ig )
and  =I(g, g, . . ., &,). Because s is a multiple of each Ig;| implies that

(81 8p----8)=10(g,8%....8)=(e,e,...,e), weknow that =s.On
the other hand, from (g, g, ....8) = (8,8, -..,8) =(e,e, ..., e) we
see that 7 is a common multiple of Ig,1, Ig,1, ..., lg,|. Thus, s = 1. |

The next two examples are applications of Theorem 8.1.

I EXAMPLE 4 We determine the number of elements of order 5 in
Z,s © Z,. By Theorem 8.1, we may count the number of elements
(a, b) in Z, © Z, with the property that 5 = I(a, b)l = lem(lal, |bl).
Clearly this requires that either lal = 5 and Ibl = 1 or 5, or 1ol = 5 and
lal = 1 or 5. We consider two mutually exclusive cases.

Case 1 lal = 5 and bl = 1 or 5. Here there are four choices for a
(namely, 5, 10, 15, and 20) and five choices for . This gives 20 ele-
ments of order 5.

Case 2 lal = 1 and |bl = 5. This time there is one choice for a and four
choices for b, so we obtain four more elements of order 5.

Thus, Z,, D Z, has 24 elements of order 5. |

I EXAMPLE 5 We determine the number of cyclic subgroups of order
10in Z,,, @ Z,. We begin by counting the number of elements (a, b) of
order 10.

Case 1 lal = 10 and Ibl = 1 or 5. Since Z,,, has a unique cyclic sub-
group of order 10 and any cyclic group of order 10 has four generators
(Theorem 4.4), there are four choices for a. Similarly, there are five
choices for b. This gives 20 possibilities for (a, b).

Case 2 lal = 2 and Ibl = 5. Since any finite cyclic group of even order
has a unique subgroup of order 2 (Theorem 4.4), there is only one
choice for a. Obviously, there are four choices for b. So, this case
yields four more possibilities for (a, b).
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Thus, Z,, (&) Z,5 has 24 elements of order 10. Because each cyclic
subgroup of order 10 has four elements of order 10 and no two of the
cyclic subgroups can have an element of order 10 in common, there
must be 24/4 = 6 cyclic subgroups of order 10. (This method is analo-
gous to determining the number of sheep in a flock by counting legs
and dividing by 4.) |

The direct product notation is convenient for specifying certain sub-
groups of a direct product.

B EXAMPLE 6 For each divisor r of m and s of n the group Z, D Z,
has a subgroup isomorphic to Z.b Z; (see Exercise 17). To find a sub-
group of say Z;, Z,, isomorphic to Z;P Z, we observe that (5) is a
subgroup of Zy, of order 6 and (3) is a subgroup of Z,, of order 4, so
(5) @ (3) is the desired subgroup. |

The next theorem and its first corollary characterize those direct
products of cyclic groups that are themselves cyclic.

I Theorem 8.2 Criterion for G @ H to be Cyclic

Let G and H be finite cyclic groups. Then G ® H is cyclic if and only
if |Gl and |H| are relatively prime.

PROOF Let |Gl = mand |HI = n, so that |G © HI = mn. To prove the
first half of the theorem, we assume G @ H is cyclic and show that
m and n are relatively prime. Suppose that gcd(m, n) = d and (g, h) is a
generator of G @ H. Since (g, h)™¢ = ((g™)"4, (h")"?) = (e, e), we
have mn = (g, h)| = mn/d. Thus, d = 1.

To prove the other half of the theorem, let G = (g) and H = (h) and
suppose ged(m, n) = 1. Then, I(g, )| = lem(m, n) = mn = |G D HI,
so that (g, &) is a generator of G & H. |

As a consequence of Theorem 8.2 and an induction argument, we
obtain the following extension of Theorem 8.2.

I Corollary 1 Criterionfor G, © G,® - - - © G, to Be Cyclic
An external direct product G, © G, © - - - © G, of a finite number

of finite cyclic groups is cyclic if and only if 1G,| and G| are relatively
prime when i # j.
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B Corollary2 Criterionforz =~ ~2Z ©7Z ©---©Z

Letm = nn, - - - n,. Then Z_ is isomorphic to Z, SY an@ 000 @an
if and only if n, and n;are relatively prime when i +# j.

By using the results above in an iterative fashion, one can express
the same group (up to isomorphism) in many different forms. For ex-
ample, we have

Z,82,®2,PZ,~2,®Z®Z ~7Z,DZ,
Similarly,
2,02, 02, DZ,~2,DZ D Z
~2,DZ2,DZ,DZ,~7Z DZ,
Thus, Z, ® Z,, = Z, ® Z,,. Note, however, that Z, ® Z, ) # Z.

The Group of Units Modulo n As
An External Direct Product

The U-groups provide a convenient way to illustrate the preceding
ideas. We first introduce some notation. If k is a divisor of n, let

Umn) = {x &€ Umn)l xmodk = 1}.

For example, U,(105) = {1, 8, 22,29, 43, 64, 71, 92}. It can be readily
shown that U,(n) is indeed a subgroup of U(n). (See Exercise 17 in
Chapter 3.)

I Theorem 8.3 U(n) as an External Direct Product
Suppose s and t are relatively prime. Then U(st) is isomorphic to the
external direct product of U(s) and U(t). In short,
U(st) = U(s) © U(¢).

Moreover, U (st) is isomorphic to U(t) and U (st) is isomorphic to U(s).

PROOF An isomorphism from U(st) to U(s) & U(r) is x — (x mod s,
x mod ?); an isomorphism from U (st) to U(%) is x — x mod #; an isomor-
phism from U/(s?) to U(s) is x — x mod s. We leave the verification that
these mappings are operation-preserving, one-to-one, and onto to the
reader. (See Exercises 11, 17, and 19 in Chapter O; see also [1].) |

As a consequence of Theorem 8.3, we have the following result.



160 Groups

Corollary
Letm = nn, - - - n,, where gcd(n,, nJ.) = 1fori +# j. Then,
U(m) ~ Un,) ® Uny) @ - - - ® Un,).

To see how these results work, let’s apply them to U(105). We obtain
U(105) = U(7) & U(15)
U(105) = U21) & U(5)
U(105) = U(3) @ U(5) & U(7).

Moreover,

U(7) = U,4(105) = {1, 16, 31,46, 61, 76)

U(15) = U,(105) = {1, 8,22, 29,43, 64,71, 92}

UQ1) = UL105) = {1, 11, 16, 26, 31,41, 46, 61, 71,76, 86, 101}
U(5) = U, (105) = {1, 22, 43, 64}

UB) = U,(105) = {1,71}.

Among all groups, surely the cyclic groups Z have the simplest
structures and, at the same time, are the easiest groups with which to
compute. Direct products of groups of the form Z are only slightly
more complicated in structure and computability. Because of this, al-
gebraists endeavor to describe a finite Abelian group as such a direct
product. Indeed, we shall soon see that every finite Abelian group can
be so represented. With this goal in mind, let us reexamine the
U-groups. Using the corollary to Theorem 8.3 and the facts (see
[2, p. 93]), first proved by Carl Gauss in 1801, that

u2)y={0}, UH=2z, U2Y=Z,®Z,. forn=3,
and

Up" =2

r— for p an odd prime,

we now can write any U-group as an external direct product of cyclic
groups. For example,

U105 =U03-5-7)=UQB)D US) D UT)
~72,DZ,DZ,
and
U(720) = U(16 - 9 - 5) = U(16) D U(9) ® U(5)
~72,072,0ZDZ,
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What is the advantage of expressing a group in this form? Well, for one
thing, we immediately see that the orders of the elements U(720) can
only be 1, 2, 3, 4, 6, and 12. This follows from the observations that an
element from Z, © Z, © Z, @ Z, has the form (a, b, ¢, d), where
lal=1or2,1bl =1,2,0r4,lcl =1,2,3,0r6,and |dl =1, 2, or 4, and
that I(a, b, ¢, d)| = lem(lal, 1bl, Icl, Idl). For another thing, we can read-
ily determine the number of elements of order 12, say, that U(720) has.
Because U(720) is isomorphic to Z, © Z, © Z, @ Z,, it suffices to cal-
culate the number of elements of order 12 in Z, © Z, ® Z, @ Z,. But
this is easy. By Theorem 8.1, an element (a, b, ¢, d) has order 12 if and
only if lem(lal, 151, Icl, Idl) = 12. Since lal = 1 or 2, it does not matter
how a is chosen. So, how can we have lem(lb1, Icl, Idl) = 12?7 One way
is to have 1bl = 4, Icl = 3 or 6, and d arbitrary. By Theorem 4.4, there
are two choices for b, four choices for ¢, and four choices for d. So, in
this case, we have 2 - 4 - 4 = 32 choices. The only other way to have
Iem(1bl, Icl, Idl) = 12 is for Idl = 4, Icl = 3 or 6, and |1bl = 1 or 2 (we
exclude 1ol = 4, since this was already accounted for). This gives 2 - 4 -
2 = 16 new choices. Finally, since a can be either of the two elements
in Z,, we have a total of 2(32 + 16) = 96 elements of order 12.

These calculations tell us more. Since Aut(Z,,,) is isomorphic to
U(720), we also know that there are 96 automorphisms of Z, of
order 12. Imagine trying to deduce this information directly from
U(720) or, worse yet, from Aut(Z,,,)! These results beautifully illus-
trate the advantage of being able to represent a finite Abelian group as
a direct product of cyclic groups. They also show the value of our the-
orems about Aut(Z) and U(n). After all, theorems are labor-
saving devices. If you want to convince yourself of this, try to prove
directly from the definitions that Aut(Z,,,) has exactly 96 elements of
order 12.

Applications

We conclude this chapter with five applications of the material pre-
sented here—three to cryptography, the science of sending and deci-
phering secret messages, one to genetics, and one to electric circuits.

Data Security

Because computers are built from two-state electronic components,
it is natural to represent information as strings of Os and 1s called
binary strings. A binary string of length n can naturally be thought of
as an element of Z, ® Z, @ - - - @ Z, (n copies) where the parenthe-
ses and the commas have been deleted. Thus the binary string
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11000110 corresponds to the element (1, 1,0,0,0,1,1,0)inZ, ® Z, D
Z, D72, D7, D7, D Z, D Z, Similarly, two binary strings a,a, * - - a,
and bb, - - - b, are added componentwise modulo 2 just as their
corresponding elements in Z, ® Z, ® - - - @ Z, are. For example,

11000111 + 01110110 = 10110001

and

10011100 + 10011100 = 00000000.
The fact that the sum of two binary sequences a,a, - - - a, + bb, - - -
b, =00 - - - 0if and only if the sequences are identical is the basis for

a data security system used to protect internet transactions.

Suppose that you want to purchase a compact disc from www
.Amazon.com. Need you be concerned that a hacker will intercept
your credit-card number during the transaction? As you might expect,
your credit-card number is sent to Amazon in a way that protects the
data. We explain one way to send credit-card numbers over the Web
securely. When you place an order with Amazon the company sends
your computer a randomly generated string of 0’s and 1’s called a key.
This key has the same length as the binary string corresponding to
your credit-card number and the two strings are added (think of this
process as “locking” the data). The resulting sum is then transmitted
to Amazon. Amazon in turn adds the same key to the received string
which then produces the original string corresponding to your credit-
card number (adding the key a second time “unlocks” the data).

To illustrate the idea, say you want to send an eight-digit binary string
such as s = 10101100 to Amazon (actual credit-card numbers have very
long strings) and Amazon sends your computer the key
k = 00111101. Your computer returns the string s + k£ = 10101100 +
00111101 = 10010001 to Amazon, and Amazon adds £ to this string to
get 10010001 + 00111101 = 10101100, which is the string represent-
ing your credit-card number. If someone intercepts the number
s + k= 10010001 during transmission it is no value without knowing k.

The method is secure because the key sent by Amazon is randomly
generated and used only one time. You can tell when you are using an en-
cryption scheme on a web transaction by looking to see if the web ad-
dress begins with “https” rather than the customary “http.” You will also
see a small padlock in the status bar at the bottom of the browser window.

Application to Public Key Cryptography

In the mid-1970s, Ronald Rivest, Adi Shamir, and Leonard Adleman
devised an ingenious method that permits each person who is to
receive a secret message to tell publicly how to scramble messages


www.Amazon.com
www.Amazon.com

8 | External Direct Products 163

sent to him or her. And even though the method used to scramble the
message is known publicly, only the person for whom it is intended
will be able to unscramble the message. The idea is based on the fact
that there exist efficient methods for finding very large prime numbers
(say about 100 digits long) and for multiplying large numbers, but no
one knows an efficient algorithm for factoring large integers (say
about 200 digits long). So, the person who is to receive the message
chooses a pair of large primes p and g and chooses an integer r with
1 <r<m,where m =lcm(p — 1, g — 1), such that r is relatively prime
to m (any such r will do). This person calculates n = pg and announces
that a message M is to be sent to him or her publicly as M" mod n.
Although r, n, and M" are available to everyone, only the person who
knows how to factor n as pg will be able to decipher the message.

To present a simple example that nevertheless illustrates the princi-
pal features of the method, say we wish to send the message “YES.” We
convert the message into a string of digits by replacing A by 01, B by
02, ..., Z by 26, and a blank by 00. So, the message YES becomes
250519. To keep the numbers involved from becoming too unwieldy,
we send the message in blocks of four digits and fill in with blanks
when needed. Thus, the message YES is represented by the two blocks
2505 and 1900. The person to whom the message is to be sent has
picked two primes p and ¢, say p = 37 and ¢ = 73 (in actual practice,
p and g would have 100 or so digits), and a number r that has no prime
divisors in common with lem(p — 1, ¢ — 1) = 72, say r = 5, and has
published n = 37 - 73 = 2701 and r = 5 in a public directory. We will
send the “scrambled” numbers (2505)° mod 2701 and (1900)° mod
2701 rather than 2505 and 1900, and the receiver will unscramble them.
We show the work involved for us and the receiver only for the block
2505. The arithmetic involved in computing these numbers is simpli-
fied as follows:

2505 mod 2701 = 2505
(2505)%> mod 2701 = 602
(2505)* mod 2701 = (602)(602) mod 2701 = 470.

So, (2505)° mod 2701 = (2505)(470) mod 2701 = 2415.7

"To determine 25052 mod 2701 with a calculator, enter 2505 X 2505 to obtain
62750025, then divide 6275025 by 2701 to obtain 2323.2228. Finally, enter 6275025 —
(2323 X 2701) to obtain 602. Provided that the numbers are not too large, the Google
search engine at http://www.google.com will do modular arithmetic. For example, en-
tering 25052 mod 2701 in the search box yields 602. Be careful, however, because en-
tering 250575 mod 2701 computes the wrong value since 25057 is too large. Instead, we
can use Google to compute smaller powers such as 25053 mod 2701 (which yields 852)
and 2505% mod 2701 and then compute (852 X 602) mod 2701 = 2415.


http://www.google.com

164

Groups

Thus, the number 2415 is sent to the receiver. Now the receiver must
take this number and convert it back to 2505. To do so, the receiver
takes the two factors of 2701, p = 37 and ¢ = 73, and calculates the
least common multiple of p — 1 = 36 and ¢ — 1 = 72, which is 72.
(This is where the knowledge of p and ¢ is necessary.) Next, the re-
ceiver must find s = r~! in U(72)—that is, solve the equation 5 - s = 1
mod 72. This number is 29. (There is a simple algorithm for finding
this number.) Then the receiver takes the number received, 2415, and
calculates (2415)* mod 2701. This calculation can be simplified as fol-
lows:

2415 mod 2701 = 2415
(2415)> mod 2701 = 766
(2415)* mod 2701 = (766)> mod 2701 = 639
(2415)8 mod 2701 = (639)> mod 2701 = 470
(2415)'6 mod 2701 = (470)> mod 2701 = 2119

So, (2415)® mod 2701 = (2415)'%(2415)8(2415)*%2415) mod 2701 =
(2119)(470)(639)(2415) mod 2701 = ((2119)(470) mod 2701 X
(639)(2415) mod 2701) mod 2701 = (1962)(914) mod 2701 = 2505. [We
compute the product (2119)(470)(639)(2415) in two stages so that we
may use a hand calculator.]

Thus the receiver correctly determines the code for “YE.” On the
other hand, without knowing how pq factors, one cannot find the modu-
lus (in our case, 72) that is needed to determine the intended message.

The procedure just described is called the RSA public key encryption
scheme in honor of the three people (Rivest, Shamir, and Adleman) who
discovered the method. It is widely used in conjunction with web servers
and browsers, e-mail programs, remote login sessions, and electronic fi-
nancial transactions. The algorithm is summarized below.

Receiver

1. Pick very large primes p and ¢ and compute n = pq.

2. Compute the least common multiple of p — 1 and ¢ — 1; let us call
it m.

3. Pick r relatively prime to m.

4. Find s such that s mod m = 1.

S. Publicly announce # and r.

Sender

1. Convert the message to a string of digits. (In practice, the ASCII
code is used.)
2. Break up the message into uniform blocks of digits; call them M,

My, ..., M,



8 | External Direct Products 165

3. Check to see that the greatest common divisor of each M, and n is
1. If not, n can be factored and our code is broken. (In practice, the
primes p and g are so large that they exceed all M,, so this step may
be omitted.)

4. Calculate and send R, = M," mod n.

Receiver

1. For each received message R, calculate Ri‘Y mod 7.
2. Convert the string of digits back to a string of characters.

Why does this method work? Well, we know that U(n) = U(p) D
U(g) = prl ® qul. Thus an element of the form x™ in U(n) corre-
sponds under an isomorphism to one of the form (mx,, mx,) in Z, D
Z,_\ Since m is the least common multiple of p — 1 and ¢ — 1, we
may write m = u(p — 1) and m = v(q — 1) for some u and v. Then
(mx,, mx,) = (u(p — x;, v(g — Dx,) = (0,0) in prl S qul, and it
follows that x™ = 1 for all x in U(n). So, because each message M, is
an element of U(n) and r was chosen so that rs = 1 + tm for some ¢,

we have, modulo #,
Ris — (Ml_r)s — Mirs = Mi1+tm = (Mim)tMi = ltMi = Mi_

In 2002, Ronald Rivest, Adi Shamir, and Leonard Adleman received
the Association for Computing Machinery A. M. Turing Award which
is considered the “Nobel Prize of Computing” for their contribution to
public key cryptography.

The software for Computer Exercise 5 in this chapter implements
the RSA scheme for small primes.

Digital Signatures

With so many financial transactions now taking place electronically, the
problem of authenticity is paramount. How is a stockbroker to know that
an electronic message she receives that tells her to sell one stock and buy
another actually came from her client? The technique used in public key
cryptography allows for digital signatures as well. Let us say that person
A wants to send a secret message to person B in such a way that only B
can decode the message and B will know that only A could have sent it.
Abstractly, let E, and D, denote the algorithms that A uses for encryp-
tion and decryption, respectively, and let £, and D, denote the algo-
rithms that B uses for encryption and decryption, respectively. Here
we assume that E, and E, are available to the public, whereas D, is
known only to A and D, is known only to B and that D FE, and E,D,
applied to any message leaves the message unchanged. Then A sends
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a message M to B as E, (D,(M)) and B decodes the received message
by applying the function E,D, to it to obtain

(E,Dy) (Ex(D,(M)) = E,(DyEL)D,(M)) = E,(D,(M)) = M.

Notice that only A can execute the first step [i.e., create D ,(M)] and
only B can implement the last step (i.e., apply E,D, to the received
message).

Transactions using digital signatures became legally binding in the
United States in October 2000.

Application to Genetics’

The genetic code can be conveniently modeled using elements of Z, ©
Z,® - D Z, where we omit the parentheses and the commas and
just use strings of Os, 1s, 2s, and 3s and add componentwise modulo 4.
A DNA molecule is composed of two long strands in the form of a
double helix. Each strand is made up of strings of the four nitrogen
bases adenine (A), thymine (T), guanine (G), and cytosine (C). Each
base on one strand binds to a complementary base on the other strand.
Adenine always is bound to thymine, and guanine always is bound to
cytosine. To model this process, we identify A with 0, T with 2, G with 1,
and C with 3. Thus, the DNA segment ACGTAACAGGA and its com-
plement segment TGCATTGTCCT are denoted by 03120030110 and
21302212332. Noting thatinZ,,0 +2=2,2+2=0,1 + 2 = 3,and
3 + 2 =1, we see that adding 2 to elements of Z, interchanges 0 and 2
and 1 and 3. So, for any DNA segment a,a, - - - a, represented by ele-
ments of Z, ®Z, @ - - - © Z,, we see that its complementary segment
is represented by a,a, - - - a, + 22+ 2.

Application to Electric Circuits

Many homes have light fixtures that are operated by a pair of switches.
They are wired so that when either switch is thrown the light changes
its status (from on to off or vice versa). Suppose the wiring is done so
that the light is on when both switches are in the up position. We can
conveniently think of the states of the two switches as being matched
with the elements of Z, @ Z, with the two switches in the up position
corresponding to (0, 0) and the two switches in the down position cor-
responding to (1, 1). Each time a switch is thrown, we add 1 to the
corresponding component in the group Z, © Z,. We then see that the
lights are on when the switches correspond to the elements of the sub-
group ((1, 1)) and are off when the switches correspond to the elements

"This discussion is adapted from [3].
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in the coset (1, 0) + ((1, 1)). A similar analysis applies in the case of
three switches with the subgroup {(0, 0, 0), (1, 1, 0), (0, 1, 1), (1,0, 1)}
corresponding to the lights-on situation.

What's the most difficult aspect of your life as a mathematician, Diane
Maclagan, an assistant professor at Rutgers, was asked. “Trying to prove
theorems,” she said. And the most fun? “Trying to prove theorems.”

1.

11.

12.

13.

14.

15.

Prove that the external direct product of any finite number of
groups is a group. (This exercise is referred to in this chapter.)

. Show that Z, @ Z, © Z, has seven subgroups of order 2.
. Let G be a group with identity ¢ and let H be a group with iden-

tity e,,. Prove that G is isomorphic to G @ {e,,} and that H is iso-
morphic to {e.} ® H.

. Show that G & H is Abelian if and only if G and H are Abelian.

State the general case.

. Prove or disprove that Z & Z is a cyclic group.
. Prove, by comparing orders of elements, that Z; © Z, is not iso-

morphic to Z, ® Z,.

. Prove that G, @ G, is isomorphic to G, © G,. State the general

case.

. Is Z, ®© Z, isomorphic to Z,,? Why?
. Is Z, ® Z, isomorphic to Z,;? Why?
10.

How many elements of order 9 does Z, @ Z, have? (Do not do this
exercise by brute force.)

How many elements of order 4 does Z, © Z, have? (Do not do this
by examining each element.) Explain why Z, @ Z, has the same
number of elements of order 4 as does Zg,,1000 D Z,40000- GeNeEral-
izetothecase Z, ®Z, .

The dihedral group D, of order 2n (n = 3) has a subgroup of n ro-
tations and a subgroup of order 2. Explain why D cannot be iso-
morphic to the external direct product of two such groups.

Prove that the group of complex numbers under addition is iso-
morphic to R ® R.

Suppose that G, = G, and H, = H,. Prove that G, D H, = G, ©
H,. State the general case.

If G @ H is cyclic, prove that G and H are cyclic. State the general
case.
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16. In Z,, @ Z,, find two subgroups of order 12.
17. If r is a divisor of m and s is a divisor of n, find a subgroup of Z

18.
19.

20.

21.

22,

23.

24.

25.

26.

27.
28.
29.
30.
31.
32,
33.

34.

@ Z, isomorphicto Z D Z..

Find a subgroup of Z , @ Z,, isomorphic to Z,  Z,.

Let G and H be finite groups and (g, h) € G & H. State a neces-
sary and sufficient condition for {(g, h)) = (g) D (h).

Determine the number of elements of order 15 and the number of
cyclic subgroups of order 15in Z,, © Z,,,.

What is the order of any nonidentity element of Z, © Z, © Z.?
Generalize.

Let m > 2 be an even integer and let n > 2 be an odd integer. Find
a formula for the number of elements of order 2in D, © D, .

Let M be the group of all real 2 X 2 matrices under addition. Let
N =R D R ® R D R under componentwise addition. Prove that
M and N are isomorphic. What is the corresponding theorem for
the group of m X n matrices under addition?

The group S, © Z, is isomorphic to one of the following groups:
ZZ D Z,, A, D,. Determine which one by elimination.

Let G be a group, and let H = {(g, g) | ¢ € G}. Show that H is a
subgroup of G & G. (This subgroup is called the diagonal of
G @ G.) When G is the set of real numbers under addition, de-
scribe G @ G and H geometrically.

Find a subgroup of Z, @ Z, that is not of the form H © K, where H
is a subgroup of Z, and K is a subgroup of Z,.

Find all subgroups of order 3 in Z, © Z..

Find all subgroups of order 4in Z, ® Z,.

What is the largest order of any element in Z,, @ Z,?
How many elements of order 2 are in Z, ;11,00 D Z,000000°
Find a subgroup of Zy,, @ Z,,, that is isomorphic to Z, © Z,.

Find a subgroup of Z , © Z, © Z,, that has order 9.

? Generalize.

Prove that R* € R* is not isomorphic to C*. (Compare this with
Exercise 13.)
Let
1 a b
H=X|0 1 0|lab€&Ez
0 0 1

(See Exercise 36 in Chapter 2 for the definition of multiplication.)
Show that H is an Abelian group of order 9. Is H isomorphic to Z,
orto Z, ® Z,?



35.

36.

37.
38.
39.

40.

41.

42,
43.

44.
45.
46.
47.
48.

49.

50.

51.

52,

53.

54.

55.

56.

57.
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Let G = {3™6" | m, n € Z} under multiplication. Prove that G is isomor-
phic to Z & Z. Does your proof remain valid if G = {3"9" | m,n € Z}?
Let(a;,a, ...,a)EG DG, D - DG, Give a necessary and
sufficient condition for I(a, a,, . .., a )l = .

Prove that D, ® D, # D ,® Z,.

Determine the number of cyclic subgroups of order 15 in Zy, @ Z, ..
If a group has exactly 24 elements of order 6, how many cyclic
subgroups of order 6 does it have?

For any Abelian group G and any positive integer n, let G" = {g" |
g € G} (see Exercise 15, Supplementary Exercises for Chapters
1-4). If H and K are Abelian, show that (H & K)" = H* ® K".

Express Aut(U(25)) in the form Z @ Z .
Determine Aut(Z, ® Z,).
Suppose that n, n,, ..., n, are positive even integers. How many

elements of order 2 does Z EB Z D---DZ have ? How many are
there if we drop the requlrement t211at n, , n, must be even?

52, 92,8Z,~2,DZ DZ?
s2,,92,Z,~272,D2,DZ,?

Find an isomorphism from Z , to Z, ® Z..

How many isomorphisms are there from Z , to Z, © Z,?

Suppose that ¢ is an isomorphism from Z, 69 Zs to Z,5 and
¢(2, 3) = 2. Find the element in Z, S¥ Z, that maps to 1.

Let (a, b) belong to Z @ Z . Prove that |(a, b)| divides lem(m, n).
LetG={ax*+ bx+cla,b,cE Z,}. Add elements of G as you
would polynomials with integer coefficients, except use modulo 3
addition. Prove that G is isomorphic to Z, @ Z, @ Z,. Generalize.
Use properties of U-groups to determine all cyclic groups that have
exactly two generators.

2,..

Explain a way that a string of length » of the four nitrogen bases A,
T, G, and C could be modeled with the external direct product of n
copies of Z, ® Z,.

Let p be a prime. Prove that Zp s> ZP has exactly p + 1 subgroups
of order p.

Give an example of an infinite non-Abelian group that has exactly
six elements of finite order.

Give an example to show that there exists a group with elements a
and b such that lal = o, |b| = o and labl = 2.

Express U(165) as an external direct product of cyclic groups of
the form Z .

Express U(165) as an external direct product of U-groups in four
different ways.
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58.

59.

60.

61.
62.

63.

64.

65.

66.
67.

68.
69.

70.
71.

72.
73.

74.

75.

Without doing any calculations in Aut(Z,,), determine how many
elements of Aut(Z,)) have order 4. How many have order 2?7

Without doing any calculations in Aut(Z,,), determine how many
elements of Aut(Z,,) have order 6.

Without doing any calculations in U(27), decide how many sub-
groups U(27) has.

What is the largest order of any element in U(900)?

Let p and g be odd primes and let m and n be positive integers.
Explain why U(p™) © U(g") is not cyclic.

Use the results presented in this chapter to prove that U(55) is
isomorphic to U(75).

Use the results presented in this chapter to prove that U(144) is
isomorphic to U(140).

For every n > 2, prove that U(n)*> = {x*> | x € U(n)} is a proper
subgroup of U(n).

Show that U(55) = {x* | x € U(55)} is U(55).

Find an integer n such that U(n) contains a subgroup isomorphic to
Z, D Z,.

Find a subgroup of order 6 in U(700).

Show that there is a U-group containing a subgroup isomorphic
toZ, D Z,.

Show that no U-group has order 14.

Show that there is a U-group containing a subgroup isomorphic
toZ,,.

Show that no U-group is isomorphic to Z, @ Z,.

Show that there is a U-group containing a subgroup isomorphic to
Z,d2z,

Using the RSA scheme with p = 37, ¢ = 73, and r = 5, what num-
ber would be sent for the message “RM”?

Assuming that a message has been sent via the RSA scheme with
p =137,q="73,and r = 5, decode the received message “34.”

Computer Exercises

The geek shall inherit the earth.

LEV GROSSMAN

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian
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1. This software lists the elements of U(st), where s and ¢ are rela-
tively prime. Run the program for (s, t) = (5, 16), (16, 5), (8, 25),
5,9),(9,5), (9, 10), (10, 9), and (10, 25).

2. This software computes the elements of the subgroup U(n)* =
{x¥1 x € U(n)} of U(n) and its order. Run the program for (n, k) =
(27, 3), (27, 5), (27, 7), and (27, 11). Do you see a relationship
connecting |U(n)| and 1U(n)*l, ¢(n), and k? Make a conjecture.
Run the program for (n, k) = (25, 3), (25, 5), (25, 7), and (25, 11).
Do you see a relationship connecting |U(n)l and |1U(n)*l, ¢(n), and
k? Make a conjecture. Run the program for (n, k) = (32, 2), (32,
4), and (32, 8). Do you see a relationship connecting 1U(n)| and
|U(n)*1, ¢(n), and k? Make a conjecture. Is your conjecture valid
for (32, 16)? If not, restrict your conjecture. Run the program for
(n, k) =(717,2),(717,3),(717,5), (77, 6), (77, 10), and (77, 15)? Do
you see a relationship among U(77, 6), U(77, 2), and U(77, 3)?
What about U(77, 10) U(77, 2), and U(77, 5)? What about U(77,
15), U(77, 3), and U(77, 5)? Make a conjecture. Use the theory
developed in this chapter about expressing U(n) as external direct
products of cyclic groups of the form Z to analyze these groups
to verify your conjectures.

3. This software implements the algorithm given on page 160 to ex-
press U(n) as an external direct product of groups of the form Z,.
Run the program forn =3-5-7,16-9-5,8-3-25,9-5-11,
and 2 - 27 - 125.

4. This software allows you to input positive integers 7,, Mysoo s My
where k = 5, and compute the number of elements in Z S
Z ©---DZ, of any specified order m. Use this software to ver-
1fy the values obtamed in Examples 4 and 5 and in Exercise 20.
Run the software for n, = 6,n, = 10, n, = 12, and m = 6.

5. This program implements the RSA public key cryptography
scheme. The user enters two primes p and ¢, an r that is relatively
prime tom = lcm (p — 1, ¢ — 1), and the message M to be sent.
Then the program computes s, which is the inverse of » mod m,
and the value of M" mod pg. Also, the user can input those num-
bers and have the computer raise the numbers to the s power to ob-
tain the original input.

6. This software determines the order of Aut(Zp ) Zp), where p is a
prime. Run the software for p = 3, 5, and 7. Is the result always
divisible by p? Is the result always divisible by p — 17 Is the result
always divisible by p + 1? Make a conjecture about the order of
Aul(Z, @ Z,) for all primes p.
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7. This software determines the order of Aut(Zp D Zp () Zp), where p
is a prime. Run the software for p = 3, 5, and 7. What is the highest
power of p that divides the order? What is the highest power of p — 1
that divides the order? What is the highest power of p + 1 that di-
vides the order? Make a conjecture about the order of
Au(Z, Y A Y Z) for all primes p.
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Leonard Adleman

“...Dr. Adleman [has played] a central role
in some of the most surprising, and
provocative, discoveries in theoretical
computer science.”

GINA KOLATA, The New York Times,

13 December 1994.

LEONARD ADLEMAN grew up in San Francisco.
He did not have any great ambitions for him-
self and, in fact, never even thought about be-
coming a mathematician. He enrolled at the
University of California at Berkeley intending
to be a chemist, then changed his mind and
said he would be a doctor. Finally, he settled
on a mathematics major. “I had gone through a
zillion things and finally the only thing that
was left where I could get out in a reasonable
time was mathematics,” he said.

Adleman graduated in five years, in
1968, “wondering what I wanted to do with
my life.” He took a job as a computer pro-
grammer at the Bank of America. Then he
decided that maybe he should be a physicist,
so he began taking classes at San Francisco
State College while working at the bank.
Once again, Adleman lost interest. “I didn’t
like doing experiments, I liked thinking
about things,” he said. Later, he returned to
Berkeley with the aim of getting a Ph.D. in
computer science. “I thought that getting a
Ph.D. in computer science would at least
further my career,” he said.

But, while in graduate school, something
else happened to Adleman. He finally under-
stood the true nature and compelling beauty
of mathematics. He discovered, he said, that
mathematics “is less related to accounting
than it is to philosophy.”

“People think of mathematics as some
kind of practical art,” Adleman said. But, he
added, “the point when you become a mathe-
matician is where you somehow see through
this and see the beauty and power of mathe-
matics.” Adleman got his Ph.D. in 1976 and
immediately landed a job as an assistant pro-
fessor of mathematics at the Massachusetts
Institute of Technology. There he met Ronald
Rivest and Adi Shamir, who were trying to
invent an unbreakable public key system.
They shared their excitement about the idea
with Adleman, who greeted it with a polite
yawn, thinking it impractical and not very in-
teresting. Nevertheless, Adleman agreed to
try to break the codes Rivest and Shamir pro-
posed. Rivest and Shamir invented 42 coding
systems, and each time Adleman broke the
code. Finally, on their 43rd attempt, they hit
upon what is now called the RSA scheme.

Adleman’s mode of working is to find
something that intrigues him and to dig in.
He does not read mathematics journals, he
says, because he does not want to be influ-
enced by other people’s ideas.

Asked what it is like to simply sit and
think for six months, Adleman responded,
“That’s what a mathematician always does.
Mathematicians are trained and inclined to
sit and think. A mathematician can sit and
think intensely about a problem for 12 hours
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a day, six months straight, with perhaps just For more information about Adleman,
a pencil and paper.” The only prop he needs,  visit:
he said, is a blackboard to stare at. A
Adapted from an article by Gina Kolata, http://www.wikipedia.com
The New York Times, 13 December 1994.

Supplementary Exercises for Chapters 5-8

174

My mind rebels at stagnation. Give me problems, give me work, give me
the most obstruse cryptogram, or the most intricate analysis, and | am in
my own proper atmosphere.

SHERLOCK HOLMES, The Sign of Four

True/False questions for Chapters 5-8 are available on the Web at:
www.d.umn.edu/~jgallian/TF

1. A subgroup N of a group G is called a characteristic subgroup if
¢(N) = N for all automorphisms ¢ of G. (The term characteristic
was first applied by G. Frobenius in 1895.) Prove that every sub-
group of a cyclic group is characteristic.

2. Prove that the center of a group is characteristic.

3. The commutator subgroup G' of a group G is the subgroup gener-
ated by the set {x 'y~!xy | x, y € G}. (That is, every element of G’
has the form a/'a, - - - a,’, where each a; has the form x~ 'y~ lxy,
each =%l and k is any positive integer.) Prove that G’ is a char-
acteristic subgroup of G. (This subgroup was first introduced by
G. A. Miller in 1898.)

4. Prove that the property of being a characteristic subgroup is transi-
tive. That is, if N is a characteristic subgroup of K and K is a char-
acteristic subgroup of G, then N is a characteristic subgroup of G.

S5.LetG =27, Z, ® Z, and let H be the subgroup of SL(3, Z,)
consisting of

H =

oS O =
S = Q

b
0 a,bcEZ3
1
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http://www.wikipedia.com

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.
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(See Exercise 36 in Chapter 2 for the definition of multiplication.)
Determine the number of elements of each order in G and H. Are G
and H isomorphic? (This exercise shows that two groups with the
same number of elements of each order need not be isomorphic.)

. Let H and K be subgroups of a group G and let HK = {hk | h € H,

k€ K} and KH = {kh | k € K, h € H}. Prove that HK is a group if
and only if HK = KH.

. Let H and K be subgroups of a finite group G. Prove that

[H] K]

HK| = .
HKI =g

(This exercise is referred to in Chapters 10, 11, and 24.)

. The exponent of a group is the smallest positive integer n such that

x" = e for all x in the group. Prove that every finite group has an ex-
ponent that divides the order of the group.

. Determine all U-groups of exponent 2.
10.

Suppose that H and K are subgroups of a group and that |H| and K|
are relatively prime. Show that H N K = {e}.

Let R™ denote the multiplicative group of positive real numbers and
let T = {a + bi € C*| a> + b> = 1} be the multiplicative group of
complex numbers of norm 1. Show that every element of C* can be
uniquely expressed in the form rz, where r € R andz € T.

Use a group-theoretic proof to show that O* under multiplication is
not isomorphic to R* under multiplication.

Use a group-theoretic proof to show that Q under addition is not
isomorphic to R under addition.

Prove that R under addition is not isomorphic to R* under
multiplication.

Show that Q™ (the set of positive rational numbers) under multipli-
cation is not isomorphic to Q under addition.

Suppose that G = {e, x, x>, y, yx, yx*} is a non-Abelian group with
IxI = 3 and |yl = 2. Show that xy = yx2.

Let p be an odd prime. Show that 1 is the only solution of x?~2 = 1
in U(p).

Let G be an Abelian group under addition. Let n be a fixed positive
integer and let H = {(g, ng) | g € G}. Show that H is a subgroup of
G @ G. When G is the set of real numbers under addition, describe
H geometrically.

Find five subgroups of Z, ® Z, + Z,, isomorphic to Z, © Z..

Suppose that G = G, ® G, © - - - © G,. Prove that Z(G) =
ZG)DZLUG,)D - - - DZG,).
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21.
22,

23.

24,

25.

26.
27.
28.

29.
30.
31.
32.

33.

34.
35.
36.

37.

38.

39.

40.

41.
42.

43.
44.
45.

Exhibit four nonisomorphic groups of order 18.
What is the order of the largest cyclic subgroup in Aut(Z.,)? (Hint:
It is not necessary to consider automorphisms of Z,,.)

Let G be the group of all permutations of the positive integers. Let
H be the subset of elements of G that can be expressed as a product
of a finite number of cycles. Prove that H is a subgroup of G.

Let H be a subgroup of G. Show that Z(G)H is a subgroup of G.
Show that D, © Z, # D, © Z,,. (This exercise is referred to in
Chapter 24.)

Show that D, # D, D Z,. (This exercise is referred to in Chapter 24.)
Show that D, # D, @ Z,,. (This exercise is referred to in Chapter 24.)
Exhibit four nonisomorphic groups of order 66. (This exercise is
referred to in Chapter 24.)

Prove that IInn(G)!I = 1 if and only if G is Abelian.

Prove that x'%° = 1 for all x in U(1000).

Find a subgroup of order 6 in U(450).

List four elements of Z,, @ Z, @ Z that form a noncyclic
subgroup.

In S, let B = (13)(17)(265)(289). Find an element in S, that com-
mutes with 8 but is not a power of S.

Prove or disprove that Z, ® Z . = Z D Z,,.

Prove or disprove that D, = Z, ® D,.

Describe a three-dimensional solid whose symmetry group is iso-
morphic to D..

Let G = U(15) © Z,, D S,. Find the order of (2, 3, (123)(15)). Find
the inverse of (2, 3, (123)(15)).

LetG=Z2ZDZ,andlet H= {g € Gl Igl = «©or Igl = 1}. Prove
or disprove that H is a subgroup of G.

Let G be an infinite group of the form G, @ G, D - - - © G where
each G, is a nontrivial group and n > 1. Prove that G is not cyclic.
For any o in S and any k-cycle (i,i, - - - i) in S, prove that o°(i i, . . .
ot =o@)o@,)...o@).

Find an element of order 10 in A,

In the left regular representation for D, write Ty, and 7', in matrix
form and in cycle form.

How many elements of order 6 are in S,?

Prove that S, @ S, is not isomorphic to a subgroup of S,.

Find a permutation 8 such that 8% = (13579)(268).
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47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

57.

58.

59.
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In R ©© R under componentwise addition, let H = {(x, 3x) | x € R}.
(Note that H is the subgroup of all points on the line y = 3x.) Show
that (2, 5) + H is a straight line passing through the point (2, 5) and
parallel to the line y = 3x.

In R @ R, suppose that H is the subgroup of all points lying on a
line through the origin. Show that any left coset of H is either H or
a line parallel to H.

Let G be a group of permutations on the set {1, 2, ..., n}. Recall
that stab (1) = {a¢ € G I a(1) = 1}. If y sends 1 to k, prove that
y stab (1) = {B € G| B(1) = k}.

Let H be a subgroup of G and let a, b € G. Show that aH = bH if
and only if Ha™! = Hb™!.

Suppose that G is a finite Abelian group that does not contain a
subgroup isomorphic to Z, ¥ Z, for any prime p. Prove that G is
cyclic.

Let p be a prime. Determine the number of elements of order p in
Z;, D Zy.

Show that Z,» © Z,» has exactly one subgroup isomorphic to Z © Z .
Let p be a prime. Determine the number of subgroups of Z, © Z
isomorphic to Z,.

Find a group of order 32 - 5% - 72 - 23 that contains a subgroup iso-
morphic to Ag.

Let p and ¢ be distinct odd primes. Let n = lem(p — 1, g — 1).
Prove that x* = 1 for all x € U(pq).

Prove that D is not isomorphic to a subgroup of §,.

Prove that the permutations (12) and (123 . . . n) generate S, . (That
is, every member of S can be expressed as some combination of
these elements.

Suppose that n is even and o is an (n — 1)-cycle in S, . Show that o
does not commute with any element of order 2.

Suppose that 7 is odd and o is an n-cycle in S . Prove that o does
not commute with any element of order 2.



Normal Subgroups

and Factor Groups

It is tribute to the genius of Galois that he recognized that those subgroups
for which the left and right cosets coincide are distinguished ones. Very
often in mathematics the crucial problem is to recognize and to discover
what are the relevant concepts; once this is accomplished the job may be
more than half done.

I. N. HERSTEIN, Topics in Algebra

Normal Subgroups
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As we saw in Chapter 7, if G is a group and H is a subgroup of G, it is not
always true that ald = Ha for all a in G. There are certain situations where
this does hold, however, and these cases turn out to be of critical impor-
tance in the theory of groups. It was Galois, about 175 years ago, who first
recognized that such subgroups were worthy of special attention.

Definition Normal Subgroup
A subgroup H of a group G is called a normal subgroup of G if aH =
Ha for all a in G. We denote this by H < G.

Many students make the mistake of thinking that “H is normal in G”
means ah = ha fora € G and h € H. This is not what normality of H
means; rather, it means that if ¢ € G and & € H, then there exist ele-
ments 4" and /4" in H such that ah = h'a and ha = ah”. Think of it this
way: You can switch the order of a product of an element from the group
and an element from the normal subgroup, but you must “fudge” a bit on
the element from the normal subgroup by using 4’ or A" rather than A. (It
is possible that 2" = h or A" = h, but we may not assume this.)

There are several equivalent formulations of the definition of nor-
mality. We have chosen the one that is the easiest to use in applications.
However, to verify that a subgroup is normal, it is usually better to use
Theorem 9.1, which is a weaker version of property 7 of the lemma in
Chapter 7. It allows us to substitute a condition about two subgroups of
G for a condition about two cosets of G.
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i Theorem 9.1 Normal Subgroup Test

A subgroup H of G is normal in G if and only if xHx ! C H
forall xin G.

PROOF If His normal in G, then for any x € G and & € H there is an i’
in H such that x4 = h'x. Thus, xhx~! = h’, and therefore xHx™! C H.
Conversely, if xHx™! C H for all x, then, letting x = a, we have
aHa™' C H or aH C Ha. On the other hand, letting x = a~!, we have
a 'Ha "' =a '"Ha C Hor Ha C aH. |

# EXAMPLE 1 Every subgroup of an Abelian group is normal. (In this
case, ah = ha for a in the group and / in the subgroup.) |

B EXAMPLE 2 The center Z(G) of a group is always normal. [Again,
ah = ha for any a € G and any h € Z(G).] |

B EXAMPLE 3 The alternating group A, of even permutations is a nor-
mal subgroup of S, . [Note, for example, that for (12) € § and (123) €
A, we have (12)(123) # (123)(12) but (12)(123) = (132)(12) and
(132) € A,] |

B EXAMPLE 4 The subgroup of rotations in D, is normal in D,. (For
any rotation r and any reflection f, we have fr = r~!f, whereas for any
rotations r and ', we have rr’ = r'r.) |

B EXAMPLE 5 The group SL(2, R) of 2 X 2 matrices with determinant
1 is a normal subgroup of GL(2, R), the group of 2 X 2 matrices with
nonzero determinant. To verify this, we use the normal subgroup test
given in Theorem 9.1. Let x € GL(2, R) = G, h € SL(2, R) = H and
note that det xAx~! = (det x)(det h)(det x)~! = (det x)(det x)~! = 1. So,
xhx~' € H, and, therefore, xHx ' C H. |

B EXAMPLE 6 Referring to the group table for A, given in Table 5.1 on
page 107, we may observe that H = {«,, «,, a;, @,} is a normal
subgroup of A,, whereas K = {a,, a,, ay} is not a normal subgroup
of A,. To see that H is normal, simply note that for any Bin A,, BHB ! is
a subgroup of order 4 and H is the only subgroup of A, of order 4
since all other elements of A, have order 3. Thus, BHB~' = H. In con-
trast, a,a,,' = a, so that a,Ka,”' € K. |
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Factor Groups

We have yet to explain why normal subgroups are of special significance.
The reason is simple. When the subgroup H of G is normal, then the set
of left (or right) cosets of H in G is itself a group—called the factor group
of G by H (or the quotient group of G by H). Quite often, one can obtain
information about a group by studying one of its factor groups. This
method will be illustrated in the next section of this chapter.

I Theorem 9.2 Factor Groups (O. Hélder, 1889)

Let G be a group and let H be a normal subgroup of G. The set
G/H = {aH | a € G} is a group under the operation (aH)(bH) = abH."

PROOF Our first task is to show that the operation is well defined; that
is, we must show that the correspondence defined above from G/H X
G/H into G/H is actually a function. To do this we assume that for
some elements a, a’, b, and b' from G, we have aH = a'H and bH =
b'H and verify that aHbH = a'Hb'H. That is, verify that abh = a'b'H.
(This shows that the definition of multiplication depends only on the
cosets and not on the coset representatives.) From aH = a’H and bH =
b'H , we have a' = ah, and b’ = bh, for some h,, h, in H, and therefore
a'b’H = ah,bh,H = ah,bH = ah,Hb = aHb = abH. Here we have made
multiple use of associativity, property 2 of the lemma in Chapter 7, and
the fact that H <\ G. The rest is easy: eH = H is the identity; a~'H is the
inverse of aH; and (aHbH)cH = (ab)HcH = (ab)cH = a(bc)H =
aH(bc)H = aH(bHcH). This proves that G/H is a group. |

Although it is merely a curiosity, we point out that the converse of
Theorem 9.2 is also true; that is, if the correspondence aHbH = abH
defines a group operation on the set of left cosets of H in G, then H is
normal in G.

The next few examples illustrate the factor group concept.

B EXAMPLE7 Let4Z = {0, =4, £8, .. .}. To construct Z/4Z, we first
must determine the left cosets of 4Z in Z. Consider the following four
cosets:

0+4Z =47 = {0, =4, 8, ...},
14+42=1{1,5,9,...; -3, -7, —11,...},

"The notation G/H was first used by C. Jordan.
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24+4Z=1{2,6,10,...; -2, —6,—10, ...},
34+4Z=1{3,7,11,...;—1,-5,-9,...}.

We claim that there are no others. For if k € Z, then k = 4¢ + r, where
0 = r < 4; and, therefore, k + 4Z = r + 4qg + 4Z = r + 4Z. Now that
we know the elements of the factor group, our next job is to determine
the structure of Z/4Z. Its Cayley table is

‘ 0+4Z 1+4Z 2+ 47 3+4Z
0+ 4Z 0+4z 1+4Z 2+47 3+4Z
1+4Z 1+4Z 2+4Z 3+4Z 0+4z
2+47 2+4Z 3+4Z 0+4z 1+4Z
3+4Z 3+4Z 0+4z 1+4Z 2+4Z

Clearly, then, Z/4Z =~ Z,. More generally, if for any n > 0 we let nZ =
{0, £n, £2n, £3n, ...}, then Z/nZ is isomorphic to Z . |

B EXAMPLE8 Let G = Z g and let H = (6) = {0, 6, 12}. Then G/H =
{0+H,1+H,2+H 3+ H 4+ H 5+ H}. To illustrate how the
group elements are combined, consider (5 + H) + (4 + H). This
should be one of the six elements listed in the set G/H. Well, (5 + H) +
4+H=5+4+H=9+H=3+6+H=3+ H, since H ab-
sorbs all multiples of 6. |

A few words of caution about notation are warranted here. When H
is a normal subgroup of G, the expression laH| has two possible inter-
pretations. One could be thinking of aH as a set of elements and laH|
as the size of the set; or, as is more often the case, one could be think-
ing of aH as a group element of the factor group G/H and laH| as the
order of the element aH in G/H. In Example 8, for instance, the set 3 +
H has size 3, since 3 + H = {3, 9, 15}. But the group element
3+ Hhasorder2,since(3+ H) + 3+ H) =6+ H=0+ H.Asis
usually the case when one notation has more than one meaning, the ap-
propriate interpretation will be clear from the context.

B EXAMPLE9 Let % = {R, R .}, and consider the factor group of
the dihedral group D, (see page 31 for the multiplication table for D,)

D /% = {3, Ry, H¥, DK}

The multiplication table for D,/J{ is given in Table 9.1. (Notice that
even though Ry H = D', we have used D in Table 9.1 for HH{ R, K
because D'H = DIH.)
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Table 9.1
% Ry X HY% DX
X % Ry H D
Ry X Rk % D H
HX HX DX H Ry, Jt
DX DX HX Ry, Jt J

D /3 provides a good opportunity to demonstrate how a factor
group of G is related to G itself. Suppose we arrange the heading of the
Cayley table for D, in such a way that elements from the same coset of
J{ are in adjacent columns (Table 9.2). Then, the multiplication table
for D, can be blocked off into boxes that are cosets of J, and the sub-
stitution that replaces a box containing the element x with the coset xJ{
yields the Cayley table for D, /.

For example, when we pass from D, to D,/J{, the box

H Vv
Vv H

in Table 9.2 becomes the element HJX in Table 9.1. Similarly, the box

D D
D" D

becomes the element DI, and so on.

Table 9.2

0 Rig Ry Ry H 14 D D’
R, R, Ry Ry, Ry H 4 D ’ D'
Rigp | Rigo R, Ry Ry, 14 H D D
Ry, Ry, Ry Ry R, D’ D ’ H v
Ryo | Rypo Ry, R, Ryg D D 4 H
H H 4 D D' R, Ryg Ry, Ry
v v H D' D Ry R, Ry Ry,
D D D' v H Ry Ry, R, R
D’ D' D H Vv Ry, Ry Ry R,
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In this way, one can see that the formation of a factor group G/H
causes a systematic collapse of the elements of G. In particular, all the
elements in the coset of H containing a collapse to the single group el-
ement aH in G/H.

B EXAMPLE 10 Consider the group A, as represented by Table 5.1
on page 107. (Here i denotes the permutation a.) Let H = {1, 2, 3, 4}.
Then the three cosets of H are H, 5SH = {5, 6,7, 8}, and 9H = {9,
10, 11, 12}. (In this case, rearrangement of the headings is unneces-
sary.) Blocking off the table for A, into boxes that are cosets of H
and replacing the boxes containing 1, 5, and 9 (see Table 9.3) with
the cosets 1H, SH, and 9H, we obtain the Cayley table for G/H given

in Table 9.4.
Table 9.3
1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 1 4 3 6 5 8 7 10 9 12 11
3 3 4 1 2 7 8 5 6 11 12 9 10
4 4 3 2 1 8 7 6 5 12 11 10 9
5 5 8 6 7 9 12 10 11 1 4 2 3
6 6 7 5 8 10 11 9 12 2 3 1 4
7 7 6 8 5 11 10 12 9 3 2 4 1
8 8 5 7 6 12 9 11 10 4 1 3 2
9 9 11 12 10 1 3 4 2 5 7 8 6
10 | 10 12 11 9 2 4 3 1 6 8 7 5
11 | 11 9 10 12 3 1 2 4 7 5 6 8
12 |12 10 9 11 4 2 1 3 8 6 5 7
Table 9.4
1H SH 9H
1H 1H 5H 9H
SH SH 9H 1H
9H 9H 1H 5SH

This procedure can be illustrated more vividly with colors. Let’s say
we had printed the elements of H in green, the elements of 5SH in red,
and the elements of 9H in blue. Then, in Table 9.3, each box would
consist of elements of a uniform color. We could then think of



184

Groups

the factor group as consisting of the three colors that define a group
table isomorphic to G/H.

Green Red Blue
Green Green Red Blue
Red Red Blue Green
Blue Blue Green Red

It is instructive to see what happens if we attempt the same proce-
dure with a group G and a subgroup H that is not normal in G—that is,
if we arrange the headings of the Cayley table so that the elements
from the same coset of H are in adjacent columns and attempt to block
off the table into boxes that are also cosets of H to produce a Cayley
table for the set of cosets. Say, for instance, we were to take G to be A,
and H = {1, 5, 9}. The cosets of H would be H, 2H = {2, 6, 10},
3H = {3,7,11}, and 4H = {4, 8, 12}. Then the first three rows of the
rearranged Cayley table for A, would be

1 5 9 2 6 10 3 7 11 4 8 12
1 1 5 9 2 6 10 3 7 11 4 12
5 9 1 12 4 6 10 7 11 3
9 9 1 5 11 3 7 12 4 8 10 6

But already we are in trouble, for blocking these off into 3 X 3 boxes
yields boxes that contain elements of different cosets. Hence, it is im-
possible to represent an entire box by a single element of the box in the
same way we could for boxes made from the cosets of a normal sub-
group. Had we printed the rearranged table in four colors with all
members of the same coset having the same color, we would see multi-
colored boxes rather than the uniformly colored boxes produced by a
normal subgroup. |

In Chapter 11, we will prove that every finite Abelian group is
isomorphic to a direct product of cyclic groups. In particular, an
Abelian group of order 8 is isomorphic to one of Z,, Z, © Z,, or Z, ©
Z, D Z,. In the next two examples, we examine Abelian factor groups
of order 8 and determine the isomorphism type of each.

B EXAMPLE 11 LetG=U32)={1,3,5,7,9,11,13,15,17, 19, 21,
23,25,27,29,31} and H = U (32) = {1, 17}. Then G/H is an Abelian
group of order 16/2 = 8. Which of the three Abelian groups of order 8
is it—Z,, Z, ® Z,, or Z, ® Z, D Z,? To answer this question, we need
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only determine the elements of G/H and their orders. Observe that the
eight cosets

1H={1,17}, 3H={3,19}, S5H=1{521}, 7H=1{7,23},
9H = {9,25}, 11H = {11,27}, 13H = {13,29), 15H = {15, 31}

are all distinct, so that they form the factor group G/H. Clearly,
(3H)> = 9H # H, and so 3H has order at least 4. Thus, G/H is not
Z,® Z, ® Z,. On the other hand, direct computations show that both
7H and 9H have order 2, so that G/H cannot be Z, either, since a cyclic
group of even order has exactly one element of order 2 (Theorem 4.4).
This proves that U(32)/U | (32) = Z, @ Z,, which (not so incidentally!)
is isomorphic to U(16). |

B EXAMPLE12 Let G = U(32)and K = {1, 15}. Then IG/K| = 8, and
we ask, which of the three Abelian groups of order 8 is G/K? Since
(3K)* = 81K = 17K # K, I3K| = 8. Thus, G/K ~ Z,. |

It is crucial to understand that when we factor out by a normal sub-
group H, what we are essentially doing is defining every element in H
to be the identity. Thus, in Example 9, we are making R, i = J{ the
identity. Likewise, R,, ;K = Ry R )l = Ry Ji. Similarly, in Example 7,
we are declaring any multiple of 4 to be 0 in the factor group Z/4Z. This
iswhy5 +4Z=1+4 +4Z =1+ 4Z, and so on. In Example 11, we
have 3H = 19H, since 19 = 3 - 17 in U(32) and going to the factor
group makes 17 the identity. Algebraists often refer to the process of

creating the factor group G/H as “killing” H.

Applications of Factor Groups

Why are factor groups important? Well, when G is finite and H # {e},
G/H is smaller than G, and its structure is usually less complicated than
that of G. At the same time, G/H simulates G in many ways. In fact, we
may think of a factor group of G as a less complicated approximation
of G (similar to using the rational number 3.14 for the irrational
number 7). What makes factor groups important is that one can often
deduce properties of G by examining the less complicated group G/H
instead. We illustrate this by giving another proof that A, has no sub-
group of order 6.

I EXAMPLE 13 A, Has No Subgroup of Order 6
The group A, of even permutations on the set {1, 2, 3, 4} has no sub-
group H of order 6. To see this, suppose that A, does have a subgroup H
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of order 6. By Exercise 7 in this chapter, we know that H <IA,. Thus,
the factor group A,/H exists and has order 2. Since the order of an
element divides the order of the group, we have for all « € A, that o
H = (aH)* = H. Thus, o € H for all « in A,. Referring to the main
diagonal of the group table for A, given in Table 5.1 on page 107, how-
ever, we observe that A, has nine different elements of the form o2, all
of which must belong to H, a subgroup of order 6. This is clearly
impossible, so a subgroup of order 6 cannot exist in A,.7 |

The next three theorems illustrate how knowledge of a factor group
of G reveals information about G itself.

I Theorem 9.3 The G/Z Theorem

Let G be a group and let Z(G) be the center of G. If GIZ(G) is cyclic,
then G is Abelian.

PROOF Let gZ(G) be a generator of the factor group G/Z(G), and let
a, b € G. Then there exist integers i and j such that

aZ(G) = (8Z(G)) = g'Z(G)
and
bZ(G) = (8Z(G))! = ¢'Z(G).

Thus, a = gix for some x in Z(G) and b = g/y for some y in Z(G). It fol-
lows then that

ab = (gx)(gly) = g'(xg/)y = g'(g’x)y

= (8'g)(xy) = (g/8H(x) = (g/y)(g'x) = ba. "

A few remarks about Theorem 9.3 are in order. First, our proof shows

that a better result is possible: If G/H is cyclic, where H is a subgroup of

Z(G), then G is Abelian. Second, in practice, it is the contrapositive of

the theorem that is most often used—that is, if G is non-Abelian, then

G/Z(G) is not cyclic. For example, it follows immediately from this

statement and Lagrange’s Theorem that a non-Abelian group of order

pq, where p and g are primes, must have a trivial center. Third, if G/Z(G)
is cyclic, it must be trivial.

THow often have I said to you that when you have eliminated the impossible, whatever
remains, however improbable, must be the truth. Sherlock Holmes, The Sign of Four
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B Theorem9.4 G/Z(G) = Inn(G)

For any group G, G/Z(G) is isomorphic to Inn(G).

PROOF Consider the correspondence from G/Z(G) to Inn(G) given by
T:gZ(G) - qbg [where, recall, d)g(x) = gxg~ ! for all x in G). First, we
show that T is well defined. To do this, we assume that
gZ(G) = hZ(G) and verify that ¢, = ¢,. (This shows that the image
of a coset of Z(G) depends only on the coset itself and not on the ele-
ment representing the coset.) From ¢gZ(G) = hZ(G), we have that
h~'g belongs to Z(G). Then, for all x in G, h™'gx = xh~'g. Thus,
gxg~' = hxh~! for all x in G, and, therefore, ¢, = ¢, Reversing this
argument shows that 7"is one-to-one, as well. Clearly, T is onto.

That T is operation-preserving follows directly from the fact that
d)gd)h = d)gh for all g and 4 in G. |

As an application of Theorems 9.3 and 9.4, we may easily determine
Inn(D,) without looking at Inn(D,)!

§ EXAMPLE 14 We know from Example 11 in Chapter 3 that
IZ(Dg)! = 2. Thus, ID,/Z(Dy)! = 6. So, by our classification of groups
of order 6 (Theorem 7.2), we know that Inn(Dy) is isomorphic to D,
or Z.. Now, if Inn(D,) were cyclic, then, by Theorem 9.4, D//Z(D,)
would be also. But then, Theorem 9.3 would tell us that D is Abelian.
So, Inn(D,) is isomorphic to D,. |

The next theorem demonstrates one of the most powerful proof tech-
niques available in the theory of finite groups—the combined use of
factor groups and induction.

I Theorem 9.5 Cauchy’s Theorem for Abelian Groups

Let G be a finite Abelian group and let p be a prime that divides the
order of G. Then G has an element of order p.

PROOF Clearly, this statement is true for the case in which G has
order 2. We prove the theorem by using the Second Principle of Math-
ematical Induction on |GI. That is, we assume that the statement is true
for all Abelian groups with fewer elements than G and use this assump-
tion to show that the statement is true for G as well. Certainly, G has
elements of prime order, for if IxI = m and m = gn, where ¢ is prime,
then Ix"l = g. So let x be an element of G of some prime order ¢, say. If
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q = p, we are finished; so assume that g # p. Since every subgroup of
an Abelian group is normal, we may construct the factor group G =
G/{x). Then G is Abelian and p divides IGl, since |G| = |Gl/g. By
induction, then, G has an element—call it y(x)—of order p. The con-
clusion now follows from Exercise 65. |

Internal Direct Products

As we have seen, the external direct product provides a way of putting
groups together into a larger group. It would be quite useful to be able
to reverse this process—that is, to be able to start with a large group
and break it down into a product of smaller groups. It is occasionally
possible to do this. To this end, suppose that H and K are subgroups of
some group G. We define the set HK = {hk | h € H, k € K}.

B EXAMPLE 15 In U(24) = {1, 5,7, 11, 13, 17, 19, 23}, let H =
{1,17} and K = {1, 13}. Then, HK = {1, 13,17,5},since 5 = 17 - 13
mod 24. |

B EXAMPLE 16 In S,, let H = {(1), (12)} and K = {(1), (13)}. Then,
HK = {(1), (13), (12), (12)(13)} = {(1), (13), (12), (132)}. 1

The student should be careful not to assume that the set HK is a sub-
group of G; in Example 15 it is, but in Example 16 it is not.

Definition Internal Direct Product of H and K
We say that G is the internal direct product of H and K and write
G = H X K if H and K are normal subgroups of G and

G=HK and HNK = {e}.

The wording of the phrase “internal direct product” is easy to justify.
We want to call G the internal direct product of H and K if H and K are
subgroups of G, and if G is naturally isomorphic to the external direct
product of H and K. One forms the internal direct product by starting
with a group G and then proceeding to find two subgroups H and K
within G such that G is isomorphic to the external direct product of H
and K. (The definition ensures that this is the case—see Theorem 9.6.)
On the other hand, one forms an external direct product by starting with
any two groups H and K, related or not, and proceeding to produce the
larger group H @ K. The difference between the two products is that the
internal direct product can be formed within G itself, using subgroups
of G and the operation of G, whereas the external direct product can be
formed with totally unrelated groups by creating a new set and a new
operation. (See Figures 9.1 and 9.2.)
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G

Figure 9.1 For the internal direct product,
H and K must be subgroups of the same group.

H K
Figure 9.2 For the external

direct product, H and K can
be any groups.

Perhaps the following analogy with integers will be useful in clari-
fying the distinction between the two products of groups discussed in
the preceding paragraph. Just as we may take any (finite) collection of
integers and form their product, we may also take any collection of
groups and form their external direct product. Conversely, just as we
may start with a particular integer and express it as a product of cer-
tain of its divisors, we may be able to start with a particular group and
factor it as an internal direct product of certain of its subgroups.

B EXAMPLE 17 In D, the dihedral group of order 12, let F denote
some reflection and let R, denote a rotation of k degrees. Then,

Dy = {Ry, Rys0 Ry Fs RyoFs RyyoF) X {Ry Ry )- N

120° 7 7240° 120 240

Students should be cautioned about the necessity of having all con-
ditions of the definition of internal direct product satisfied to ensure
that HK ~ H © K. For example, if we take

G =25, H = ((123)), and K = ((12)),

then G = HK, and H N K = {(1)}. But G is not isomorphic to H D K,
since, by Theorem 8.2, H @ K is cyclic, whereas $, 18 not. Note that K
is not normal.

A group G can also be the internal direct product of a collection of
subgroups.
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Definition Internal Direct ProductH X H, X - - - X H_
Let H, H,, ..., H, be a finite collection of normal subgroups of G. We
say that G is the internal direct product of H,, H,, . . ., H and write
G=H XH,X---XH,if

EH)

I.G=HH, --H,={hh, --h, |h, ;
2.(HH,---H)NH,_  ={ejfori=1,2,...,n— 1

This definition is somewhat more complicated than the one given for
two subgroups. The student may wonder about the motivation for it—
that is, why should we want the subgroups to be normal and why is it
desirable for each subgroup to be disjoint from the product of all previ-
ous ones? The reason is quite simple. We want the internal direct prod-
uct to be isomorphic to the external direct product. As the next theorem
shows, the conditions in the definition of internal direct product were
chosen to ensure that the two products are isomorphic.

i Theorem9.6 H X H, X :--XH ~H ©OH,D---OH,

If a group G is the internal direct product of a finite number of
subgroups H, H,, . . ., H,, then G is isomorphic to the external
direct productof H, H,, ..., H,.

n

PROOF We first show that the normality of the H’s together with the
second condition of the definition guarantees that 4’s from different
H_’s commute. For if &, € H, and hj €H, with i # j, then

(hhh O '€Hh '=H

A I i J

and

hi(h;h,"'h™") € hH, = H,.
Thus, hlhjhlflh]f1 EH N HJ = {e} (see Exercise 3), and, therefore,
hih]. = h].hi. We next claim that each member of G can be expressed
uniquely in the form 7,4, - - - h , where h, € H,. That there is at least one

such representation is the content of condition 1 of the definition. To
prove uniqueness, suppose that g = hh, - -+ h and g = h{h) - - h/,

where h. and hl’ belong to H fori = 1, ..., n. Then, using the fact that
the /’s from different H;’s commute, we can solve the equation
h1h2"'hn:h’1h,2"'h:1 (1)

for hr’z h”_1 to obtain

h’nhnil = (h1,)7]h1(h2’)71h2 T (h:z—l)ilhn—l‘
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But then
’ -1 _
hnhn €EHH,---H_,NH = {e},

so that h’nhn_l = e and, therefore, i/ = h . At this point, we can cancel
h, and K from opposite sides of the equal sign in Equation (1) and repeat
the preceding argument to obtain 2, _, = A’ ,. Continuing in this fash-
ion, we eventually have h, = h;. fori =1, ..., n. With our claim estab-
lished, we may now define a function ¢ from Gto H, O H, D - - - D H,
by ¢(h,hy - - h) = (h}, h,, ..., h). We leave to the reader the easy ver-
ification that ¢ is an isomorphism. |

The next theorem provides an important application of Theorem 9.6.
B Theorem 9.7 Classification of Groups of Order p*

Every group of order p?, where p is a prime, is isomorphic to Z, or
Z DZ.
P P

PROOF Let G be a group of order p?, where p is a prime. If G has an
element of order p*, then G is isomorphic to Z,. So, by Corollary 2 of
Lagrange’s Theorem, we may assume that every nonidentity element of
G has order p. First we show that for any element a, the subgroup (a) is
normal in G. If this is not the case then there is an element b in G such
that bab~ " is not in {(a). Then {(a) and {(bab~ ") are distinct subgroups of
order p. Since {(a) M (bab™ ') is a subgroup of both (a) and {(bab™ '),
we have that (a) M (bab™ ') = {e}. From this it follows that the distinct
left cosets of (bab~') are (bab™'), al{bab™'), a*(bab™"), . . . ,
a’~'(bab™'). Since b~! must lie in one of these cosets, we may write
b~ lin the form b~ = a'(bab™"Y = a'ba’b™" for some i and j. Cancel-
ing the b~ terms, we obtain e = a'bd’ and therefore b = a~'~/ € (a).
This contradiction verifies our assertion that every subgroup of the form
(a) is normal in G. To complete the proof, let x be any nonidentity ele-
ment in G and y be any element of G not in {x). Then, by comparing or-
ders and using Theorem 9.6, we see that G = (x) X (y) =Z, D Z,. i

As an immediate corollary of Theorem 9.7, we have the following
important fact.

I Corollary

If G is a group of order p?, where p is a prime, then G is Abelian.
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We mention in passing thatif G = H, @ H, D - - - © H , then G can
be expressed as the internal direct product of subgroups isomorphic to
H, H,, ..., H_.Forexample, if G = H @ H,, then G = H, X H,,
where H, = H, © {e} and H, = {e} © H,.

The topic of direct products is one in which notation and terminol-
ogy vary widely. Many authors use H X K to denote both the internal
direct product and the external direct product of H and K, making no
notational distinction between the two products. A few authors define
only the external direct product. Many people reserve the notation
H @ K for the situation where H and K are Abelian groups under addi-
tion and call it the direct sum of H and K. In fact, we will adopt this ter-
minology in the section on rings (Part 3), since rings are always
Abelian groups under addition.

The U-groups provide a convenient way to illustrate the preceding
ideas and to clarify the distinction between internal and external direct
products. It follows directly from Theorem 8.3 and its corollary and

Theorem 9.6 that if m = n,n, - - - n,, where ged(n, nj) = 1 fori # j, then

U(m) = Um/nl(m) X Um/nz(m) XX Um/nk(m)
~Un)DUmn) DD Un,).

Let us return to the examples given following Theorem 8.3.

U(105) = U(15 - 7) = U,(105) X U,(105)
= {1, 16, 31,46, 61,76} X {1,8,22,29,43,64, 71,92}
~ U(T) ® U(15),
U(105) = U5 - 21) = U(105) X U,,(105)
= {1, 11, 16, 26, 31, 41, 46, 61, 71, 76, 86, 101}
X {1,22,43, 64} = UQ1) & U(5),
U(105) = U3 - 5+ 7) = U,(105) X U,,(105) X U,((105)
= {1,71} X {1,22, 43,64} X {1, 16, 31, 46, 61, 76}
~ UQ3) @ U(5) @ U(T).
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Understanding is a kind of ecstasy.

10.
11.

12.
13.
14.

15.

16.

wen s

CARL SAGAN

. Let H = {(1), (12)}. Is H normal in §,?
. Prove that A is normalin §,.
. Show that if G is the internal direct product of H, H,, . .. , H and

i#Fjwithl=i=n,1=j=n,then H N H] = {e}. (This exercise
is referred to in this chapter.)

a,b,d € R, ad # 0}. Is H a normal sub-

group of GL(2, R)?

. Let G = GL(2, R) and let K be a subgroup of R*. Prove that H =

{A € Gl det A € K} is a normal subgroup of G.

. Viewing (3) and (12) as subgroups of Z, prove that (3)/(12) is iso-

morphic to Z,. Similarly, prove that (8)/(48) is isomorphic to Z.
Generalize to arbitrary integers k and n.

. Prove that if H has index 2 in G, then H is normal in G. (This exer-

cise is referred to in Chapters 24 and 25 and this chapter.)

. Let H = {(1), (12)(34)} in A,.

a. Show that H is not normal in A,.

b. Referring to the multiplication table for A, in Table 5.1 on page
107, show that, although ¢ H = «,H and o H = «, H, it is not
true that ¢gayH = a,a, H. Explain why this proves that the left
cosets of H do not form a group under coset multiplication.

. Let G = Z, ® U(4), H = ((2,3)), and K = (2, 1)). Show that G/H

is not isomorphic to G/K. (This shows that H ~ K does not imply
that G/H ~ G/K.)

Prove that a factor group of a cyclic group is cyclic.

Let H be a normal subgroup of G. If H and G/H are Abelian, must
G be Abelian?

Prove that a factor group of an Abelian group is Abelian.

If H is a subgroup of G and a, b € G, prove that (ab)H = a(bH).
What is the order of the element 14 + (8) in the factor group
Z,,/(8)?

What is the order of the element 4U,(105) in the factor group
U(105)/U4(105)?

Recall that Z(D,) = {R,, R 4,}. What is the order of the element
R, Z(Dy) in the factor group D/Z(Dy)?
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17.
18.
19.
20.
21.
22,
23.
24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.
35.

36.

Let G = Z/{20) and H = (4)/{20). List the elements of H and G/H.
What is the order of the factor group Z,/(15)?

What is the order of the factor group (Z,, ® U(10))X(2, 9))?
Construct the Cayley table for U(20)/U,(20).

Prove that an Abelian group of order 33 is cyclic.

Determine the order of (Z D Z)/{(2, 2)). Is the group cyclic?
Determine the order of (Z & Z)/{(4, 2)). Is the group cyclic?

The group (Z, ® Z,,){(2, 2)) is isomorphic to one of Z, Z, D Z,, or
Z,® Z, ® Z,. Determine which one by elimination.

Let G = U(32) and H = {1, 31}. The group G/H is isomorphic to
one of Z,, Z, ® Z,, or Z, ® Z, @ Z,. Determine which one by
elimination.

Let G be the group of quarternions given by the table in Exercise 4
of the Supplementary Exercises for Chapters 1-4 on page 91, and
let H be the subgroup {e, a*}. Is G/H isomorphic to Z, or Z, ® Z,?
Let G = U(16), H = {1, 15}, and K = {1, 9}. Are H and K iso-
morphic? Are G/H and G/K isomorphic?
LetG=2,DZ,H={0,0),(2,0),(0,2),(2,2)},and K = ((1, 2)).
Is G/H isomorphic to Z, or Z, © Z,? Is G/K isomorphic to Z, or
Z,DZ,?

Prove that A, © Z; has no subgroup of order 18.

Express U(165) as an internal direct product of proper subgroups
in four different ways.

Let R* denote the group of all nonzero real numbers under multi-
plication. Let R™ denote the group of positive real numbers under
multiplication. Prove that R* is the internal direct product of R*
and the subgroup {1, —1}.

Prove that D, cannot be expressed as an internal direct product of
two proper subgroups.

Let H and K be subgroups of a group G. If G = HK and g = hk,
where 4 € H and k € K, is there any relationship among Igl, 1Al,
and |klI? What if G = H X K?

InZ, let H = {5) and K = (7). Prove that Z = HK. Does Z = H X K?
Let G = {3%"10¢ | a, b, ¢ € Z} under multiplication and H =
{3%6°12¢ | a, b, ¢ € Z} under multiplication. Prove that G = (3) X
(6) X (10), whereas H # (3) X (6) X (12).

Determine all subgroups of R* (nonzero reals under multiplica-
tion) of index 2.
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38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.

50.

S1.
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Let G be a finite group and let H be a normal subgroup of G. Prove
that the order of the element gH in G/H must divide the order
of gin G.

Let H be a normal subgroup of G and let a belong to G. If the ele-
ment aH has order 3 in the group G/H and |H| =10, what are the
possibilities for the order of a?

If H is a normal subgroup of a group G, prove that C(H), the cen-
tralizer of H in G, is a normal subgroup of G.

An element is called a square if it can be expressed in the form b?
for some b. Suppose that G is an Abelian group and H is a sub-
group of G. If every element of H is a square and every element of
G/H is a square, prove that every element of G is a square. Does
your proof remain valid when “square” is replaced by “nth power,”
where 7 is any integer?

Show, by example, that in a factor group G/H it can happen that
aH = bH but lal # |bl. (Donotusea = eorb = e.)

Observe from the table for A, given in Table 5.1 on page 107 that
the subgroup given in Example 6 of this chapter is the only sub-
group of A, of order 4. Why does this imply that this subgroup
must be normal in A,? Generalize this to arbitrary finite groups.
Let p be a prime. Show that if H is a subgroup of a group of order
2p that is not normal, then H has order 2.

Show that D5 is isomorphic to Inn(D3).

Suppose that NV is a normal subgroup of a finite group G and H is a
subgroup of G. If |G/N| is prime, prove that H is contained in N or
that NH = G.

If Gisagroup and|G: Z(G)| = 4, prove that G/Z(G) = Z, D Z,.
Suppose that G is a non-Abelian group of order p?, where p is a
prime, and Z(G) # {e}. Prove that IZ(G)| = p.

If IGI = pgq, where p and ¢ are primes that are not necessarily dis-
tinct, prove that 1Z(G)l = 1 or pq.

Let N be a normal subgroup of G and let H be a subgroup of G. If
N is a subgroup of H, prove that H/N is a normal subgroup of G/N
if and only if H is a normal subgroup of G.

Let G be an Abelian group and let H be the subgroup consisting of
all elements of G that have finite order (See Exercise 18 in the
Supplementary Exercises for Chapters 1-4). Prove that every non-
identity element in G/H has infinite order.

Determine all subgroups of R* that have finite index.
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52.

53.

54.

55.

56.

57.

58.

Let G = {*1, =i, *j, ¥k}, where > = j> = k* = —1, —i = (—1)i,

1’=(=1?=1,ij= —ji=kjk=—kji=i,and ki = —ik = j.

a. Construct the Cayley table for G.

b. Show that H = {1, —1} <G.

c. Construct the Cayley table for G/H. Is G/H isomorphic to Z, or
Z,® Z,?

(The rules involving i, j, and k can be remembered by using the cir-

cle below.

Going clockwise, the product of two consecutive elements is the
third one. The same is true for going counterclockwise, except that
we obtain the negative of the third element.) This is the group of
quaternions that was given in another form in Exercise 4 in the
Supplementary Exercises for Chapters 1-4. It was invented by
William Hamilton in 1843. The quaternions are used to describe
rotations in three-dimensional space, and they are used in physics.
The quaternions can be used to extend the complex numbers in a
natural way.

InD,,letK = {R,, D} andletL = {R,, D, D', R 4,}. Show that K <]
L <1 D,, but that K is not normal in D,. (Normality is not transitive.
Compare Exercise 4, Supplementary Exercises for Chapters 5-8.)

Show that the intersection of two normal subgroups of G is a nor-
mal subgroup of G. Generalize.

Let N be a normal subgroup of G and let H be any subgroup of G.
Prove that NH is a subgroup of G. Give an example to show that
NH need not be a subgroup of G if neither N nor H is normal. (This
exercise is referred to in Chapter 24.)

If N and M are normal subgroups of G, prove that NM is also a nor-
mal subgroup of G.

Let N be a normal subgroup of a group G. If N is cyclic, prove that
every subgroup of N is also normal in G. (This exercise is referred
to in Chapter 24.)

Without looking at inner automorphisms of D , determine the num-
ber of such automorphisms.
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60.

61.

62.

63.
64.

65.

66.

67.

68.
69.
70.

71.
72.
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Let H be a normal subgroup of a finite group G and let x € G. If
gcd(Ixl, IG/HI) = 1, show that x € H. (This exercise is referred to
in Chapter 25.)

Let G be a group and let G’ be the subgroup of G generated by the

set S = {x"'yxy | x, y € G}. (See Exercise 3, Supplementary

Exercises for Chapters 5-8, for a more complete description of G'.)

. Prove that G’ is normal in G.

. Prove that G/G’ is Abelian.

If G/N is Abelian, prove that G' =< N.

. Prove that if H is a subgroup of G and G’ = H, then H is normal
in G.

If N is a normal subgroup of G and IG/N| = m, show that x € N

for all x in G.

an T

Suppose that a group G has a subgroup of order n. Prove that the
intersection of all subgroups of G of order 7 is a normal subgroup
of G.

If G is non-Abelian, show that Aut(G) is not cyclic.

Let IGl = p"m, where p is prime and gcd(p, m) = 1. Suppose that
H is a normal subgroup of G of order p”. If K is a subgroup of G of
order p¥, show that K C H.

Suppose that H is a normal subgroup of a finite group G. If G/H
has an element of order n, show that G has an element of order n.
Show, by example, that the assumption that G is finite is necessary.
(This exercise is referred to in this chapter.)

Recall that a subgroup N of a group G is called characteristic if
¢(N) = N for all automorphisms ¢ of G. If N is a characteristic
subgroup of G, show that N is a normal subgroup of G.

In D, let J{ = {R,, H}. Form an operation table for the cosets J,
DI, VI, and D"J. Is the result a group table? Does your answer
contradict Theorem 9.27

Show that S, has a unique subgroup of order 12.

If IGI = 30 and 1Z(G)| = 5, what is the structure of G/Z(G)?

If H is a normal subgroup of G and |HI = 2, prove that H is con-
tained in the center of G.

Prove that A cannot have a normal subgroup of order 2.

Let G be a finite group and let H be an odd-order subgroup of G of
index 2. Show that the product of all the elements of G (taken in
any order) cannot belong to H.
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73. Let G be a group and p a prime. Suppose that H = {g”|g € G}isa
subgroup of G. Show that H is normal and that every nonidentity
element of G/H has order p.

74. Suppose that H is a normal subgroup of G. If |H| = 4 and gH has
order 3 in G/H, find a subgroup of order 12 in G.

75. Let G be a group and H a subgroup of G of index 2. Show that H
contains every element of G of odd order.
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.edu/~jgallian/quotient_structures.pdf
Tony Rothman, “Genius and Biographers: The Fictionalization of Evariste
Galois,” The American Mathematical Monthly 89 (1982): 84—106.

The author convincingly argues that three of the most widely read
accounts of Galois’ life are highly fictitious.

Paul F. Zweifel, “Generalized Diatonic and Pentatonic Scales: A Group-
theoretic Approach,” Perspectives of New Music, 34 (1996): 140-161.

The author discusses how group-theoretic notions such as subgroups,
cosets, factor groups, and isomorphisms of Z,, and Z, relate to musical
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http://www.d.umn.edu/~jgallian/quotient_structures.pdf
http://www.d.umn.edu/~jgallian/quotient_structures.pdf

Evariste Galois

Galois at seventeen was making discover-
ies of epochal significance in the theory of
equations, discoveries whose conse-
quences are not yet exhausted after more
than a century.

E. T. BELL, Men of Mathematics

This French stamp was issued as part of
the 1984 “Celebrity Series” in support of
the Red Cross Fund.

EVARISTE GALOIS (pronounced gal-WAH)
was born on October 25, 1811, near Paris.
Although he had mastered the works of
Legendre and Lagrange at age 15, Galois
twice failed his entrance examination to
I’Ecole Polytechnique. He did not know
some basic mathematics, and he did mathe-
matics almost entirely in his head, to the
annoyance of the examiner.

At 18, Galois wrote his important research
on the theory of equations and submitted it to
the French Academy of Sciences for publica-
tion. The paper was given to Cauchy for ref-
ereeing. Cauchy, impressed by the paper,
agreed to present it to the academy, but he
never did. At the age of 19, Galois entered a

paper of the highest quality in the competi-
tion for the Grand Prize in Mathematics,
given by the French Academy of Sciences.
The paper was given to Fourier, who died
shortly thereafter. Galois’s paper was never
seen again.

Galois spent most of the last year and a
half of his life in prison for revolutionary po-
litical offenses. While in prison, he attempted
suicide and prophesied that he would die in a
duel. On May 30, 1832, Galois was shot in a
duel and died the next day at the age of 20.

Among the many concepts introduced by
Galois are normal subgroups, isomorphisms,
simple groups, finite fields, and Galois theory.
His work provided a method for disposing
of several famous constructability problems,
such as trisecting an arbitrary angle and dou-
bling a cube. Galois’s entire collected works
fill only 60 pages.

To find more information about Galois,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Group

Homomorphisms

All modern theories of nuclear and electromagnetic interactions are based
on group theory.

ANDREW WATSON, New Scientist

Definition and Examples

200

In this chapter, we consider one of the most fundamental ideas of
algebra—homomorphisms. The term homomorphism comes from the
Greek words homo, “like,” and morphe, “form.” We will see that a ho-
momorphism is a natural generalization of an isomorphism and that
there is an intimate connection between factor groups of a group and
homomorphisms of a group. The concept of group homomorphisms
was introduced by Camille Jordan in 1870, in his influential book
Traité des Substitutions.

Definition Group Homomorphism

A homomorphism ¢ from a group G to a group G is a mapping
from G into G that preserves the group operation; that is, ¢p(ab) =
d(a)p(b) for all a, b in G.

Before giving examples and stating numerous properties of
homomorphisms, it is convenient to introduce an important subgroup
that is intimately related to the image of a homomorphism. (See
property 4 of Theorem 10.1.)

Definition Kernel of a Homomorphism

The kernel of a homomorphism ¢ from a group G to a group with
identity e is the set {x € G | ¢(x) = e}. The kernel of ¢ is denoted by
Ker ¢.
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# EXAMPLE 1 Any isomorphism is a homomorphism that is also onto
and one-to-one. The kernel of an isomorphism is the trivial subgroup. 1

I EXAMPLE 2 Let R* be the group of nonzero real numbers under
multiplication. Then the determinant mapping A — det A is a
homomorphism from GL(2, R) to R*. The kernel of the determinant
mapping is SL(2, R). |

# EXAMPLE 3 The mapping ¢ from R* to R*, defined by ¢(x) = Ixl,
is a homomorphism with Ker ¢ = {1, —1}. |

# EXAMPLE 4 Let R[x] denote the group of all polynomials with real
coefficients under addition. For any fin R[x], let f* denote the deriva-
tive of f. Then the mapping f— f" is a homomorphism from R[x] to it-
self. The kernel of the derivative mapping is the set of all constant poly-
nomials. |

B EXAMPLE 5 The mapping ¢ from Z to Z , defined by ¢p(m) = m
mod 7, is a homomorphism (see Exercise 11 in Chapter 0). The kernel
of this mapping is (n). 1

B EXAMPLE 6 The mapping ¢(x) = x*> from R*, the nonzero real
numbers under multiplication, to itself is a homomorphism, since
d(ab) = (ab)* = a*b* = Pp(a)p(b) for all a and b in R*. (See Exercise 5.)
The kernelis {1,-1}. |

B EXAMPLE 7 The mapping ¢(x) = x> from R, the real numbers
under addition, to itself is not a homomorphism, since ¢(a + b) =
(a + b)> = a> + 2ab + b?, whereas ¢(a) + ¢(b) = a’> + b |

When defining a homomorphism from a group in which there are
several ways to represent the elements, caution must be exercised to en-
sure that the correspondence is a function. (The term well-defined is
often used in this context.) For example, since 3(x + y) = 3x + 3y in
Z, one might believe that the correspondence x + (3) — 3x from Z/(3) to
Z, is a homomorphism. But it is not a function, since 0 + (3) = 3 +
(3)inZ/(3)but3 -0+ 3-3inZ.

For students who have had linear algebra, we remark that every
linear transformation is a group homomorphism and the nullspace is
the same as the kernel. An invertible linear transformation is a group
isomorphism.
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Properties of Homomorphisms

I Theorem 10.1 Properties of Elements Under Homomorphisms

Let ¢ be a homomorphism from a group G to a group G and let g be
an element of G. Then
1. ¢ carries the identity of G to the identity of G.
. d(g") = (Pp(g)" forallnin Z.
. If'|gl is finite, then |¢(g)| divides 1g|.
. Ker ¢ is a subgroup of G.
. ¢(a) = ¢(b) if and only if aKer ¢ = bKer ¢.
- Ifp(@) =g, thend™'(g") = {(x EG | p(x) = g'} = gKer ¢.

AU B Wi

PROOF The proofs of properties 1 and 2 are identical to the proofs of
properties 1 and 2 of isomorphisms in Theorem 6.2. To prove property 3,
notice that properties 1 and 2 together with g” = e imply that e =
d(e) = d(g") = (Pp(g))". So, by Corollary 2 to Theorem 4.1, we have
lp(g)! divides n.

By property 1 we know that Ker ¢ is not empty. So, to prove prop-
erty 4, we assume that a, b € Ker ¢ and show that ab™! € Ker ¢.
Since ¢(a) = e and p(b) = e, we have Pp(ab™!) = Pp(a)p(b™") =
d(a)(p(b) ' =ee ! =e.So,ab™ ! € Ker ¢.

To prove property 5, first assume that ¢(a) = ¢(b). Then
e = (pb) 'Pp(a) = (b~ "p(a) = d(b~'a), so that b~ 'aE€ Ker ¢.
It now follows from property 5 of the lemma in Chapter 7 that
bKer ¢ = aKer ¢. Reversing this argument completes the proof.

To prove property 6, we must show that ¢~ '(g') C gKer ¢ and that
gKer ¢ C ¢ '(g’). For the first inclusion, let x € ¢ '(g’), so that
¢(x) = g'. Then ¢(g) = ¢(x) and by property 5 we have gKer ¢ =
xKer ¢ and therefore x € gKer ¢. This completes the proof that
¢ (g") C gKer ¢. To prove that gKer ¢ C ¢~ '(g"), suppose that k €
Ker ¢. Then ¢p(gk) = p(g)p(k) = g'e = g'. Thus, by definition, gk €
¢7'(g"). i

Since homomorphisms preserve the group operation, it should not be
a surprise that they preserve many group properties.
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I Theorem 10.2 Properties of Subgroups Under Homomorphisms

Let ¢ be a homomorphism from a group G to a group G and let H be
a subgroup of G. Then
1. ¢(H) = {¢(h) | h € H} is a subgroup of G.
. If H is cyclic, then ¢(H) is cyclic.
[ H is Abelian, then ¢(H) is Abelian.
If H is normal in G, then ¢(H) is normal in ¢(G).
. If IKer ¢| = n, then ¢ is an n-to-1 mapping from G onto ¢(G).
If |H| = n, then |¢p(H)| divides n.
. IfK is a subgroup of G, then ¢ '(K) = {k € G | p(k) E K}
is a subgroup of G.
8. If K is a normal subgroup of G, then ¢~ (K) = {k € G |
¢(k) € K} is a normal subgroup of G.
9. If ¢ is onto and Ker ¢ = {e}, then ¢ is an isomorphism
from GtoG.

=N I O

PROOF First note that the proofs of properties 1, 2, and 3 are identi-
cal to the proofs of properties 4, 3, and 2, respectively, of Theorem
6.3, since those proofs use only the fact that an isomorphism is an
operation-preserving mapping.

To prove property 4, let ¢p(h) € ¢(H) and ¢(g) € H(G). Then
d(@)p(M)P(2) ' = P(ghg™") € ¢(H), since H is normal in G.

Property 5 follows directly from property 6 of Theorem 10.1 and the
fact that all cosets of Ker ¢ = ¢~!(e) have the same number of elements.

To prove property 6, let ¢, denote the restriction of ¢ to the
elements of H. Then ¢, is a homomorphism from H onto ¢(H).
Suppose [Ker ¢,| = 1. Then, by property 5, ¢,, is a t-to-1 mapping. So,
lp(H)It = |HI.

To prove property 7, we use the One-Step Subgroup Test. Clearly,
e € ¢~!(K), so that ¢~ !(K) is not empty. Let k, k, € ¢~ '(K). Then,
by the definition of ¢~ !(K), we know that o(k,), ¢(k,) € K. Thus,
$(k,)"' € K as well and ¢(k k, ') = ¢(k,)p(k,)~" € K. So, by definition
of ¢~'(K), we have k k, ' € ¢~ '(K).

To prove property 8, we use the normality test given in Theorem 9.1.
Note that every element in x¢p~'(K)x ™! has the form xkx™!, where ¢ (k) €
K. Thus, since K is normal in G, ¢(xkx™ ') = px)pk)(p(x))~' € K,
and, therefore, xkx™ ! € ¢~ 1(K).

Finally, property 9 follows directly from property 5. |
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A few remarks about Theorems 10.1 and 10.2 are in order. Students
should remember the various properties of these theorems in words. For
example, properties 2 and 3 of Theorem 10.2 say that the homomorphic
image of a cyclic group is cyclic and the homomorphic image of an
Abelian group is Abelian. Property 4 of Theorem 10.2 says that the ho-
momorphic image of a normal subgroup of G is normal in the image of
G. Property 5 of Theorem 10.2 says that if ¢ is a homomorphism from
G to G, then every element of G that gets “hit” by ¢ gets hit the same
number of times as does the identity. The set ¢~ !(g’) defined in prop-
erty 6 of Theorem 10.1 is called the inverse image of g’ (or the pullback
of g’). Note that the inverse image of an element is a coset of the kernel
and that every element in that coset has the same image. Similarly, the
set ¢~ '(K) defined in property 7 of Theorem 10.2 is called the inverse
image of K (or the pullback of K).

Property 6 of Theorem 10.1 is reminiscent of something from linear
algebra and differential equations. Recall that if x is a particular solu-
tion to a system of linear equations and S is the entire solution set of the
corresponding homogeneous system of linear equations, then x + S is
the entire solution set of the nonhomogeneous system. In reality, this
statement is just a special case of property 6. Properties 1 and 6 of
Theorem 10.1 and property 5 of Theorem 10.2 are pictorially repre-
sented in Figure 10.1. -

The special case of property 8 of Theorem 10.2, where K = {e}, is
of such importance that we single it out.

I Corollary Kernels Are Normal

Let ¢ be a group homomorphism from G to G. Then Ker ¢ is a nor-
mal subgroup of G.

The next two examples illustrate several properties of Theorems 10.1
and 10.2.

B EXAMPLE 8 Consider the mapping ¢ from C* to C* given by
$(x) = x* Since (xy)* = x** ¢ is a homomorphism. Clearly,
Ker ¢ = {x | x* =1} = {1, —1, i, —i}. So, by property 5 of Theorem
10.2, we know that ¢ is a 4-to-1 mapping. Now let’s find all elements
that map to, say, 2. Certainly, qb(% ) = 2. Then, by property 6 of
Theorem 10.1, the set of all elements that map to 2 is /2 Ker ¢ =
{2, V2,3¥2i, —V2i}.



10 | Group Homomorphisms 205

Kerg=97'(e) gKer ¢ =¢~'(g")

Figure 10.1

Finally, we verify a specific instance of property 3 of Theorem 10.1
and of property 2 and property 6 of Theorem 10.2. Let H =
(cos 30° + i sin 30°). It follows from DeMoivre’s Theorem (Example 7
in Chapter 0) that |Hl = 12, ¢(H) = (cos 120° + i sin 120°), and
lp(H)I = 3. |

B EXAMPLE 9 Define ¢:Z,, — Z , by ¢(x) = 3x. To verify that ¢ is a
homomorphism, we observe that in Z ,, 3(a + b) = 3a + 3b (since the
group operation is addition modulo 12). Direct calculations show that
Ker ¢ = {0, 4, 8}. Thus, we know from property 5 of Theorem 10.2 that
¢ is a 3-to-1 mapping. Since ¢$(2) = 6, we have by property 6 of
Theorem 10.1 that ¢~ 1(6) = 2 + Ker ¢ = {2, 6, 10}. Notice also that (2)
is cyclic and ¢((2)) = {0, 6} is cyclic. Moreover, 12| = 6 and 1$(2)| =
161 = 2, so Ip(2)l divides 12 in agreement with property 3 of Theorem
10.1. Letting K= {0, 6}, we see that the subgroup ¢~ '(K) = {0, 2, 4, 6,
8, 10}. This verifies property 7 of Theorem 10.2 in this particular case. il

The next example illustrates how one can easily determine all homo-
morphisms from a cyclic group to a cyclic group.

I EXAMPLE 10 We determine all homomorphisms from Z, to Z,,.
By property 2 of Theorem 10.1, such a homomorphism is completely
specified by the image of 1. That is, if 1 maps to a, then x maps to xa.
Lagrange’s Theorem and property 3 of Theorem 10.1 require that lal di-
vide both 12 and 30. So, lal = 1, 2, 3, or 6. Thus, a = 0, 15, 10, 20,
5, or 25. This gives us a list of candidates for the homomorphisms. That
each of these six possibilities yields an operation-preserving, well-
defined function can now be verified by direct calculations. [Note that
gcd(12, 30) = 6. This is not a coincidence!] |
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B EXAMPLE 11 The mapping from S, to Z, that takes an even permu-
tation to 0 and an odd permutation to 1 is a homomorphism. Figure 10.2
illustrates the telescoping nature of the mapping. |

-’-‘I.A
A-.."‘v

<7
\Y4

AN

Y X
N

Figure 10.2 Homomorphism from S, to Z,.

The First Isomorphism Theorem

In Chapter 9, we showed that for a group G and a normal subgroup H,
we could arrange the Cayley table of G into boxes that represented the
cosets of H in G, and that these boxes then became a Cayley table for
G/H. The next theorem shows that for any homomorphism ¢ of G and
the normal subgroup Ker ¢, the same process produces a Cayley table
isomorphic to the homomorphic image of G. Thus, homomorphisms,
like factor groups, cause a systematic collapse of a group to a simpler
but closely related group. This can be likened to viewing a group
through the reverse end of a telescope—the general features of the
group are present, but the apparent size is diminished. The important
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relationship between homomorphisms and factor groups given below is
often called the Fundamental Theorem of Group Homomorphisms.

§ Theorem 10.3 First Isomorphism Theorem (Jordan, 1870)

Let ¢ be a group homomorphism from G to G. Then the mapping
from G/Ker ¢ to ¢(G), given by gKer ¢ — ¢(g), is an isomorphism.
In symbols, G/Ker ¢ ~ $(G).

PROOF Let us use ¢ to denote the correspondence gKer¢ — ¢(g).
That ¢ is well defined (that is, the correspondence is independent of
the particular coset representative chosen) and one-to-one follows
directly from property 5 of Theorem 10.1. To show that ¢ is operation-
preserving, observe that y(xKer ¢ yKer ¢p) = (xyKer ¢) = d(xy) =
(x) d(y) = P(xKer p)ip(yKer ). i

The next corollary follows directly from Theorem 10.3, property 1 of
Theorem 10.2, and Lagrange’s Theorem.

1 Corollary

If ¢ is a homomorphism from a finite group G to G, then |¢(G)|
divides |G| and |G .

# EXAMPLE 10 To illustrate Theorem 10.3 and its proof, consider the
homomorphism ¢ from D, to itself given by

R R 180 R9O R27O H 14 D D’

VSN N N

R, H R, Vv

Then Ker ¢ = {R, R4}, and the mapping ¢ in Theorem 10.3 is
RKer ¢ — R, RyKer ¢ — H, HKer ¢ — R, DKer ¢ — V. It is
straight-forward to verify that the mapping s is an isomorphism. |

Mathematicians often give a pictorial representation of Theorem
10.3, as follows:

4

CG— 96

N
G/Ker ¢
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where y:G — G/Ker ¢ is defined as y(g) = gKer ¢. The mapping y
is called the natural mapping from G to G/Ker ¢. Our proof of
Theorem 10.3 shows that )y = ¢. In this case, one says that the pre-
ceding diagram is commutative.

As a consequence of Theorem 10.3, we see that all homomorphic im-
ages of G can be determined using G. We may simply consider the various
factor groups of G. For example, we know that the homomorphic image of
an Abelian group is Abelian because the factor group of an Abelian group
is Abelian. We know that the number of homomorphic images of a cyclic
group G of order n is the number of divisors of 7, since there is exactly one
subgroup of G (and therefore one factor group of G) for each divisor of n.
(Be careful: The number of homomorphisms of a cyclic group of order n
need not be the same as the number of divisors of #, since different homo-
morphisms can have the same image.)

An appreciation for Theorem 10.3 can be gained by looking at a few
examples.

B EXAMPLE 13 Z/(N)~Z,,
Consider the mapping from Z to Z defined in Example 5. Clearly, its
kernel is (n). So, by Theorem 10.3, ZKn) ~ Z . [ |

I EXAMPLE 14 The Wrapping Function

Recall the wrapping function W from trigonometry. The real number
line is wrapped around a unit circle in the plane centered at (0, 0) with
the number 0 on the number line at the point (1, 0), the positive reals
in the counterclockwise direction and the negative reals in the
clockwise direction (see Figure 10.3). The function W assigns to each
real number a the point a radians from (1, 0) on the circle. This map-
ping is a homomorphism from the group R under addition onto the
circle group (the group of complex numbers of magnitude 1 under
multiplication). Indeed, it follows from elementary facts of trigonom-
etry that W(x) = cos x + i sinx and W(x + y) = W(x)W(y). Since W s
periodic of period 27, Ker W = (27). So, from the First [somorphism
Theorem, we see that R/(27) is isomorphic to the circle group. |

W(2)

W(l)

W(3) / \(A W(0)

Q//
W(=1)

Figure 10.3
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Our next example is a theorem that is used repeatedly in Chapters 24
and 25.

I EXAMPLE 15 The N/C Theorem

Let H be a subgroup of a group G. Recall that the normalizer of H in
G is N(H) = {x € G | xHx ! = H} and the centralizer of H in G is
C(H) = {x € G | xhx~' = hfor all hin H}. Consider the mapping from
N(H) to Aut(H) given by g — ng, where q,’)g is the inner automorphism of
H induced by g [that is, d)g(h) = ghg~! for all i in H]. This mapping is a
homomorphism with kernel C(H). So, by Theorem 10.3, N(H)/C(H) is
isomorphic to a subgroup of Aut(H). |

As an application of the N/C Theorem, we will show that every
group of order 35 is cyclic.

B EXAMPLE 16 Let G be a group of order 35. By Lagrange’s
Theorem, every nonidentity element of G has order 5, 7, or 35. If
some element has order 35, G is cyclic. So we may assume that all
nonidentity elements have order 5 or 7. However, not all such
elements can have order 5, since elements of order 5 come 4 at a time
(f IxI = 5, then Ix*l = Ix’] = Ix* = 5) and 4 does not divide 34.
Similarly, since 6 does not divide 34, not all nonidentity elements can
have order 7. So, G has elements of order 7 and order 5. Since G has
an element of order 7, it has a subgroup of order 7. Let us call it H. In
fact, H is the only subgroup of G of order 7, for if K is another sub-
group of G of order 7, we have by Exercise 7 of the Supplementary
Exercises for Chapters 5-8 that IHK| = |[HIIKI/IH N K| =7 -7/1 = 49.
But, of course, this is impossible in a group of order 35. Since for every
ain G, aHa ' is also a subgroup of G of order 7 (see Exercise 1 of the
Supplementary Exercises for Chapters 1-4), we must have aHa™' = H.
So, N(H) = G. Since H has prime order, it is cyclic and therefore
Abelian. In particular, C(H) contains H. So, 7 divides |C(H)| and
IC(H)! divides 35. It follows, then, that C(H) = G or C(H) = H. If
C(H) = G, then we may obtain an element x of order 35 by letting
x = hk, where h is a nonidentity element of H and k has order 5. On the
other hand, if C(H) = H, then IC(H)| = 7 and IN(H)/C(H)| = 35/7 = 5.
However, 5 does not divide |Aut(H)l = |Aut(Z,)l = 6. This contradic-
tion shows that G is cyclic. |

The corollary of Theorem 10.2 says that the kernel of every homo-
morphism of a group is a normal subgroup of the group. We conclude
this chapter by verifying that the converse of this statement is also true.



210 Groups

1 Theorem 10.4 Normal Subgroups Are Kernels

Every normal subgroup of a group G is the kernel of a homomor-
phism of G. In particular, a normal subgroup N is the kernel
of the mapping g — gN from G to GIN.

PROOF Define y:G — G/N by y(g) = gN. (This mapping is called the
natural homomorphism from G to G/N.) Then, y(xy) = (xy)N = xNyN =
v(x)y(y). Moreover, g € Ker v if and only if gN = y(g) = N, which is
true if and only if g € N (see property 2 of the lemma in Chapter 7). 1

Examples 13, 14, and 15 illustrate the utility of the First [Isomorphism
Theorem. But what about homomorphisms in general? Why would one
care to study a homomorphism of a group? The answer is that, just as
was the case with factor groups of a group, homomorphic images of a
group tell us some of the properties of the original group. One measure
of the likeness of a group and its homomorphic image is the size of the
kernel. If the kernel of the homomorphism of group G is the identity,
then the image of G tells us everything (group theoretically) about G (the
two being isomorphic). On the other hand, if the kernel of the homomor-
phism is G itself, then the image tells us nothing about G. Between these
two extremes, some information about G is preserved and some is lost.
The utility of a particular homomorphism lies in its ability to preserve
the group properties we want, while losing some inessential ones. In this
way, we have replaced G by a group less complicated (and therefore eas-
ier to study) than G; but, in the process, we have saved enough informa-
tion to answer questions that we have about G itself. For example, if G is
a group of order 60 and G has a homomorphic image of order 12 that is
cyclic, then we know from properties 5, 7, and 8 of Theorem 10.2 that G
has normal subgroups of orders 5, 10, 15, 20, 30, and 60. To illustrate
further, suppose we are asked to find an infinite group that is the union of
three proper subgroups. Instead of attempting to do this directly, we first
make the problem easier by finding a finite group that is the union
of three proper subgroups. Observing that Z, © Z, is the union of H, =
(1,0), H, =0, 1), and H, = (1, 1), we have found our finite group. Now
all we need do is think of an infinite group that has Z, ® Z, as a homo-
morphic image and pull back H,, H,, and H,, and our original problem is
solved. Clearly, the mapping from Z, ® Z, @ Z onto Z, @ Z, given by
¢(a, b, ¢) = (a, b) is such a mapping, and therefore Z, © Z, @ Z is the
union of ¢~ '(H,) = {(a,0,¢c,) 1 a €EZ,,c €EZ}, ¢ '(H) = {(0,b,¢) | b
€Z,cEZ},and¢p '(H) = {(a,a,c) la EZ,c EZ}.
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Although an isomorphism is a special case of a homomorphism, the
two concepts have entirely different roles. Whereas isomorphisms
allow us to look at a group in an alternative way, homomorphisms act as
investigative tools. The following analogy between homomorphisms
and photography may be instructive.” A photograph of a person cannot
tell us the person’s exact height, weight, or age. Nevertheless, we may
be able to decide from a photograph whether the person is tall or short,
heavy or thin, old or young, male or female. In the same way, a homo-
morphic image of a group gives us some information about the group.

In certain branches of group theory, and especially in physics and
chemistry, one often wants to know all homomorphic images of a group
that are matrix groups over the complex numbers (these are called group
representations). Here, we may carry our analogy with photography one
step further by saying that this is like wanting photographs of a person
from many different angles (front view, profile, head-to-toe view, close-
up, etc.), as well as x-rays! Just as this composite information from the
photographs reveals much about the person, several homomorphic im-
ages of a group reveal much about the group.

The greater the difficulty, the more glory in surmounting it. Skillful pilots
gain their reputation from storms and tempests.

EPICURUS

Prove that the mapping given in Example 2 is a homomorphism.
Prove that the mapping given in Example 3 is a homomorphism.
Prove that the mapping given in Example 4 is a homomorphism.
Prove that the mapping given in Example 11 is a homomorphism.

Nk wbd =

Let R* be the group of nonzero real numbers under multiplication,
and let r be a positive integer. Show that the mapping that takes x
to x" is a homomorphism from R* to R* and determine the kernel.
Which values of r yield an isomorphism?

6. Let G be the group of all polynomials with real coefficients under ad-
dition. For each fin G, let [f denote the antiderivative of f that passes
through the point (0, 0). Show that the mapping f— [ffrom G to G is
a homomorphism. What is the kernel of this mapping? Is this map-
ping a homomorphism if [f denotes the antiderivative of f that passes
through (0, 1)?

TAll perception of truth is the detection of an analogy. Henry David Thoreau, Journal.
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7.

10.

11.
12.
13.
14.

15.

16.
17.
18.

19.

20.

21.

If ¢ is a homomorphism from G to H and o is a homomorphism
from H to K, show that o is a homomorphism from G to K. How
are Ker ¢ and Ker o¢ related? If ¢ and o are onto and G is finite,

describe [Ker o¢: Ker ¢] in terms of |H| and IKI.

. Let G be a group of permutations. For each o in G, define

{+1 if o is an even permutation,

sgn(o) = e .

—1 if o is an odd permutation.

Prove that sgn is a homomorphism from G to the multiplicative
group {+1, —1}. What is the kernel? Why does this homomor-
phism allow you to conclude that A, is a normal subgroup of S, of
index 2?

. Prove that the mapping from G © H to G given by (g, h) — g is a

homomorphism. What is the kernel? This mapping is called the
projection of G & H onto G.

Let G be a subgroup of some dihedral group. For each x in G, define

+1 1if xis a rotation,

d(x) = {

—1 if x is a reflection.

Prove that ¢ is a homomorphism from G to the multiplicative
group {+1,— 1}. What is the kernel?

Prove that (Z® Z)/({(a, 0)) X {(0, b))) is isomorphic to Z D Z,.
Suppose that & is a divisor of n. Prove that Z /(k) ~ Z,.
Prove that (A & B)/(A © {e}) ~B.

Explain why the correspondence x — 3x from Z, to Z,, is not a ho-
momorphism.

Suppose that ¢ is a homomorphism from Z, to Z, and Ker ¢ =
{0, 10, 20}. If ¢p(23) = 9, determine all elements that map to 9.

Prove that there is no homomorphism from Z, © Z, onto Z, © Z,.
Prove that there is no homomorphism from Z,, © Z, onto Z, ® Z,.
Can there be a homomorphism from Z, © Z, onto Z,? Can there be
a homomorphism from Z,; onto Z, © Z,? Explain your answers.
Suppose that there is a homomorphism ¢ from Z,, to some group
and that ¢ is not one-to-one. Determine ¢.

How many homomorphisms are there from Z,, onto Z,? How many
are there to Z,?

If ¢ is a homomorphism from Z,, onto a group of order 5, deter-
mine the kernel of ¢.
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24,
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26.
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31.

32,

33.

34.

35.

36.

10 | Group Homomorphisms 213

Suppose that ¢ is a homomorphism from a finite group G onto G
and that G has an element of order 8. Prove that G has an element
of order 8. Generalize.

Suppose that ¢ is a homomorphism from Z, to a group of order 24.

a. Determine the possible homomorphic images.

b. For each image in part a, determine the corresponding kernel of ¢.

Suppose that ¢: Z, — Z, 5 is a group homomorphism with ¢(7) = 6.

a. Determine ¢(x).

b. Determine the image of ¢.

¢. Determine the kernel of ¢.

d. Determine ¢~ !'(3). That is, determine the set of all elements
that map to 3.

How many homomorphisms are there from Z,, onto Z ,? How

many are there to Z,?

Determine all homomorphisms from Z, to Z, © Z,.

Determine all homomorphisms from Z to itself.

Suppose that ¢ is a homomorphism from S, onto Z,. Determine

Ker ¢. Determine all homomorphisms from S, to Z,.

Suppose that there is a homomorphism from a finite group G onto

Z,,- Prove that G has normal subgroups of indexes 2 and 5.

Suppose that ¢ is a homomorphism from a group G onto Z, ® Z,

and that the kernel of ¢ has order 5. Explain why G must have nor-

mal subgroups of orders 5, 10, 15, 20, 30, and 60.

Suppose that ¢ is a homomorphism from U(30) to U(30) and

that Ker ¢ = {1, 11}. If ¢(7) = 7, find all elements of U(30) that

map to 7.

Find a homomorphism ¢ from U(30) to U(30) with kernel {1, 11}

and ¢(7) = 7.

Suppose that ¢ is a homomorphism from U(40) to U(40) and that

Ker ¢ = {1,9, 17,33}. If ¢(11) = 11, find all elements of U(40)

that map to 11.

Find a homomorphism ¢ from U(40) to U(40) with kernel {1, 9,

17,33} and ¢(11) = 11.

Prove that the mapping ¢: Z® Z — Z given by (a,b) >a — bis a

homomorphism. What is the kernel of ¢? Describe the set ¢~ 1(3)

(that is, all elements that map to 3).

Suppose that there is a homomorphism ¢ from Z @ Z to a group G

such that ¢((3, 2)) = a and ¢((2, 1)) = b. Determine ¢((4, 4)) in

terms of a and b. Assume that the operation of G is addition.
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37.

38.

39.

40.

41.

42,

43.
44.

45.

46.

47.

48.

49.

Prove that the mapping x — x® from C* to C* is a homomorphism.
What is the kernel?

For each pair of positive integers m and n, we can define a homo-
morphism from Zto Z D Z, by x — (x mod m, x mod n). What is
the kernel when (m, n) = (3, 4)? What is the kernel when (m, n) =
(6, 4)? Generalize.

(Second Isomorphism Theorem) If K is a subgroup of G and N is
a normal subgroup of G, prove that K/(K N N) is isomorphic
to KN/N.

(Third Isomorphism Theorem) If M and N are normal subgroups of
G and N = M, prove that (G/N)/(M/N) =~ G/M.

Let ¢(d) denote the Euler phi function of d (see page 79). Show
that the number of homomorphisms from Z to Z, is 2.¢(d), where
the sum runs over all common divisors d of n and k. [It follows
from number theory that this sum is actually ged(n, k).]

Let k be a divisor of n. Consider the homomorphism from U(n) to
U(k) given by x — x mod k. What is the relationship between this
homomorphism and the subgroup U, (n) of U(n)?

Determine all homomorphic images of D, (up to isomorphism).

Let N be a normal subgroup of a finite group G. Use the theorems
of this chapter to prove that the order of the group element gN in
G/N divides the order of g.

Suppose that G is a finite group and that Z,; is a homomorphic
image of G. What can we say about |G|? Generalize.

Suppose that Z,, and Z ; are both homomorphic images of a finite
group G. What can be said about |G|? Generalize.

Suppose that for each prime p, Zp is the homomorphic image of a
group G. What can we say about |G|? Give an example of such a
group.

(For students who have had linear algebra.) Suppose that x is a
particular solution to a system of linear equations and that S is the
entire solution set of the corresponding homogeneous system of
linear equations. Explain why property 6 of Theorem 10.1 guaran-
tees that x + S is the entire solution set of the nonhomogeneous
system. In particular, describe the relevant groups and the homo-
morphism between them.

Let N be a normal subgroup of a group G. Use property 7 of
Theorem 10.2 to prove that every subgroup of G/N has the form
H/N, where H is a subgroup of G. (This exercise is referred to in
Chapter 24.)
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Show that a homomorphism defined on a cyclic group is com-
pletely determined by its action on a generator of the group.

Use the First Isomorphism Theorem to prove Theorem 9.4.

Let a and 8 be group homomorphisms from G to G and let H =
{g € G|a(g) = B(g)}. Prove or disprove that H is a subgroup of G.
Let Z[x] be the group of polynomials in x with integer coefficients
under addition. Prove that the mapping from Z[x] into Z given by
fix) — f(3) is a homomorphism. Give a geometric description of
the kernel of this homomorphism. Generalize.

Prove that the mapping from R under addition to GL(2, R) that
takes x to

[ CcoS X sin x]

—sinx cosSx

is a group homomorphism. What is the kernel of the homomorphism?
Suppose there is a homomorphism ¢ from G onto Z, @ Z,. Prove
that G is the union of three proper normal subgroups.

If H and K are normal subgroups of G and H N K = {e}, prove that
G is isomorphic to a subgroup of G/H & G/K.

Suppose that H and K are distinct subgroups of G of index 2. Prove
that H N K is a normal subgroup of G of index 4 and that G/(H N K)
is not cyclic.

Suppose that the number of homomorphisms from G to H is n.
How many homomorphisms are there from Gto HOH® - - - © H
(s terms)? When H is Abelian, how many homomorphisms are there
fromGDGD - - - D G (s terms) to H?

Prove that every group of order 77 is cyclic.

Determine all homomorphisms from Z onto S,. Determine all
homomorphisms from Z to S

Suppose G is an Abelian group under addition with the property
that for every positive integer n the set nG ={nglg € G} = G.
Show that every proper subgroup of G is properly contained in a
proper subgroup of G. Name two familiar groups that satisfy the
hypothesis.

Let p be a prime. Determine the number of homomorphisms from
Z, ® Z,into Z,.
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Computer Exercise

A computer lets you make more mistakes faster than any invention in
human history—with the possible exceptions of handguns and tequila.
MITCH RATLIFFE

Software for the computer exercise in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines the homomorphisms from Z to Z .
(Recall that a homomorphism from Z_ is completely determined by
the image of 1.) Run the program for m = 20 with various choices
for n. Run the program for m = 15 with various choices for n. What
relationship do you see between m and n and the number of homo-
morphisms from Z  to Z ? For each choice of m and n, observe the
smallest positive image of 1. Try to see the relationship between this
image and the values of m and n. What relationship do you see be-
tween the smallest positive image of 1 and the other images of 1?
Test your conclusions with other choices of m and n.


http://www.d.umn.edu/~jgallian

Camille Jordan

Although these contributions [to
analysis and topology] would have been
enough to rank Jordan very high among
his mathematical contemporaries, it is
chiefly as an algebraist that he reached
celebrity when he was barely thirty; and
during the next forty years he was
universally regarded as the undisputed
master of group theory.

J. DIEUDONNE, Dictionary of
Scientific Biography

CAMILLE JORDAN was born into a well-to-do
family on January 5, 1838, in Lyons, France.
Like his father, he graduated from the Ecole
Polytechnique and became an engineer.
Nearly all of his 120 research papers in
mathematics were written before his retire-
ment from engineering in 1885. From 1873
until 1912, Jordan taught simultaneously at
the Ecole Polytechnique and at the College
of France.

In the great French tradition, Jordan was
a universal mathematician who published in
nearly every branch of mathematics. Among
the concepts named after him are the Jordan
canonical form in matrix theory, the Jordan
curve theorem from topology, and the
Jordan-Holder theorem from group theory.

His classic book Traité des Substitutions,
published in 1870, was the first to be de-
voted solely to group theory and its applica-
tions to other branches of mathematics.

Another book that had great influence
and set a new standard for rigor was his
Cours d’analyse. This book gave the first
clear definitions of the notions of volume
and multiple integral. Nearly 100 years after
this book appeared, the distinguished
mathematician and mathematical historian
B. L. van der Waerden wrote, “For me, every
single chapter of the Cours d’analyse is a
pleasure to read.” Jordan died in Paris on
January 22, 1922.

To find more information about Jordan,

visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Fundamental

Theorem of Finite
Abelian Groups

By a small sample we may judge of the whole piece.

MIGUEL DE CERVANTES, Don Quixote

The Fundamental Theorem

In this chapter, we present a theorem that describes to an algebraist’s
eye (that is, up to isomorphism) all finite Abelian groups in a stan-
dardized way. Before giving the proof, which is long and difficult, we
discuss some consequences of the theorem and its proof. The first
proof of the theorem was given by Leopold Kronecker in 1858.

I Theorem 11.1 Fundamental Theorem of Finite Abelian Groups

Every finite Abelian group is a direct product of cyclic groups of
prime-power order. Moreover, the number of terms in the product
and the orders of the cyclic groups are uniquely determined by the

group.

Since a cyclic group of order n is isomorphic to Z , Theorem 11.1
shows that every finite Abelian group G is isomorphic to a group of
the form

Zp1n1 @ szn2 @ R @ Zpknk’

where the p’s are not necessarily distinct primes and the prime-
powers p,", p,”, ..., p/™ are uniquely determined by G. Writing a
group in this form is called determining the isomorphism class of G.

The Isomorphism Classes
of Abelian Groups
The Fundamental Theorem is extremely powerful. As an application,

we can use it as an algorithm for constructing all Abelian groups of any
order. Let’s look at groups whose orders have the form p*, where p is

218



11 | Fundamental Theorem of Finite Abelian Groups 219

prime and k < 4. In general, there is one group of order p* for each set
of positive integers whose sum is & (such a set is called a partition of k);
that is, if k£ can be written as

k=n +n,+ -+ +n,
where each n, is a positive integer, then
Zm®Znm® - DZn

is an Abelian group of order p*.

Possible direct

Order of G Partitions of k products for G
p 1 Z,
p? 2 z,
1+1 Zp D Zp
P 3 Z,
2+ 1 sz D Zp
1+1+1 ZPGBZP@ZP
p 4 Z,
3+ 1 Zp3 D Zp
2+2 Z,9Z,
2+1+1 sz@Zp@Zp
1+1+1+1 ZP@ZP@ZP@ZP

Furthermore, the uniqueness portion of the Fundamental Theorem
guarantees that distinct partitions of k yield distinct isomorphism
classes. Thus, for example, Z, @ Z, is not isomorphic to Z, ® Z, ® Z,.
A reliable mnemonic for comparing external direct products is the can-
cellation property: If A is finite, then

ADB~=ADC if and only if B~C (see[l)).

Thus Z, © Z, is not isomorphic to Z, @ Z, @ Z, because Z, is not
isomorphic to Z, ® Z,.

To appreciate fully the potency of the Fundamental Theorem, contrast
the ease with which the Abelian groups of order p*, k = 4, were
determined with the corresponding problem for non-Abelian groups.
Even a description of the two non-Abelian groups of order 8 is a chal-
lenge (see Chapter 26), and a description of the nine non-Abelian
groups of order 16 is well beyond the scope of this text.

Now that we know how to construct all the Abelian groups of prime-
power order, we move to the problem of constructing all Abelian
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groups of a certain order n, where n has two or more distinct prime
divisors. We begin by writing n in prime-power decomposition form
n = p/Mip,"> -« p,«. Next, we individually form all Abelian groups of
order p,™1, then p,"2, and so on, as described earlier. Finally, we form all
possible external direct products of these groups. For example, let n =
1176 = 23 - 3 - 7%. Then, the complete list of the distinct isomorphism
classes of Abelian groups of order 1176 is

YAy

2,92,92,92,,
72,82,02,072,DZ,,
72, 2,02 7,
2,02,02,02,02,
72,82,82,072,02,®Z,

If we are given any particular Abelian group G of order 1176, the
question we want to answer about G is: Which of the preceding six iso-
morphism classes represents the structure of G? We can answer this
question by comparing the orders of the elements of G with the orders of
the elements in the six direct products, since it can be shown that two fi-
nite Abelian groups are isomorphic if and only if they have the same
number of elements of each order. For instance, we could determine
whether G has any elements of order 8. If so, then G must be isomorphic
to the first or fourth group above, since these are the only ones with ele-
ments of order 8. To narrow G down to a single choice, we now need
only check whether or not G has an element of order 49, since the first
product above has such an element, whereas the fourth one does not.

What if we have some specific Abelian group G of order p "ip,"
-+ - p, where the p/’s are distinct primes? How can G be expressed as
an internal direct product of cyclic groups of prime-power order? For
simplicity, let us say that the group has 2" elements. First, we must
compute the orders of the elements. After this is done, pick an element
of maximum order 2’, call it a,. Then <a1) is one of the factors in the
desired internal direct product. If G # (al), choose an element a, of
maximum order 2° such that s = n — r and none of a,, a,?, a,*, .. .,
4122H is in (a,). Then (a,) is a second direct factor. If n # r + s, select
an element a, of maximum order 2’ such that# = n — r — s and none of
a, al at, ..., a4 'is in (a) XAay) =f{ala/ 10=i<2,0=
j < 2%}. Then (a3) is another direct factor. We continue in this fashion
until our direct product has the same order as G.

A formal presentation of this algorithm for any Abelian group G of
prime-power order p” is as follows.
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Greedy Algorithm for an Abelian Group of Order p"

1. Compute the orders of the elements of the group G.

2. Select an element a, of maximum order and define G, = (a,).
Seti=1.

3. If IGI = 1G/, stop. Otherwise, replace i by i + 1.

4. Select an element g, of maximum order p¥such that p* =
|GI/IG,_,| and none of a;, a,”, aif’z,- . ai"H isin G,_,, and define
G, =G,_, X{a,).

5. Return to step 3.

In the general case where |Gl = p,"'p,"> - - - p, ", we simply use the
algorithm to build up a direct product of order p,"!, then another of
order p,"2, and so on. The direct product of all of these pieces is the
desired factorization of G. The following example is small enough that
we can compute the appropriate internal and external direct products
by hand.

I EXAMPLE1 LetG = {1,8,12,14, 18, 21, 27, 31, 34, 38, 44,47, 51,
53, 57, 64} under multiplication modulo 65. Since G has order 16, we
know it is isomorphic to one of

Zl()’
Z,92,
2,92,

2,872,872,
2,82,82,87,

To decide which one, we dirty our hands to calculate the orders of the
elements of G.

Element‘l‘S 12‘14‘18‘21‘27‘31‘34‘38‘44‘47‘51‘53‘57‘64

|
order |114lalalalalalalalalalalalalalo

From the table of orders, we can instantly rule out all but Z, ® Z, and
Z,® Z, D Z, as possibilities. Finally, we observe that since this latter
group has a subgroup isomorphic to Z, @ Z, @ Z,, it has more than
three elements of order 2, and therefore we must have G~ Z, ®Z "
Expressing G as an internal direct product is even easier. Pick an el-
ement of maximum order, say the element 8. Then (8) is a factor in the
product. Next, choose a second element, say a, so that a has order 4 and
a and a® are not in (8) = {1, 8, 64, 57}. Since 12 has this property, we
have G = (8) X (12). |
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Example 1 illustrates how quickly and easily one can write an Abelian
group as a direct product given the orders of the elements of the group.
But calculating all those orders is certainly not an appealing prospect!
The good news is that, in practice, a combination of theory and calcula-
tion of the orders of a few elements will usually suffice.

§ EXAMPLE 2 Let G = {1, 8, 17, 19, 26, 28, 37, 44, 46, 53, 62,
64, 71,73, 82, 89,91, 98, 107, 109, 116, 118, 127, 134} under multi-
plication modulo 135. Since G has order 24, it is isomorphic to
one of

Z,®Z,~7,,
Z,®Z,®72,~7,D7,
Z,DZ,®Z,BZ~7, DL, DZ,

Consider the element 8. Direct calculations show that 8¢ = 109 and 8% =
1. (Be sure to mod as you go. For example, 8° mod 135 = 512 mod
135 = 107, so compute 8* as 8 - 107 rather than 8 - 512.) But now we
know G. Why? Clearly, |81 = 12 rules out the third group in the list. At
the same time, 11091 = 2 = 134! (remember, 134 = —1 mod 135) im-
plies that G is not Z,, (see Theorem 4.4). Thus, GR Z, D Z,, and G =
(8) X (134). [ |

Rather than express an Abelian group as a direct product of cyclic
groups of prime-power orders, it is often more convenient to combine
the cyclic factors of relatively prime order, as we did in Example 2, to
obtain a direct product of the formZ, ©Z © - --©® Z , where n, di-
vides n._,. For example, Z, ® Z, © Z ‘D Z, 3 Z, €B Z, would be written
as leo @ Z, D Z, (see Exer(nse 11) The algorlthm above is easily
adapted to accomplish this by replacing step 4 by 4': select an element a;
of maximum order m such that m = IGl/IG,_,| and none of a, a, 2.,
a,;" 'isin G,_, and define G, = G,_, X {(a)).

As a consequence of the Fundamental Theorem of Finite Abelian
Groups, we have the following corollary, which shows that the converse
of Lagrange’s Theorem is true for finite Abelian groups.

1 Corollary Existence of Subgroups of Abelian Groups

If m divides the order of a finite Abelian group G, then G has a
subgroup of order m.

It is instructive to verify this corollary for a specific case. Let us say
that G is an Abelian group of order 72 and we wish to produce a subgroup
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of order 12. According to the Fundamental Theorem, G is isomorphic to
one of the following six groups:

7, @7, 7, 82,87,
Z,®2,®7, 2,02,9Z,® 7,
2,82,92,®2, 2,82,92,87Z,dZ,

Obviously, Z, D Z,~Z,and Z, D Z, D Z, D Z, = Z, D Z, both
have a subgroup of order 12. To construct a subgroup of order 12 in Z,
@ Z, D Z,, we simply piece together all of Z, and the subgroup of order
3in Zg; thatis, {(a,0,b) la € Z,, b € {0, 3, 6}}. A subgroup of order
12in Z, ® Z, D Z, is given by {(a, b, 0) 1 a € {0,2,4,6},b € Z,}. An
analogous procedure applies to the remaining cases and indeed to any
finite Abelian group.

Proof of the Fundamental Theorem

Because of the length and complexity of the proof of the Fundamental
Theorem of Finite Abelian Groups, we will break it up into a series of
lemmas.

I Lemmal

Let G be a finite Abelian group of order p"m, where p is a pri"me that
does not divide m. Then G = H X K, where H = {x € G | x? = e}
and K = {x € G | x™ = e}. Moreover, |Hl = p".

PROOF Itis an easy exercise to prove that H and K are subgroups of G
(see Exercise 29 in Chapter 3). Because G is Abelian, to prove that G =
H X K we need only prove that G = HK and H N K = {e}. Since we
have ged(m, p") = 1, there are integers s and ¢ such that 1 = sm + tp”.
For any x in G, we have x = x! = x"*?" = x"x" and, by Corollary 4
of Lagrange’s Theorem (Theorem 7.1), x*" € H and x?" € K. Thus,
G = HK. Now suppose that some x € H N K. Then x”" = ¢ = x™ and,
by Corollary 2 to Theorem 4.1, Ix| divides both p” and m. Since p does
not divide m, we have |x| = 1 and, therefore, x = e.

To prove the second assertion of the lemma, note that p'm =
IHK! = |HIIKI/IH N K| = |HIIKI (see Exercise 7 in the Supplementary
Exercises for Chapters 5-8). It follows from Theorem 9.5 and
Corollary 2 to Theorem 4.1 that p does not divide |K| and therefore
Hl = p". |

Given an Abelian group G with |Gl = p,"1p," - - - p "+, where the
p’s are distinct primes, we let G(p,) denote the set {x € G | xPi" = el.
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It then follows immediately from Lemma 1 and induction that G =
G(p,) X G(py) X - -+ X G(p,) and IG(p,)| = p,". Hence, we turn our
attention to groups of prime-power order.

Let G be an Abelian group of prime-power order and let a be an
element of maximal order in G. Then G can be written in the form
(a) X K.

PROOF We denote |G| by p" and induct on n. If n = 1, then G =
(a) X {(e). Now assume that the statement is true for all Abelian
groups of order p¥, where k < n. Among all the elements of G, choose
a of maximal order p™. Then x”" = e for all x in G. We may assume
that G # (a), for otherwise there is nothing to prove. Now, among all
the elements of G, choose b of smallest order such that b & (a). We
claim that (a) N (b) = {e}. Since |1b”| = |bl/p, we know that b? € {a)
by the manner in which b was chosen. Say b” = a'. Notice that e =
br" = (bP)P"" = (a’)?""', so la’l = p™~!. Thus, a' is not a generator of
(a) and, therefore, by Corollary 3 to Theorem 4.2, ged(p™, i) # 1.
This proves that p divides i, so that we can write i = pj. Then b? =
a' = a”’. Consider the element ¢ = a/b. Certainly, c¢ is not in {a), for
if it were, b would be, too. Also, ¢” = a Pb? = a~'b? = b Pb? = e.
Thus, we have found an element ¢ of order p such that ¢ & (a). Since
b was chosen to have smallest order such that b & {(a), we conclude
that b also has order p. It now follows that (a) N (b) = {e} because
any nonidentity element of the intersection would generate (b) and
thus contradict b & {(a). B

Now consider the factor group G = G/(b). To simplify the notation,
we let X denote the coset x(b) in G. If lal < lal = p™ then a”" ' = e. This
means that (a(b))?"" = a?" (b) = (b), so that &’ ' € (a) N {b) = {e},
contradicting the fact that lal = p™. Thus, lal = lal = p™, and therefore
a is an element of maximal order in G. By induction, we know that G
can be written in the form (@) X K for some subgroup K of G. Let K be
the pullback of K under the natural homomorphism from G to G (that
is, K = {x € G| x € K}). We claim that () N K = {e}. Forif x € (a)
N K, thenx € {a) N K = {e} = (b) and x € {a) N (b) = {e}. It now
follows from an order argument (see Exercise 33) that G = (@)K, and
therefore G = (a) X K. |

Lemma 2 and induction on the order of the group now give the
following.



I Lemma3

I Lemma4

11 | Fundamental Theorem of Finite Abelian Groups 225

A finite Abelian group of prime-power order is an internal direct
product of cyclic groups.

Let us pause to determine where we are in our effort to prove the
Fundamental Theorem of Finite Abelian Groups. The remark following
Lemma 1 shows that G = G(p,) X G(p,) X - -+ X G(p,), where each
G( p,) is a group of prime-power order, and Lemma 3 shows that each of
these factors is an internal direct product of cyclic groups. Thus, we have
proved that G is an internal direct product of cyclic groups of prime-
power order. All that remains to be proved is the uniqueness of the factors.
Certainly the groups G( p,) are uniquely determined by G, since they
comprise the elements of G whose orders are powers of p,. So we must
prove that there is only one way (up to isomorphism and rearrangement of
factors) to write each G( p)) as an internal direct product of cyclic groups.

Suppose that G is a finite Abelian group of prime-power order. If
G=H XH,X:--XH_ andG =K, XK, X - XK, where the
H’s and K’s are nontrivial cyclic subgroups with |H|| = |H)| = - - - =
IH land IK|| = IK,| = - - - = IK||, then m = nand |[H| = IK|
foralli.

PROOF We proceed by induction on |GI. Clearly, the case where |G| =
p is true. Now suppose that the statement is true for all Abelian groups
of order less than |GI. For any Abelian group L, the set L” = {x” | x €
L} is a subgroup of L (see Exercise 15 in the Supplementary Exercises
for Chapters 1-4) and, by Theorem 9.5, is a proper subgroup if p
divides ILI. It follows that G? = Hlp X H, P ..o X H 7 and GP =
K? X K,” X --+ X K ?where m" is the largest integer i such that
IH| > p, and n' is the largest integer j such that IKJ.I > p. (This ensures
that our two direct products for G” do not have trivial factors.) Since 1G?|
< IGl, we have, by induction, m" = n’ and |IH,l = IK. "I fori =1, ...,
m'. Since |H| = plH,"l, this proves that IH| = |IK| foralli =1,...,m".
All that remains to be proved is that the number of H, of order p equals
the number of K of order p; that is, we must prove that m — m =n—n'
(since n" = m’). This follows directly from the facts that |H,IIH,| - - -
IH lp"™ =Gl = IK,IIK,| - - - IK Ip"™", |H| = IK|,andm’ = n'. 1
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You know it ain’t easy, you know how hard it can be.

10.
11.

12.

13.

14.

JOHN LENNON AND PAUL MCCARTNEY,
“The Ballad of John and Yoko”

What is the smallest positive integer n such that there are two non-
isomorphic groups of order n? Name the two groups.

What is the smallest positive integer n such that there are three
nonisomorphic Abelian groups of order n? Name the three groups.
What is the smallest positive integer n such that there are exactly
four nonisomorphic Abelian groups of order n? Name the four
groups.

Calculate the number of elements of order 2 in each of Z,, Z, © Z,,
Z,D7,,and Z, ® Z, D Z,. Do the same for the elements of order 4.
Prove that any Abelian group of order 45 has an element of order 15.
Does every Abelian group of order 45 have an element of order 9?
Show that there are two Abelian groups of order 108 that have ex-
actly one subgroup of order 3.

Show that there are two Abelian groups of order 108 that have ex-
actly four subgroups of order 3.

Show that there are two Abelian groups of order 108 that have ex-
actly 13 subgroups of order 3.

Suppose that G is an Abelian group of order 120 and that G has
exactly three elements of order 2. Determine the isomorphism class
of G.

Find all Abelian groups (up to isomorphism) of order 360.

Prove that every finite Abelian group can be expressed as the
(external) direct product of cyclic groups of orders n, n,, ..., n,
where n,_ | divides n, fori = 1,2, ..., ¢ — 1. (This exercise is re-
ferred to in this chapter and in Chapter 22.)

Suppose that the order of some finite Abelian group is divisible by
10. Prove that the group has a cyclic subgroup of order 10.

Show, by example, that if the order of a finite Abelian group is di-
visible by 4, the group need not have a cyclic subgroup of order 4.

On the basis of Exercises 12 and 13, draw a general conclusion
about the existence of cyclic subgroups of a finite Abelian group.



15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.
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How many Abelian groups (up to isomorphism) are there

of order 67

of order 157

of order 427

of order pg, where p and ¢ are distinct primes?

of order pgr, where p, ¢, and r are distinct primes?

Generalize parts d and e.

How does the number (up to isomorphism) of Abelian groups of
order n compare with the number (up to isomorphism) of Abelian
groups of order m where

n=3>and m = 5*?

n=2%and m = 5%?

n = p"and m = ¢q", where p and g are prime?

n = p"and m = p’q, where p and g are distinct primes?

n = p"and m = p’q? where p and g are distinct primes?

-e R0 T

O

The symmetry group of a nonsquare rectangle is an Abelian group
of order 4. Is it isomorphic to Z, or Z, ® Z,?

Verify the corollary to the Fundamental Theorem of Finite
Abelian Groups in the case that the group has order 1080 and the
divisor is 180.

The set {1, 9, 16, 22, 29, 53, 74,79, 81} is a group under multipli-
cation modulo 91. Determine the isomorphism class of this group.
Suppose that G is a finite Abelian group that has exactly one sub-
group for each divisor of 1Gl. Show that G is cyclic.

Characterize those integers n such that the only Abelian groups of
order n are cyclic.

Characterize those integers n such that any Abelian group of order
n belongs to one of exactly four isomorphism classes.

Refer to Example 1 in this chapter and explain why it is unneces-
sary to compute the orders of the last five elements listed to deter-
mine the isomorphism class of G.

LetG = {1,7,17, 23,49, 55, 65, 71} under multiplication modulo
96. Express G as an external and an internal direct product of cyclic
groups.

Let G = {1,7,43,49,51,57,93,99, 101, 107, 143, 149, 151, 157,
193, 199} under multiplication modulo 200. Express G as an exter-
nal and an internal direct product of cyclic groups.

Theset G = {1,4, 11, 14, 16, 19, 26, 29, 31, 34, 41, 44} is a group
under multiplication modulo 45. Write G as an external and an in-
ternal direct product of cyclic groups of prime-power order.
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27.

28.

29.

30.

31.

32,

33.

34.

35.

36.
37.

Suppose that G is an Abelian group of order 9. What is the maxi-
mum number of elements (excluding the identity) of which one
needs to compute the order to determine the isomorphism class of
G? What if G has order 187 What about 16?

Suppose that G is an Abelian group of order 16, and in computing
the orders of its elements, you come across an element of order 8
and two elements of order 2. Explain why no further computations
are needed to determine the isomorphism class of G.

Let G be an Abelian group of order 16. Suppose that there are ele-
ments ¢ and b in G such that lal = |bl = 4 and a*> # b*. Determine
the isomorphism class of G.

Prove that an Abelian group of order 2"(n = 1) must have an odd
number of elements of order 2.

Without using Lagrange’s Theorem, show that an Abelian group of
odd order cannot have an element of even order.

Let G be the group of all n X n diagonal matrices with =1 diago-
nal entries. What is the isomorphism class of G?

Prove the assertion made in the proof of Lemma 2 that G = (a)K.
Suppose that G is a finite Abelian group. Prove that G has order p”,
where p is prime, if and only if the order of every element of G is a
power of p.

Dirichlet’s Theorem says that, for every pair of relatively prime in-
tegers a and b, there are infinitely many primes of the form ar + b.
Use Dirichlet’s Theorem to prove that every finite Abelian group is
isomorphic to a subgroup of a U-group.

Determine the isomorphism class of Aut(Z, © Z, © Zy).

Give an example to show that Lemma 2 is false if G is non-Abelian.

The purpose of computation is insight, not numbers.

RICHARD HAMMING

Software for the computer exercises in this chapter is available at the
website:

1.

http://www.d.umn.edu/~jgallian

This software lists the isomorphism classes of all finite Abelian
groups of any particular order n. Run the program for n = 16, 24,
512, 2048, 441000, and 999999.


http://www.d.umn.edu/~jgallian
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2. This software determines how many integers in a given interval are
the order of exactly one Abelian group, of exactly two Abelian
groups, and so on, up to exactly nine Abelian groups. Run your pro-
gram for the integers up to 1000. Then from 10001 to 11000. Then
choose your own interval of 1000 consecutive integers. Is there
much difference in the results?

3. This software expresses a U-group as an internal direct product of
sub-groups H, X H, X - + - X H,, where |H| divides |H,_ |. Run the
program for the groups U(32), U(80), and U(65).
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Every prospector drills many a dry hole, pulls out his rig, and moves on.

JOHN L. HESS

True/false questions for Chapters 9—11 are available on the Web at:

10.
11.

12.

http://www.d.umn.edu/~jgallian/TF

Suppose that H is a subgroup of G and that each left coset of H in
G is some right coset of H in G. Prove that H is normal in G.

Use a factor group-induction argument to prove that a finite
Abelian group of order n has a subgroup of order m for every posi-
tive divisor m of n.

Let diag(G) = {(g, g) | g € G}. Prove that diag(G) < G @ G if
and only if G is Abelian. When G is finite, what is the index of
diag(G) in G & G?

Let H be any group of rotations in D . Prove that H is normal in D, .
Prove that Inn(G) < Aut(G).

Let H be a subgroup of G. Prove that H is a normal subgroup if and
only if, for all @ and b in G, ab € H implies ba € H.

The factor group GL(2, R)/SL(2, R) is isomorphic to some very
familiar group. What is the group?

Let k be a divisor of n. The factor group (Z/{n))/({k)/{n)) is isomor-
phic to some very familiar group. What is the group?

Let

1 a b
H = 01 ¢ a,b,c € Q0
0 0 1

under matrix multiplication.

a. Find Z(H).

b. Prove that Z(H) is isomorphic to Q under addition.

¢. Prove that H/Z(H) is isomorphic to Q & Q.

d. Are your proofs for parts a and b valid when Q is replaced by
R? Are they valid when Q is replaced by Z, where p is prime?

Prove that D,/Z(D,) is isomorphic to Z, ® Z,.

Prove that Q/Z under addition is an infinite group in which every

element has finite order.

Show that the intersection of any collection of normal subgroups of

a group is a normal subgroup.
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Let n > 1 be a fixed integer and let G be a group. If the set H =
{x € GI x| = n} together with the identity forms a subgroup of
G, prove that it is a normal subgroup of G. In the case where such
a subgroup exists, what can be said about n? Give an example of
a non-Abelian group that has such a subgroup. Give an example
of a group G and a prime n for which the set H together with the
identity is not a subgroup.

Show that Q/Z has a unique subgroup of order n for each positive
integer n.

If H and K are normal Abelian subgroups of a group and H N K =
{e}, prove that HK is Abelian.

Let G be a group of odd order. Prove that the mapping x — x? from
G to itself is one-to-one.

Suppose that G is a group of permutations on some set. If |Gl = 60
and orb(5) = {1, 5}, prove that stab(5) is normal in G.

Suppose that G = H X K and that N is a normal subgroup of H.
Prove that N is normal in G.

Show that there is no homomorphism from Z, © Z, ® Z, onto
Z,DZ,

Show that there is no homomorphism from A, onto a group of
order 2, 4, or 6, but that there is a homomorphism from A, onto a
group of order 3.

Let H be a normal subgroup of S, of order 4. Prove that S,/H is iso-
morphic to S,

Suppose that ¢ is a homomorphism of U(36), Ker ¢ = {1, 13, 25},
and ¢(5) = 17. Determine all elements that map to 17.

Let n = 2m, where m is odd. How many elements of order 2
does D /Z(D,) have? How many elements are in the subgroup
(R360/”>/Z(Dn)? How do these numbers compare with the number
of elements of order 2in D ?

Suppose that H is a normal subgroup of a group G of odd order and
that IHl = 5. Show that H C Z(G).

Let G be an Abelian group and let n be a positive integer. Let G, =
{glg"=e}and G" = {g" | g € G}. Prove that G/G,, is isomorphic
to G".

Let R* denote the multiplicative group of positive reals and let 7 =
{a + bi € Cl @* + b* = 1} be the multiplicative group of complex
numbers of norm 1. Show that C* is the internal direct product of R*
and 7.
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27.

28.

29.

30.

31.

32.

33.
34.

3s.

36.

37.

38.

Let G be a finite group and let p be a prime. If p?> > |Gl, show that
any subgroup of order p is normal in G.

Let G =Z® Zand H = {(x, y)| x and y are even integers}. Show
that H is a subgroup of G. Determine the order of G/H. To which
familiar group is G/H isomorphic?

Let n be a positive integer. Prove that every element of order n in
QO/Z is contained in {(1/n + Z).

(1997 Putnam Competition) Let G be a group and let ¢ : G — G be
a function such that

(gD (8)b(g3) = p(h)d(hy)d(hy)

whenever g,g,¢, = ¢ = h h,h,. Prove that there exists an element a
in G such that ¥/(x) = a¢(x) is a homomorphism.

Prove that every homomorphism from Z @ Z into Z has the form
(x, y) = ax + by, where a and b are integers.

Prove that every homomorphism from Z © Z into Z © Z has the
form (x, y) — (ax + by, cx + dy), where a, b, ¢, and d are integers.
Prove that Q/Z is not isomorphic to a proper subgroup of itself.
Prove that for each positive integer n, the group Q/Z has exactly
¢(n) elements of order n (¢ is the Euler phi function).

Show that any group with more than two elements has an automor-
phism other than the identity mapping.

A proper subgroup H of a group G is called maximal if there is no
subgroup K such that H C K C G. Prove that Q under addition has
no maximal subgroups.

Let G be the group of quaternions as given in Exercise 4 of the
Supplementary Exercises for Chapters 1-4 and H = (a*). Determine
whether G/H is isomorphic to Z, or Z, & Z,. Is G/H isomorphic to a
subgroup of G?

Write the dihedral group Dg as {Ry, Rys, Roo, Ri3s, Rig0» Raoss Rz,
Ryjs, Fy, Fo, Fa, Fy, Fs, Fo, Fy, Fg and let N = {Ry, Roo, R0, Ry}
Prove that N is normal in Dg. Given that F\N = {F,, F,, F3, F,} de-
termine whether Dg/N is cyclic.
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40.

41.
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1
Let G be the group {{0 Z} | where a, b € R, b # 0} and

1
H= { [0 ﬂ | where x € R}. Show that H is a subgroup of G. Is

H a normal subgroup of G? Justify your answer.

Find a subgroup H of sz D Zp2 such that (sz ©® Zpg)/H is isomorphic
0Z SZ,

Recall that H is a characteristic subgroup of K if ¢(H) = H for
every automorphism ¢ of K. Prove that if H is a characteristic sub-
group of K, and K is a normal subgroup of G, then H is a normal
subgroup of G.
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Introduction

to Rings

Example is the school of mankind, and they will learn at no other.
EDMUND BURKE, On a Regicide Peace

Motivation and Definition

Many sets are naturally endowed with two binary operations: addition
and multiplication. Examples that quickly come to mind are the inte-
gers, the integers modulo 7, the real numbers, matrices, and polynomi-
als. When considering these sets as groups, we simply used addition
and ignored multiplication. In many instances, however, one wishes to
take into account both addition and multiplication. One abstract con-
cept that does this is the concept of a ring.” This notion was originated
in the mid-nineteenth century by Richard Dedekind, although its first
formal abstract definition was not given until Abraham Fraenkel pre-
sented it in 1914.

Definition Ring
A ring R is a set with two binary operations, addition (denoted by
a + b) and multiplication (denoted by ab), such that for all a, b, c in R:

l.a+b=>b+a.

2.(at+b)y+c=a+ ®d+o).

3. There is an additive identity 0. That is, there is an element 0 in R
such thata + 0 = a for all @ in R.

4. There is an element —a in R such thata + (—a) = 0.

5. a(bc) = (ab)c.

6. a(b +c)=ab + acand (b + c¢)a = ba + ca.

So, a ring is an Abelian group under addition, also having an asso-
ciative multiplication that is left and right distributive over addition.
Note that multiplication need not be commutative. When it is, we say
that the ring is commutative. Also, a ring need not have an identity

"The term ring was first applied in 1897 by the German mathematician David Hilbert
(1862-1943).

237
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under multiplication. A unity (or identity) in a ring is a nonzero element
that is an identity under multiplication. A nonzero element of a com-
mutative ring with unity need not have a multiplicative inverse. When it
does, we say that it is a unit of the ring. Thus, a is a unit if a~! exists.

The following terminology and notation are convenient. If @ and b
belong to a commutative ring R and a is nonzero, we say that a divides
b (or that a is a factor of b) and write a | b, if there exists an element ¢
in R such that b = ac. If a does not divide b, we write a + b.

Recall that if a is an element from a group under the operation of
addition and # is a positive integer, na means a + a + - - - + a, where
there are n summands. When dealing with rings, this notation can cause
confusion, since we also use juxtaposition for the ring multiplication.
When there is the potential for confusion, we will use n - a to mean
a+ a+ -+ + a(nsummands).

For an abstraction to be worthy of study, it must have many diverse
concrete realizations. The following list of examples shows that the
ring concept is pervasive.

Examples of Rings

B EXAMPLE 1 The set Z of integers under ordinary addition and
multiplication is a commutative ring with unity 1. The units of Z are

1 and —1. |
B EXAMPLE 2 The set Z = {0, 1, ..., n — 1} under addition and
multiplication modulo n is a commutative ring with unity 1. The set of
units is U(n). |

B EXAMPLE 3 The set Z[x] of all polynomials in the variable x with
integer coefficients under ordinary addition and multiplication is a
commutative ring with unity f{x) = 1. |

B EXAMPLE 4 The set M,(Z) of 2 X 2 matrices with integer entries

- o . . |10
is a noncommutative ring with unity {O J . |

B EXAMPLE 5 The set 2Z of even integers under ordinary addition
and multiplication is a commutative ring without unity. |

B EXAMPLE 6 The set of all continuous real-valued functions of a
real variable whose graphs pass through the point (1, 0) is a commuta-
tive ring without unity under the operations of pointwise addition and
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multiplication [that is, the operations ( f + g)(a) = fla) + g(a) and
(f8)(a) = fla)g(a)]. |

B EXAMPLE7?7 LetR,R,, ..., R, berings. We can use these to con-
struct a new ring as follows. Let

ROR,D--- DR ={(a,a,...,a)la ER}

and perform componentwise addition and multiplication; that is, define

(al,az,...,an) + (b, b,,...,b)=(a, +b,a,+b,...,a +bn)
and
(a,ay...,a)b,b,...,b)=(ab,,ab,, ... ab).
This ring is called the direct sum of R, R,, ..., R . |

Properties of Rings

Our first theorem shows how the operations of addition and multiplica-
tion intertwine. We use b — ¢ to denote b + (—c¢).

I Theorem 12.1 Rules of Multiplication

Let a, b, and c belong to a ring R. Then

1. a0 =0a = 0.

2. a(—b) = (—a)b = —(ab).

3. (—a)(—b) = ab.’

4. ab—c)=ab—ac and (b— c)a = ba — ca.
Furthermore, if R has a unity element 1, then

5. (—1a = —a.
6. (—D(-1)=1.

PROOF We will prove rules 1 and 2 and leave the rest as easy exercises
(see Exercise 11). To prove statements such as those in Theorem 12.1, we
need only “play off ” the distributive property against the fact that R is a
group under addition with additive identity 0. Consider rule 1. Clearly,

0+ a0 =a0 = a0 + 0) = a0 + a0.
So, by cancellation, 0 = 0. Similarly, Oa = 0.

"Minus times minus is plus.
The reason for this we need not discuss.
W. H. Auden
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To prove rule 2, we observe that a(—b) + ab = a(—b + b) =
a0 = 0. So, adding —(ab) to both sides yields a(—b) = —(ab). The re-
mainder of rule 2 is done analogously. |

Recall that in the case of groups, the identity and inverses are unique.
The same is true for rings, provided that these elements exist. The proofs
are identical to the ones given for groups and therefore are omitted.

I Theorem 12.2 Uniqueness of the Unity and Inverses

If a ring has a unity, it is unique. If a ring element has a multipli-
cative inverse, it is unique.

Many students have the mistaken tendency to treat a ring as if it were
a group under multiplication. It is not. The two most common errors are
the assumptions that ring elements have multiplicative inverses—they
need not—and that a ring has a multiplicative identity—it need not. For
example, if a, b, and ¢ belong to aring, @ # 0 and ab = ac, we cannot
conclude that b = ¢. Similarly, if > = a, we cannot conclude that a = 0
or 1 (as is the case with real numbers). In the first place, the ring need
not have multiplicative cancellation, and in the second place, the ring
need not have a multiplicative identity. There is an important class of
rings wherein multiplicative identities exist and for which multiplica-
tive cancellation holds. This class is taken up in the next chapter.

Subrings

In our study of groups, subgroups played a crucial role. Subrings, the
analogous structures in ring theory, play a much less prominent role than
their counterparts in group theory. Nevertheless, subrings are important.

Definition Subring

A subset S of a ring R is a subring of R if S is itself a ring with the
operations of R.

Just as was the case for subgroups, there is a simple test for subrings.

I Theorem 12.3 Subring Test

A nonempty subset S of a ring R is a subring if S is closed under
subtraction and multiplication—that is, ifa — b and ab are in S
whenever a and b are in S.
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PROOF Since addition in R is commutative and S is closed under sub-
traction, we know by the One-Step Subgroup Test (Theorem 3.1) that S
is an Abelian group under addition. Also, since multiplication in R is
associative as well as distributive over addition, the same is true for
multiplication in S. Thus, the only condition remaining to be checked
is that multiplication is a binary operation on S. But this is exactly what
closure means. |

We leave it to the student to confirm that each of the following ex-
amples is a subring.

B EXAMPLE 8 {0} and R are subrings of any ring R. {0} is called the
trivial subring of R. |

§ EXAMPLE 9 {0, 2, 4} is a subring of the ring Z, the inte-
gers modulo 6. Note that although 1 is the unity in Z, 4 is the unity in
{0,2,4}. ]
B EXAMPLE 10 For each positive integer n, the set

nZ = {0, =n, £2n, =3n, ...}

is a subring of the integers Z. |

B EXAMPLE 11 The set of Gaussian integers
Zlil={a+bila,beZ}

is a subring of the complex numbers C. |

B EXAMPLE 12 Let R be the ring of all real-valued functions of a sin-
gle real variable under pointwise addition and multiplication. The sub-
set S of R of functions whose graphs pass through the origin forms a
subring of R. |

# EXAMPLE 13 The set

o s)erer)

of diagonal matrices is a subring of the ring of all 2 X 2 matrices
over Z. |

We can picture the relationship between a ring and its various sub-
rings by way of a subring lattice diagram. In such a diagram, any ring
is a subring of all the rings that it is connected to by one or more up-
ward lines. Figure 12.1 shows the relationships among some of the
rings we have already discussed.
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C

ZIi1={a + bi| a, b € 7} 0(2)={a + b2 | a, b € Q)

I
|
—7 \\

LTINS\
VAVAVA

1272 187

Figure 12.1 Partial subring lattice diagram of C

In the next several chapters, we will see that many of the fundamen-
tal concepts of group theory can be naturally extended to rings. In par-
ticular, we will introduce ring homomorphisms and factor rings.

There is no substitute for hard work.
THOMAS ALVA EDISON, Life

1. Give an example of a finite noncommutative ring. Give an exam-
ple of an infinite noncommutative ring that does not have a unity.

2. The ring {0, 2, 4, 6, 8} under addition and multiplication modulo
10 has a unity. Find it.

3. Give an example of a subset of a ring that is a subgroup under
addition but not a subring.

4. Show, by example, that for fixed nonzero elements a and b in a
ring, the equation ax = b can have more than one solution. How
does this compare with groups?

5. Prove Theorem 12.2.

6. Find an integer n that shows that the rings Z need not have the fol-
lowing properties that the ring of integers has.

a. > = aimpliesa =0ora = 1.

b. ab = 0 impliesa = 0or b = 0.
¢c. ab=acanda # 0imply b = c.
Is the n you found prime?
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. Show that the three properties listed in Exercise 6 are valid for Z,

where p is prime.

. Show that a ring is commutative if it has the property that ab = ca

implies b = ¢ when a # 0.

. Prove that the intersection of any collection of subrings of a ring R

is a subring of R.

Verify that Examples 8 through 13 in this chapter are as stated.
Prove parts 3 through 6 of Theorem 12.1.

Let a, b, and c be elements of a commutative ring, and suppose that
a is a unit. Prove that b divides c if and only if ab divides c.
Describe all the subrings of the ring of integers.

Let a and b belong to a ring R and let m be an integer. Prove that
m - (ab) = (m - a)b = a(m - b).

Show that if m and n are integers and @ and b are elements from a
ring, then (m - a)(n - b) = (mn) - (ab). (This exercise is referred to
in Chapters 13 and 15.)

Show that if 7 is an integer and a is an element from a ring, then
n-(—a)=—-a).

Show that a ring that is cyclic under addition is commutative.

Let a belong to aring R. Let S = {x € R | ax = 0}. Show that S is
a subring of R.

Let R be a ring. The center of R is the set {x € R | ax = xa for all
a in R}. Prove that the center of a ring is a subring.

Describe the elements of M,(Z) (see Example 4) that have multi-
plicative inverses.

Suppose that R, R,, ..., R are rings that contain nonzero ele-
ments. Show that R, © R, @ - - - @ R has a unity if and only if
each R, has a unity.

Let R be a commutative ring with unity and let U(R) denote the set
of units of R. Prove that U(R) is a group under the multiplication of
R. (This group is called the group of units of R.)

Determine U(Z[i]) (see Example 11).

If R, R, ..., R are commutative rings with unity, show that
UR,OR,D - DR)=UR)DUR)D---DUR).
Determine U(Z[x]). (This exercise is referred to in Chapter 17.)
Determine U(R[x]).

Show that a unit of a ring divides every element of the ring.

InZ, show that4 | 2; in Z, show that 3 1 7; in Zs show that 9 | 12.
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Suppose that a and b belong to a commutative ring R with unity. If
a is a unit of R and b*> = 0, show that a + b is a unit of R.

Suppose that there is an integer n > 1 such that x” = x for all elements
x of some ring. If m is a positive integer and @™ = 0 for some a, show
thata = 0.

Give an example of ring elements a and b with the properties that
ab = 0 but ba # 0.

Let n be an integer greater than 1. In a ring in which x" = x for all x,
show that ab = 0 implies ba = 0.

Suppose that R is a ring such that x* = x for all x in R. Prove that
6x = O forall xin R.

Suppose that a belongs to a ring and a* = a?. Prove that a** = a
foralln = 1.

Find an integer n > 1 such that ¢" = a for all a in Z. Do the same
for Z, . Show that no such n exists for Z when m is divisible by the
square of some prime.

2

Let m and n be positive integers and let k be the least common mul-
tiple of m and n. Show that mZ N nZ = kZ.

Explain why every subgroup of Z under addition is also a subring
of Z .

Is Z, a subring of Z ,?

Suppose that R is a ring with unity 1 and « is an element of R such
that a> = 1. Let S = {ara | r € R}. Prove that S is a subring of R.
Does S contain 1?

Let M,(Z) be the ring of all 2 X 2 matrices over the integers and let R =
{ [ a a+ b}
a+b b

of M(Z).

Let M(Z) be the ring of all 2 X 2 matrices over the integers and let R =
a a—»>b

(B

ring of M,(2).

= {3

of M,(2).
LetR=ZDZD® Zand S = {(a,b,c) ER I a + b= c}. Prove or
disprove that S is a subring of R.

a,be”z } Prove or disprove that R is a subring

a, b e Z}. Prove or disprove that R is a sub-

a,be”z } Prove or disprove that R is a subring

Suppose that there is a positive even integer n such that a” = a for
all elements a of some ring. Show that —a = a for all a in the ring.
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Let R be a ring with unity 1. Show that S = {n - 11 n € Z} is a sub-
ring of R.

Show that 2Z U 3Z is not a subring of Z.

Determine the smallest subring of Q that contains 1/2. (That is,
find the subring S with the property that S contains 1/2 and, if T is
any subring containing 1/2, then T contains S.)

Determine the smallest subring of Q that contains 2/3.

Let R be a ring. Prove that a> — b> = (a + b)(a — b) for all a, b in
R if and only if R is commutative.

Suppose that R is a ring and that a®> = a for all a in R. Show that R
is commutative. [A ring in which a> = a for all a is called a
Boolean ring, in honor of the English mathematician George Boole
(1815-1864).]

Give an example of a Boolean ring with four elements. Give an ex-
ample of an infinite Boolean ring.

Theory is the general; experiments are the soldiers.

LEONARDO DA VINCI

Software for the computer exercises in this chapter is available at the
website:

1.

http://www.d.umn.edu/~jgallian

This software finds all solutions to the equation x> + y> = 0 in z,
Run the software for all odd primes up to 37. Make a conjecture
about the existence of nontrivial solutions in Zp (p a prime) and the
form of p.

. LetZ [i] = {a + bil a, bbelong to Z , i> = —1} (the Gaussian inte-

gers modulo 7). This software finds the group of units of this ring
and the order of each element of the group. Run the program for
n = 3,7, 11, and 23. Is the group of units cyclic for these cases? Try
to guess a formula for the order of the group of units of Z [i] as a
function of n when 7 is a prime and » mod 4 = 3. Run the program
for n = 9 and 27. Are the groups cyclic? Try to guess a formula for
the order when n = 3*. Run the program for n = 5, 13, 17, and 29.
Is the group cyclic for these cases? What is the largest order of any
element in the group? Try to guess a formula for the order of the
group of units of Z [/] as a function of n when n is a prime and
n mod 4 = 1. Try to guess a formula for the largest order of any


http://www.d.umn.edu/~jgallian
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element in the group of units of Z [i] as a function of n when n is a
prime and n mod 4 = 1. On the basis of the orders of the elements
of the group of units, try to guess the isomorphism class of the
group. Run the program for n = 25. Is this group cyclic? Based on
the number of elements in this group and the orders of the elements,
try to guess the isomorphism class of the group.

. This software determines the isomorphism class of the group of

units of Z [i]. Run the program for n = 5, 13, 17, 29, and 37. Make
a conjecture. Run the program for n = 3, 7, 11, 19, 23, and 31.
Make a conjecture. Run the program for n = 5, 25, and 125. Make
a conjecture. Run the program for n = 13 and 169. Make a conjec-
ture. Run the program for n = 3, 9, and 27. Make a conjecture. Run
the program for n = 7 and 49. Make a conjecture. Run the program
forn = 11 and 121. Make a conjecture. Make a conjecture about
the case where n = p* where p is a prime and p mod 4 = 1. Make
a conjecture about the case where n = p* where p is a prime and
pmod4 = 3.

. This software determines the order of the group of units in the ring

of 2 X 2 matrices over Z (that is, the group GL(2, Z)) and the sub-
group SL(2, Z ). Run the program for n = 2, 3, 5,7, 11, and 13.
What relationship do you see between the order of GL(2, Z ) and the
order of SL(2, Z ) in these cases? Run the program for n =16, 27,
25, and 49. Make a conjecture about the relationship between the or-
der of GL(2, Z ) and the order of SL(2, Z ) when n is a power of a
prime. Run the program for n = 32. (Notice that when you run the
program for n = 32, the table shows the orders for all divisors of 32
greater than 1.) How do the orders of the two groups change each
time you increase the power of 2 by 1? Run the program for n = 27.
How do the orders of the two groups change each time you increase
the power of 3 by 1? Run the program for n = 25. How do the orders
of the two groups change when you increase the power of 5 by 1?
Make a conjecture about the relationship between |SL(2, Z,)! and
ISL(2, Z ..,)|. Make a conjecture about the relationship between
IGL(2, Zp,)l and IGL(2, Zp,ﬂ)l. Run the program for n = 12, 15, 20,
21, and 30. Make a conjecture about the order of GL(2, Z)) in terms
of the orders of GL(2, Z ) and GL(2, Z) where n = st and s and ¢ are
relatively prime. (Notice that when you run the program for st, the
table shows the values for st, s, and t.) For each value of n, is the or-
der of SL(2, Z ) divisible by n? Is it divisible by n + 1? Is it divisible
byn — 17

. In the ring Z , this software finds the number of solutions to the

equation x* = — 1. Run the program for all primes between 3 and 29.
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How does the answer depend on the prime? Make a conjecture about
the number of solutions when 7 is a prime greater than 2. Run the
program for the squares of all primes between 3 and 29. Make a con-
jecture about the number of solutions when n is the square of a
prime greater than 2. Run the program for the cubes of primes be-
tween 3 and 29. Make a conjecture about the number of solutions
when 7 is any power of an odd prime. Run the program for n = 2, 4,
8, 16, and 32. Make a conjecture about the number of solutions
when 7 is a power of 2. Run the program for n = 12, 20, 24, 28,
and 36. Make a conjecture about the number of solutions when 7 is a
multiple of 4. Run the program for various cases where n = pq and
n = 2pq where p and g are odd primes. Make a conjecture about the
number of solutions when n = pg or n = 2pq where p and g are odd
primes. What relationship do you see among the numbers of solu-
tions for n = p, n = g, and n = pq? Run the program for various
cases where n = pqr and n = 2pqr where p, g, and r are odd primes.
Make a conjecture about the number of solutions when n = pgr or
n = 2pqr where p, g, and r are odd primes. What relationship do you
see among the numbers of solutions whenn = p,n =g, andn = r
and the case that n = pgr?

6. This software determines the number of solutions to the equation
X* = —I where X is a2 X 2 matrix with entries from Z and I is the
identity. Run the program for n = 32. Make a conjecture about the
number of solutions when n = 2f where k > 1. Run the program
forn =3, 11, 19, 23, and 31. Make a conjecture about the number
of solutions when 7 is a prime of the form 4¢ + 3. Run the pro-
gram for n = 27 and 49. Make a conjecture about the number of
solutions when n has the form p’ where p is a prime of the form
4g + 3. Run the program for n = 5, 13, 17, 29, and 37. Make a
conjecture about the number of solutions when 7 is a prime of the
form 4¢g + 1. Run the program for n = 6, 10, 14, 22, 15, 21, 33, 39,
30, 42. What seems to be the relationship between the number of
solutions for a given n and the number of solutions for the prime
power factors of n?

D. B. Erickson, “Orders for Finite Noncommutative Rings,” American
Mathematical Monthly 73 (1966): 376-377.

In this elementary paper, it is shown that there exists a noncommutative ring
of order m > 1 if and only if m is divisible by the square of a prime.



I. N. Herstein

A whole generation of textbooks and an entire
generation of mathematicians, myself included,
have been profoundly influenced by that text
[Herstein’s Topics in Algebra].

GEORGIA BENKART

1. N. HERSTEIN was born on March 28, 1923,
in Poland. His family moved to Canada
when he was seven. He grew up in a poor and
tough environment, on which he commented
that in his neighborhood you became either a
gangster or a college professor. During his
school years he played football, hockey, golf,
tennis, and pool. During this time he worked
as a steeplejack and as a barber at a fair.
Herstein received a B.S. degree from the
University of Manitoba, an M.A. from the
University of Toronto, and, in 1948, a Ph.D.
degree from Indiana University under the su-
pervision of Max Zorn. Before permanently
settling at the University of Chicago in 1962,
he held positions at the University of Kansas,
the Ohio State University, the University of
Pennsylvania, and Cornell University.
Herstein wrote more than 100 research
papers and a dozen books. Although his
principal interest was noncommutative ring
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theory, he also wrote papers on finite
groups, linear algebra, and mathematical
economics. His textbook Topics in Algebra,
first published in 1964, dominated the field
for 20 years and has become a classic.
Herstein had great influence through his
teaching and his collaboration with col-
leagues. He had 30 Ph.D. students, and
traveled and lectured widely. His nonmath-
ematical interests included languages and
art. He spoke Italian, Hebrew, Polish, and
Portuguese. Herstein died on February 9,
1988, after a long battle with cancer.

To find more information about Herstein,
visit:

http://www-groups.dcs.st-
and.ac.uk/~history/
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Integral Domains

Don't just read it! Ask your own questions, look for your own examples,
discover your own proofs. Is the hypothesis necessary? Is the converse

true? What happens in the classical special case? Where does the proof
use the hypothesis?

PAUL HALMOS

Definition and Examples

To a certain degree, the notion of a ring was invented in an attempt to
put the algebraic properties of the integers into an abstract setting. A
ring is not the appropriate abstraction of the integers, however, for too
much is lost in the process. Besides the two obvious properties of com-
mutativity and existence of a unity, there is one other essential feature
of the integers that rings in general do not enjoy—the cancellation
property. In this chapter, we introduce integral domains—a particular
class of rings that have all three of these properties. Integral domains
play a prominent role in number theory and algebraic geometry.

A zero-divisor is a nonzero element a of a commutative ring R such

| Definition Zero-Divisors
that there is a nonzero element b € R with ab = 0.

Definition Integral Domain
| An integral domain is a commutative ring with unity and no

zero-divisors.

Thus, in an integral domain, a product is 0 only when one of the
factors is 0; that is, ab = 0 only when a = 0 or b = 0. The following
examples show that many familiar rings are integral domains and some
familiar rings are not. For each example, the student should verify the
assertion made.

B EXAMPLE 1 The ring of integers is an integral domain. |
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B EXAMPLE 2 The ring of Gaussian integers Z[i] = {a + bila,b € Z}
is an integral domain. i

B EXAMPLE 3 The ring Z[x] of polynomials with integer coefficients
is an integral domain. |

B EXAMPLE 4 The ring Z[V2] = {a + b\/2 | a, b € Z} is an integral
domain. |

B EXAMPLE 5 The ring Z, of integers modulo a prime p is an integral
domain. |

B EXAMPLE 6 The ring Z, of integers modulo 7 is not an integral do-
main when 7 is not prime. |

B EXAMPLE 7 The ring M,(Z) of 2 X 2 matrices over the integers is
not an integral domain. |

I EXAMPLE 8 Z @ Zis not an integral domain. |

What makes integral domains particularly appealing is that they have
an important multiplicative group-theoretic property, in spite of the fact
that the nonzero elements need not form a group under multiplication.
This property is cancellation.

B Theorem 13.1 Cancellation

Fields

Let a, b, and c belong to an integral domain. If a # 0 and ab = ac,
then b = c.

PROOF From ab = ac, we have a(b — ¢) = 0. Since a # 0, we must
have b — ¢ = 0. |

Many authors prefer to define integral domains by the cancellation
property—that is, as commutative rings with unity in which the cancel-
lation property holds. This definition is equivalent to ours.

In many applications, a particular kind of integral domain called a field
is necessary.

Definition Field
A field is a commutative ring with unity in which every nonzero
element is a unit.
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To verify that every field is an integral domain, observe that if a and
b belong to a field with a # 0 and ab = 0, we can multiply both sides
of the last expression by a~! to obtain b = 0.

It is often helpful to think of ab~! as a divided by b. With this in
mind, a field can be thought of as simply an algebraic system that
is closed under addition, subtraction, multiplication, and division
(except by 0). We have had numerous examples of fields: the complex
numbers, the real numbers, the rational numbers. The abstract theory
of fields was initiated by Heinrich Weber in 1893. Groups, rings, and
fields are the three main branches of abstract algebra. Theorem 13.2
says that, in the finite case, fields and integral domains are the same.

I Theorem 13.2 Finite Integral Domains Are Fields

A finite integral domain is a field.

PROOF Let D be a finite integral domain with unity 1. Let a be any
nonzero element of D. We must show that a is a unit. If a = 1, a is its
own inverse, so we may assume that a # 1. Now consider the following
sequence of elements of D: a, a®, a°, . . .. Since D is finite, there must
be two positive integers i and j such that i > j and a’ = a/. Then, by can-
cellation, @’/ = 1. Since a # 1, we know that i — j > 1, and we have
shown that a’ 7~ is the inverse of a. |

i Corollary Z,Is aField

For every prime p, Z,, the ring of integers modulo p, is a field.

PROOF According to Theorem 13.2, we need only prove that Z, has
no zero-divisors. So, suppose that a, b € Z, and ab = 0. Then ab = pk
for some integer k. But then, by Euclid’s Lemma (see Chapter 0), p
divides a or p divides b. Thus, in Z,, a = 0 or b = 0. |

Putting the preceding corollary together with Example 6, we see that
Z, is a field if and only if n is prime. In Chapter 22, we will describe
how all finite fields can be constructed. For now, we give one example
of a finite field that is not of the form Z,.

B EXAMPLE 9 Field with Nine Elements
Let Z3[l] = {a + bi | a, b e Z3}
={0,1,2,i, 1 +i,2+i,2i, 1 +2i,2 + 2i},
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where i> = —1. This is the ring of Gaussian integers modulo 3. Ele-
ments are added and multiplied as in the complex numbers, except that
the coefficients are reduced modulo 3. In particular, —1 = 2. Table 13.1
is the multiplication table for the nonzero elements of Z;[i]. |

Table 13.1 Multiplication Table for Z,[i]*

1 2 i 1+i 2+i 2i 142 2+2i
1 1 2 i 1+i 2+i 2 1+2i 2+2i
2 2 1 2i 242 142 i 240 1+
i i 2i 2 240 242 1 1+i  1+2i
T4i | 1+i 242 2+i 2 1 1+2i 2 i
240 | 240 142 2+2 1 i 1+i 2 2
2i 2i i 1 1+2 1+i 2 242 2+i
142 | 1+2i 2+i 1+i 2 2i 242 i 1
242 | 242 1+i 142 i 2 240 1 2i

B EXAMPLE 10 Let O[V2] = {a + bV2 1 a, b € Q). 1tis easy to see
that Q[\V/2] is a ring. Viewed as an element of R, the multiplicative in-
verse of any nonzero element of the form a + b\/2 is simply 1/(a +
b\V'2). To verify that O[V2] is a field, we must show that 1/(a + b\V/2)
can be written in the form ¢ + d\/2. In high school algebra, this process
is called “rationalizing the denominator.” Specifically,

1 B 1 a—bV2 B a B b NG
a+bV2 a+bV2a-bV2 a—200 o —200
(Note that a + b\/2 # 0 guarantees that a — b\V/2 # 0.) |

Characteristic of a Ring

Note that for any element x in Z;[i], we have 3x = x + x + x = 0, since
addition is done modulo 3. Similarly, in the subring {0, 3, 6, 9} of Z;,,
we have 4x = x + x + x + x = O for all x. This observation motivates
the following definition.

Definition Characteristic of a Ring

The characteristic of a ring R is the least positive integer n such that
nx = 0 for all x in R. If no such integer exists, we say that R has char-
acteristic 0. The characteristic of R is denoted by char R.

Thus, the ring of integers has characteristic 0, and Z, has character-
istic n. An infinite ring can have a nonzero characteristic. Indeed, the
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ring Z,[x] of all polynomials with coefficients in Z, has characteristic 2.
(Addition and multiplication are done as for polynomials with ordinary
integer coefficients except that the coefficients are reduced modulo 2.)
When a ring has a unity, the task of determining the characteristic is
simplified by Theorem 13.3.

I Theorem 13.3 Characteristic of a Ring with Unity

Let R be a ring with unity 1. If 1 has infinite order under addition,
then the characteristic of R is 0. If 1 has order n under addition,
then the characteristic of R is n.

PROOF If 1 has infinite order, then there is no positive integer n such
that n - 1 = 0, so R has characteristic 0. Now suppose that 1 has addi-
tive order n. Then n - 1 = 0, and # is the least positive integer with this
property. So, for any x in R, we have

n-x=x+x+---+ x(nsummands)
=1Ix+ 1x + -+ + 1x (n summands)
=({1+1+---+ DIx(nsummands)
=mn-DHx=0=0.

Thus, R has characteristic n. |

In the case of an integral domain, the possibilities for the character-
istic are severely limited.

I Theorem 13.4 Characteristic of an Integral Domain

The characteristic of an integral domain is 0 or prime.

PROOF By Theorem 13.3, it suffices to show that if the additive order
of 1 is finite, it must be prime. Suppose that 1 has order n and that n = st,
where 1 = s, t = n. Then, by Exercise 15 in Chapter 12,

O=n-1=(t-1=(s-1)r-1).

So,s -1 =0ort-1=0. Since n is the least positive integer with the
property that n -+ 1 = 0, we must have s = n or t = n. Thus, n is
prime. |

We conclude this chapter with a brief discussion of polynomials
with coefficients from a ring—a topic we will consider in detail in
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later chapters. The existence of zero-divisors in a ring causes unusual
results when one is finding zeros of polynomials with coefficients in
the ring. Consider, for example, the equation x> — 4x + 3 = 0. In the
integers, we could find all solutions by factoring

P =dx+3=x—-3)x—-1)=0

and setting each factor equal to 0. But notice that when we say we can
find all solutions in this manner, we are using the fact that the only way
for a product to equal 0O is for one of the factors to be 0—that is, we are
using the fact that Z is an integral domain. In Z;,, there are many pairs of
nonzero elements whose products are 0: 2 -6 =0,3- 4=0,4-6 = 0,
6 - 8 = 0, and so on. So, how do we find all solutions of x> — 4x + 3 = 0
in Z;,? The easiest way is simply to try every element! Upon doing so,
we find four solutions: x = 1, x = 3, x = 7, and x = 9. Observe that we
can find all solutions of x> — 4x + 3 = 0 over Z,, or Z;3, say, by setting
the two factors x — 3 and x — 1 equal to 0. Of course, the reason this
works for these rings is that they are integral domains. Perhaps this will
convince you that integral domains are particularly advantageous rings.
Table 13.2 gives a summary of some of the rings we have introduced and
their properties.

Table 13.2 Summary of Rings and Their Properties

Integral
Ring Form of Element Unity Commutative Domain Field Characteristic
Z k 1 Yes Yes No 0
Z,, n composite  k 1 Yes No No n
Z,, p prime k 1 Yes Yes  Yes P
Z|x] ax"+ -+ fix) =1 Yes Yes No 0
ax + ag
nZ,n>1 nk None Yes No No 0
[a b} 1 0]
My(Z) ¢ d 0 1 No No No 0
2a 2b
M>(27) |: 2% 2 d] None No No No 0
Z]i] a + bi 1 Yes Yes No 0
Z5li] a+bia, b€ Zy 1 Yes Yes Yes 3
ZIV2] a+bV2sab€EZ 1 Yes Yes  No 0
Q[\/i] a+ b\ﬁ; abeQ 1 Yes Yes Yes 0
VA VA (a, b) (1, 1) Yes No No 0
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It looked absolutely impossible. But it so happens that you go on worrying
away at a problem in science and it seems to get tired, and lies down and
lets you catch it.

10.

11.

12.

13.

14.

15.
16.

WILLIAM LAWRENCE BRAGGT

. Verify that Examples 1 through 8 are as claimed.

Which of Examples 1 through 5 are fields?

. Show that a commutative ring with the cancellation property

(under multiplication) has no zero-divisors.

. List all zero-divisors in Z,,. Can you see a relationship between the

zero-divisors of Z,, and the units of Z,,?

. Show that every nonzero element of Z, is a unit or a zero-divisor.
. Find a nonzero element in a ring that is neither a zero-divisor nor a

unit.

. Let R be a finite commutative ring with unity. Prove that every

nonzero element of R is either a zero-divisor or a unit. What hap-
pens if we drop the “finite” condition on R?

Describe all zero-divisors and units of Z® Q & Z.

. Let d be an integer. Prove that ZIVd]l ={a+bVdla,bEZ}is

an integral domain. (This exercise is referred to in Chapter 18.)

In Z;, give a reasonable interpretation for the expressions 1/2,
—2/3,V/=3, and —1/6.

Give an example of a commutative ring without zero-divisors that
is not an integral domain.

Find two elements a and b in a ring such that both a and b are zero-
divisors, a + b # 0, and a + b is not a zero-divisor.

Let a belong to a ring R with unity and suppose that a” = 0 for
some positive integer n. (Such an element is called nilpotent.)
Prove that 1 — @ has a multiplicative inverse in R. [Hint: Consider
l-ad+a+a*+---+a )]

Show that the nilpotent elements of a commutative ring form a
subring.

Show that O is the only nilpotent element in an integral domain.

A ring element a is called an idempotent if a*> = a. Prove that the
only idempotents in an integral domain are 0 and 1.

"Bragg, at age 24, won the Nobel Prize for the invention of x-ray crystallography. He
remains the youngest person ever to receive the Nobel Prize.
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17.

18.

19.
20.
21.
22,

23.
24,

25.

26.

27.

28.

29.

30.

31.
32,

33.

Let a and b be idempotents in a commutative ring. Show that each
of the following is also an idempotent: ab, a — ab, a + b — ab,
a+ b — 2ab.

Prove that if a is a ring idempotent, then @" = a for all positive inte-
gers n.

Determine all ring elements that are both nilpotents and idempotents.
Find a zero-divisor in Zs[i] = {a + bi | a, b € Zs}.

Find an idempotent in Zs[i] = {a + bi |l a, b € Zs}.

Find all units, zero-divisors, idempotents, and nilpotent elements
in Z3 @ Z6’

Determine all elements of a ring that are both units and idempotents.
Let R be the set of all real-valued functions defined for all real
numbers under function addition and multiplication.

a. Determine all zero-divisors of R.

b. Determine all nilpotent elements of R.

¢. Show that every nonzero element is a zero-divisor or a unit.
(Subfield Test) Let F be a field and let K be a subset of F with at
least two elements. Prove that K is a subfield of F if, for any
a,b(b# 0)inK,a — b and ab~! belong to K.

Let d be a positive integer. Prove that Q[Vd] = {a + bVd |
a, b € Q} is afield.

Let R be a ring with unity 1. If the product of any pair of nonzero
elements of R is nonzero, prove that ab = 1 implies ba = 1.

Let R = {0, 2, 4, 6, 8} under addition and multiplication modulo
10. Prove that R is a field.

Formulate the appropriate definition of a subdomain (that is, a
“sub” integral domain). Let D be an integral domain with unity 1.
Show that P = {n - 1 | n € Z} (that is, all integral multiples of 1)
is a subdomain of D. Show that P is contained in every subdomain
of D. What can we say about the order of P?

Prove that there is no integral domain with exactly six elements. Can
your argument be adapted to show that there is no integral domain
with exactly four elements? What about 15 elements? Use these ob-
servations to guess a general result about the number of elements in
a finite integral domain.

Let F be a field of order 2". Prove that char F' = 2.

Determine all elements of an integral domain that are their own in-
verses under multiplication.

Characterize those integral domains for which 1 is the only ele-
ment that is its own multiplicative inverse.



34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.
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Determine all integers n > 1 for which (n — 1)! is a zero-divisor

inZ,.

Suppose that a and b belong to an integral domain.

a. If & = b’ and @® = b3, prove thata = b.

b. If a” = V™ and a" = b", where m and n are positive integers that
are relatively prime, prove that a = b.

Find an example of an integral domain and distinct positive inte-

gers m and n such that @™ = b™ and @ = b", but a # b.

If a is an idempotent in a commutative ring, show that 1 — a is also

an idempotent.

Construct a multiplication table for Z,[i], the ring of Gaussian in-

tegers modulo 2. Is this ring a field? Is it an integral domain?

The nonzero elements of Z;[i] form an Abelian group of order 8 un-

der multiplication. Is it isomorphic to Zg, Z, D Z,, or Z, D Z, D Z,?

Show that Z,[\V/3] = {a + b\/3 | a, b € Z;} is a field. For any

positive integer k and any prime p, determine a necessary and suf-

ficient condition for Z,[Vk] = {a + bVk | a, b € Z,} to be a field.

Show that a finite commutative ring with no zero-divisors and at

least two elements has a unity.

Suppose that a and b belong to a commutative ring and ab is a

zero-divisor. Show that either a or b is a zero-divisor.

Suppose that R is a commutative ring without zero-divisors. Show

that all the nonzero elements of R have the same additive order.

Suppose that R is a commutative ring without zero-divisors. Show

that the characteristic of R is O or prime.

Let x and y belong to a commutative ring R with prime character-

istic p.

a. Show that (x + y)? = xP + yP,

b. Show that, for all positive integers n, (x + y)?" = x?" + y»".

c. Find elements x and y in a ring of characteristic 4 such that
(x + y)* # x* + y* (This exercise is referred to in Chapter 20.)

Let R be a commutative ring with unity 1 and prime characteristic.
If a € R is nilpotent, prove that there is a positive integer k such that
(I +ak=1.

Show that any finite field has order p”, where p is a prime. Hint: Use
facts about finite Abelian groups. (This exercise is referred to in
Chapter 22.)

Give an example of an infinite integral domain that has character-
istic 3.

Let R be aring and let M,(R) be the ring of 2 X 2 matrices with entries
from R. Explain why these two rings have the same characteristic.
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50.

S1.
S2.
53.

54.

SS.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Let R be a ring with m elements. Show that the characteristic of R
divides m.

Explain why a finite ring must have a nonzero characteristic.

Find all solutions of x> — x + 2 = 0 over Z[i]. (See Example 9.)
Consider the equation x> — 5x + 6 = 0.

a. How many solutions does this equation have in Z,?

b. Find all solutions of this equation in Zg.

¢. Find all solutions of this equation in Z;,.

d. Find all solutions of this equation in Z, .

Find the characteristic of Z, © 4Z.

Suppose that R is an integral domain in which 20 - 1 = 0 and
12-1=0. (Recall that n - 1 meansthesum 1 + 1 + - - - + 1 with
n terms.) What is the characteristic of R?

In a commutative ring of characteristic 2, prove that the idempo-
tents form a subring.

Describe the smallest subfield of the field of real numbers that con-
tains \/2. (That is, describe the subfield K with the property that K
contains V2 and if F is any subfield containing V2, then F con-
tains K.)

Let F be a finite field with n elements. Prove that x"~! = 1 for all
nonzero x in F.

Let F be a field of prime characteristic p. Prove that K = {x € F|
xP = x} is a subfield of F.

Suppose that a and b belong to a field of order 8 and that a> + ab +
b*> = 0. Prove that @ = 0 and b = 0. Do the same when the field has
order 2" with n odd.

Let F be a field of characteristic 2 with more than two elements.
Show that (x + y)* # x> + y? for some x and y in F.

Suppose that F is a field with characteristic not 2, and that the
nonzero elements of F' form a cyclic group under multiplication.
Prove that F is finite.

Suppose that D is an integral domain and that ¢ is a nonconstant
function from D to the nonnegative integers such that ¢(xy) =
d(x)d(y). If x is a unit in D, show that p(x) = 1.

Let F be a field of order 32. Show that the only subfields of F are
F itself and {0, 1}.

Suppose that F is a field with 27 elements. Show that for every
elementa € F, 5a = —a.
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The basic unit of mathematics is conjecture.
ARNOLD ROSS

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software lists the idempotents (see Exercise 16 for the defini-
tion) in Z,. Run the program for various values of n. Use these data
to make conjectures about the number of idempotents in Z, as a
function of n. For example, how many idempotents are there when
n is a prime power? What about when 7 is divisible by exactly two
distinct primes? In the case where n is of the form pg where p and
q are primes, can you see a relationship between the two idempo-
tents that are not O and 1? Can you see a relationship between the
number of idempotents for a given n and the number of distinct
prime divisors of n?

2. This software lists the nilpotent elements (see Exercise 13 for the
definition) in Z,. Run the program for various values of n. Use
these data to make conjectures about the number of nilpotent ele-
ments in Z, as a function of n.

3. This software determines which rings of the form Z,[/] are fields.
Run the program for all primes up to 37. From these data, make a
conjecture about the form of the primes that yield a field.

4. This software finds the idempotents in Z,[i] = {a + bil a, b € Z,}
(Gaussian integers modulo 7). Run the software for n = 4, 8, 16, and
32. Make a conjecture about the number of idempotents when n = 2,
Run the software for n = 13, 17, 29, and 37. What do these values of
n have in common? Make a conjecture about the number of idempo-
tents for these n. Run the software forn = 7, 11, 19, 23, 31, and 43.
What do these values of n have in common? Make a conjecture about
the number of idempotents for these n.

5. This software finds the nilpotent elements in Z,[i] = {a + bi |
a, b € Z,}. Run the software for n = 4, 8, 16, and 32. Make a con-
jecture about the number of nilpotent elements when n = 2%, Run the
software forn = 3,5, 7, 11, 13, and 17. What do these values of n
have in common? Make a conjecture about the number of nilpotent
elements for these n. Run the program for n = 9. Do you need to
revise the conjecture you made basedonn = 3,5, 7, 11, 13, and 17?
Run the software for n = 9, 25, and 49. What do these values
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of n have in common? Make a conjecture about the number of nilpo-
tent elements for these n. Run the program for n = 81. Do you need
to revise the conjecture you made based on n =9, 25, and 49?
What do these values of n have in common? Make a conjecture
about the number of nilpotent elements for these n. Run the pro-
gram for n = 27. Do you need to revise the conjecture you made
based on n = 9, 25, and 497 Run your program for n = 125 (this
may take a few seconds). On the basis of all of your data for this ex-
ercise, make a single conjecture in the case that n = p* where p is
any prime. Run the program for n = 6, 15, and 21. Make a conjec-
ture. Run the program for 12, 20, 28, and 45. Make a conjecture.
Run the program for 36 and 100 (this may take a few minutes). On
the basis of all your data for this exercise, make a single conjecture
that covers all integers n > 1.

6. This software determines the zero-divisors in Z,[i] = {a + bi | a,
b € Z,}. Use the software to formulate and test conjectures about the
number of zero-divisors in Z,[i] based on various conditions of 7.

Suggested Readings

Eric Berg, “A Family of Fields,” Pi Mu Epsilon 9 (1990): 154—155.

In this article, the author uses properties of logarithms and exponents
to define recursively an infinite family of fields starting with the real
numbers.

N. A. Khan, “The Characteristic of a Ring,” American Mathematical Monthly
70 (1963): 736.

Here it is shown that a ring has nonzero characteristic # if and only
if n is the maximum of the orders of the elements of R.

K. Robin McLean, “Groups in Modular Arithmetic,” The Mathematical
Gazette 62 (1978): 94-104.

This article explores the interplay between various groups of integers un-
der multiplication modulo » and the ring Z,. It shows how to construct
groups of integers in which the identity is not obvious; for example, 1977
is the identity of the group {1977, 5931} under multiplication modulo
7908.
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Ideals

Ideals and Factor Rings

The secret of science is to ask the right questions, and it is the choice of
problem more than anything else that marks the man of genius in the
scientific world.

SIR HENRY TIZARD IN C. P. SNOW,

A postscript to Science and Government

Normal subgroups play a special role in group theory—they permit us
to construct factor groups. In this chapter, we introduce the analogous
concepts for rings—ideals and factor rings.

Definition ldeal
A subring A of a ring R is called a (two-sided) ideal of R if for
every r € R and every a € A both ra and ar are in A.

So, a subring A of a ring R is an ideal of R if A “absorbs” elements
from R—thatis, if YA = {rala € A} CAand Ar = {arla€ A} C A
for all » € R.

An ideal A of R is called a proper ideal of R if A is a proper subset
of R. In practice, one identifies ideals with the following test, which is
an immediate consequence of the definition of ideal and the subring
test given in Theorem 12.3.

B Theorem 14.1 ldeal Test
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A nonempty subset A of a ring R is an ideal of R if

1. a — b € A whenevera, b € A.
2. raand ar are in A whenevera € A andr € R.
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B EXAMPLE 1 For any ring R, {0} and R are ideals of R. The ideal {0}
is called the trivial ideal. |

# EXAMPLE 2 For any positive integer n, the set nZ = {0, *n,
*2n, ...} 1is an ideal of Z. |

I EXAMPLE 3 Let R be a commutative ring with unity and let a € R.
The set (a) = {ra | r € R} is an ideal of R called the principal ideal
generated by a. (Notice that (a) is also the notation we used for
the cyclic subgroup generated by a. However, the intended meaning
will always be clear from the context.) The assumption that R is com-
mutative is necessary in this example (see Exercise 29 in the Sup-
plementary Exercises for Chapters 12—14). |

B EXAMPLE 4 Let R[x] denote the set of all polynomials with real co-
efficients and let A denote the subset of all polynomials with constant
term 0. Then A is an ideal of R[x] and A = (x). |

# EXAMPLE 5 Let R be a commutative ring with unity and let a,,
a, ..., a,belong to R. Then I = {ay, ay, ..., a,) = {ra; + na, +
-+ + ra, | r, € R} is an ideal of R called the ideal generated by a,
a,, . . ., a,. The verification that / is an ideal is left as an easy exercise
(Exercise 3). |

B EXAMPLE 6 Let Z[x] denote the ring of all polynomials with inte-
ger coefficients and let / be the subset of Z[x] of all polynomials with
even constant terms. Then 7 is an ideal of Z[x] and I = {x, 2) (see
Exercise 37). |

B EXAMPLE 7 Let R be the ring of all real-valued functions of a real
variable. The subset S of all differentiable functions is a subring of R
but not an ideal of R. |

Factor Rings

Let R be aring and let A be an ideal of R. Since R is a group under addi-
tion and A is a normal subgroup of R, we may form the factor group
R/IA = {r + A | r € R}. The natural question at this point is: How may
we form a ring of this group of cosets? The addition is already taken care
of, and, by analogy with groups of cosets, we define the product of two
cosets of s + A and t + A as st + A. The next theorem shows that this de-
finition works as long as A is an ideal, and not just a subring, of R.
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1 Theorem 14.2 Existence of Factor Rings

Let R be a ring and let A be a subring of R. The set of cosets {r + A |
r € R} is a ring under the operations (s + A) + (t + A)=s+t+ A
and (s + A)(t + A) = st + A if and only if A is an ideal of R.

PROOF We know that the set of cosets forms a group under addition.
Once we know that multiplication is indeed a binary operation on the
cosets, it is trivial to check that the multiplication is associative and
that multiplication is distributive over addition. Hence, the proof boils
down to showing that multiplication is well defined if and only if A is
an ideal of R. To do this, let us suppose that A is an ideal and let s + A =
s'+Aandt+ A =1t + A Then we must show that st + A = s't' + A.
Well, by definition, s = s" + a and r = t' + b, where a and b belong
to A. Then

st=(s"+a)t' +b)=s"t +at' +s'b+ ab,
and so
st+A=s"t' +at’' +s'b+ab+A=5s"t +A,

since A absorbs at’ + s'b + ab. Thus, multiplication is well defined
when A is an ideal.

On the other hand, suppose that A is a subring of R that is not an
ideal of R. Then there exist elements a € A and r € R such that ar & A
or ra & A. For convenience, say ar & A. Consider the elements a + A =
0 + A and r + A. Clearly, (a + A)(r + A) = ar + Abut (0 + A) -
(r+A)=0-r+A=A.Sincear + A # A, the multiplication is not
well defined and the set of cosets is not a ring. |

Let’s look at a few factor rings.
B EXAMPLE 8 Z/4Z={0+4Z,1 +4Z,2 + 4Z,3 + 4Z}. To see how
to add and multiply, consider 2 + 4Z and 3 + 4Z.

Q+42)+ B +4Z)=5+4Z=1+4+4Z=1+4Z
Q+47)(B +42) =6 +4Z=2+4+4Z =2+ 4Z

One can readily see that the two operations are essentially modulo 4
arithmetic. i



14 | Ideals and Factor Rings 265

§ EXAMPLE 9 27/6Z = {0 + 6Z,2 + 6Z, 4 + 6Z}. Here the opera-
tions are essentially modulo 6 arithmetic. For example, (4 + 6Z) +
4+6Z)=2+6Zand (4 + 6Z2)(4 + 6Z) =4 + 6Z. |

Here is a noncommutative example of an ideal and factor ring.

a, a
B EXAMPLE 10 Let R = {{ ]
as dy

subset of R consisting of matrices with even entries. It is easy to
show that / is indeed an ideal of R (Exercise 21). Consider the factor
ring R/I. The interesting question about this ring is: What is its size?

a;, € Z}and let 1 be the

We claim R/I has 16 elements; in fact, R/I = {{rl rz} +1 | r,-E {0, 1}}
ry oI,

An example illustrates the typical situation. Which of the 16 elements

7 8 7 8 1 0
is { ] + I?7 Well, observe that [ } + 1= [ } +
5 =3 5 =3 1 1

6 8 1 0
[4 _4] + 1= L J + 1, since an ideal absorbs its own elements.
The general case is left to the reader (Exercise 23). |

B EXAMPLE 11 Consider the factor ring of the Gaussian integers
R = Z[i]/(2 — i). What does this ring look like? Of course, the elements
of R have the form a + bi + (2 — i), where a and b are integers, but the
important question is: What do the distinct cosets look like? The fact
that2 — i + (2 — i) = 0 + (2 — i) means that when dealing with coset
representatives, we may treat 2 — i as equivalent to 0, so that 2 = i. For
example, thecoset3 +4i+ 2 —i)=3+8+2—i)=11+2 — ).
Similarly, all the elements of R can be written in the form a + (2 — i),
where a is an integer. But we can further reduce the set of distinct coset
representatives by observing that when dealing with coset representa-
tives, 2 = i implies (by squaring both sides) that 4 = —1 or 5 = 0.
Thus, thecoset3 +4i+ 2 - =11+2-H=1+5+5+2—-i)=
1 + (2 — i). In this way, we can show that every element of R is equal to
one of the following cosets: 0 + (2 — i), 1 + 2 —i),2 + (2 —i),3 +
(2 — i), 4 + (2 — i). Is any further reduction possible? To demonstrate
that there is not, we will show that these five cosets are distinct. It suf-
fices to show that 1 + (2 — i) has additive order 5. Since 5(1 + (2 — i)) =
5+42—-i)=0+ 2 —1i),1+ (2 —i)hasorder 1 or 5. If the order is
actually I,then 1 + 2 — ) =0+ 2 —i),so 1 € (2 — i). Thus, 1 =
(2 — 1) (a + bi) =2a + b + (—a + 2b)i for some integers a and b. But
this equation implies that 1 = 2a + band 0 = —a + 2b, and solving these
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simultaneously yields » = 1/5, which is a contradiction. It should be
clear that the ring R is essentially the same as the field Zs. |

B EXAMPLE 12 Let R[x] denote the ring of polynomials with real co-
efficients and let (x> + 1) denote the principal ideal generated by
x2 + 1; that is,

&+ 1) = {fx)E>+ 1D 1 Ax) € Rlx]).
Then

R[x]/{x2 + 1) = {g(x) + (x2 + 1) | g(x) € R[x]}
={ax+b+{x*+1)la bER}.

To see this last equality, note that if g(x) is any member of R[x], then
we may write g(x) in the form g(x)(x> + 1) + r(x), where g(x) is the
quotient and r(x) is the remainder upon dividing g(x) by x> + 1. In
particular, r(x) = 0 or the degree of r(x) is less than 2, so that r(x) =
ax + b for some a and b in R. Thus,

g+ @+ D =gx)x*+ 1)+ rx) + x>+ 1)
=r(x) + %+ 1),

since the ideal (x> + 1) absorbs the term g(x)(x*> + 1).
How is multiplication done? Since

PH1I+E@+1)=0+ &7+ 1),

one should think of x> + 1 as 0 or, equivalently, as x> = —1. So, for
example,

+3+EE+1) - 2x+5+&2+ 1))
=22+ 1lx+ 15+ &2+ 1)=11x+ 13+ &% + 1).

In view of the fact that the elements of this ring have the form ax +
b + (x> + 1), where x> + (x> + 1) = —1 + (x> + 1), it is perhaps not
surprising that this ring turns out to be algebraically the same ring as
the ring of complex numbers. This observation was first made by
Cauchy in 1847. |

Examples 11 and 12 illustrate one of the most important applica-
tions of factor rings—the construction of rings with highly desirable
properties. In particular, we shall show how one may use factor rings
to construct integral domains and fields.
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Prime Ideals and Maximal Ideals

Definition Prime Ideal, Maximal Ideal

A prime ideal A of a commutative ring R is a proper ideal of R such
thata,b € Rand ab € A imply a € A or b € A. A maximal ideal of a
commutative ring R is a proper ideal of R such that, whenever B is an
idealof Rand A C BC R,then B= Aor B = R.

So, the only ideal that properly contains a maximal ideal is the en-
tire ring. The motivation for the definition of a prime ideal comes from
the integers.

B EXAMPLE 13 Let n be an integer greater than 1. Then, in the ring of
integers, the ideal nZ is prime if and only if n is prime (Exercise 9).
({0} is also a prime ideal of Z.) |

B EXAMPLE 14 The lattice of ideals of Zz¢ (Figure 14.1) shows that
only (2) and (3) are maximal ideals. [ |

B EXAMPLE 15 The ideal (x> + 1) is maximal in R[x]. To see this, as-
sume that A is an ideal of R[x] that properly contains (x> + 1). We will
prove that A = R[x] by showing that A contains some nonzero real
number c. [This is the constant polynomial s(x) = c for all x.] Then 1 =
(1/c)c € A and therefore, by Exercise 15, A = R[x]. To this end, let
flx) € A, but fix) & (x> + 1). Then

f0) = g + 1) + (),

where r(x) # 0 and the degree of r(x) is less than 2. It follows that
r(x) = ax + b, where a and b are not both 0, and

ax + b = r(x) = fix) — gx)(x*> + 1) € A.

36
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0

Figure 14.1
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Thus,
a*x> — b2 =(ax + b)ax —b)EA and a*(x* + 1) € A.
So,
0 # a® + b* = (a®>* + a%) — (a*>x* — b?) E A. |

B EXAMPLE 16 The ideal (x> + 1) is not prime in Z,[x], since it con-
tains (x + 1)2 = x2 + 2x + 1 = x? + 1 but does not contain x + 1. |

The next two theorems are useful for determining whether a particu-
lar ideal is prime or maximal.

1 Theorem 14.3 R/A Is an Integral Domain If and Only If A Is Prime

Let R be a commutative ring with unity and let A be an ideal of R.
Then R/A is an integral domain if and only if A is prime.

PROOF Suppose that R/A is an integral domain and ab € A. Then
(a+ A)b + A) = ab + A = A, the zero element of the ring R/A. So,
eithera + A =Aorb + A = A; that is, eithera € A or b € A. Hence,
A is prime.

To prove the other half of the theorem, we first observe that R/A is a
commutative ring with unity for any proper ideal A. Thus, our task is
simply to show that when A is prime, R/A has no zero-divisors. So, sup-
pose that A is prime and (¢ + A)(b + A) =0+ A =A.Thenab € A
and, therefore, « € A or b € A. Thus, one of a + A or b + A is the zero
coset in R/A. |

For maximal ideals, we can do even better.

1 Theorem 14.4 R/Als a Field If and Only If A Is Maximal

Let R be a commutative ring with unity and let A be an ideal of R.
Then R/A is a field if and only if A is maximal.

PROOF Suppose that R/A is a field and B is an ideal of R that properly
contains A. Let b € Bbut b & A. Then b + A is a nonzero element
of R/A and, therefore, there exists an element ¢ + A such that
b+ A (c+ A =1+ A, the multiplicative identity of R/A. Since
b € B, we have bc € B. Because

1+A=(b+A)c+A) =bc+A,
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we have 1 —bc € A C B.So,1 = (1 — bc) + bc € B. By Exercise 15,
B = R. This proves that A is maximal.

Now suppose that A is maximal and let » € R but b & A. It suffices
to show that » + A has a multiplicative inverse. (All other properties
for a field follow trivially.) Consider B = {br + al r € R,a € A}. This
is an ideal of R that properly contains A (Exercise 25). Since A is maxi-
mal, we must have B = R. Thus, 1 € B, say, | = bc + a’, where a’ € A.
Then

l1+tA=bc+a +A=bc+A=(b+A)(c+A). |

When a commutative ring has a unity, it follows from Theorems
14.3 and 14.4 that a maximal ideal is a prime ideal. The next example
shows that a prime ideal need not be maximal.

B EXAMPLE 17 The ideal (x) is a prime ideal in Z[x] but not a maxi-
mal ideal in Z[x]. To verify this, we begin with the observation that
(x) = {fix) € Z[x] | f(0) = 0} (see Exercise 29). Thus, if g(x)h(x) € (x),
then g(0)2(0) = 0. And since g(0) and 4(0) are integers, we have g(0) = 0
or h(0) = 0.

To see that (x) is not maximal, we simply note that (x) C (x, 2) C
Z|x] (see Exercise 37). |

Text not available due to copyright restrictions

1. Verify that the set defined in Example 3 is an ideal.
2. Verify that the set A in Example 4 is an ideal and that A = (x).

3. Verify that the set 7 in Example 5 is an ideal and that if J is any
ideal of R that contains a;, a,, . . ., a,, then I C J. (Hence, (a,
a, . .., a,) is the smallest ideal of R that contains ay, a,, . . . , a,.)

4. Find a subring of Z € Z that is not an ideal of Z & Z.

5. LetS={a+ bila, b€ Z biseven}. Show that S is a subring of
Z[i], but not an ideal of Z[i].

6. Find all maximal ideals in
a. Zg b. Z;. c. Z, d. Z,.

7. Let a belong to a commutative ring R. Show that aR = {ar | r € R} is
an ideal of R. If R is the ring of even integers, list the elements of 4R.

8. Prove that the intersection of any set of ideals of a ring is an ideal.
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10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22,

23.
24.

25.

26.

27.

. If nis an integer greater than 1, show that (n) = nZ is a prime ideal

of Z if and only if n is prime. (This exercise is referred to in this
chapter.)

If A and B are ideals of a ring, show that the sum of A and B,A + B =
{a+bla€ A, bE B},isanideal.

In the ring of integers, find a positive integer a such that

a. (@) =(2) + (3),

b. (a) = (6) + (8),

c. {a) = (m) + (n).

If A and B are ideals of a ring, show that the product of A and B,
AB = {a\by + ayby + - - - + a,b, | a; € A, b; € B, n a positive
integer}, is an ideal.

Find a positive integer a such that

a. (a) = 3)(4),

b. (a) = (6)(8),

c. (a) = (m)n).

Let A and B be ideals of a ring. Prove that AB C A N B.

If A is an ideal of a ring R and 1 belongs to A, prove that A = R.
(This exercise is referred to in this chapter.)

If A and B are ideals of a commutative ring R with unity and A + B = R,
show that A N B = AB.

If an ideal 7 of a ring R contains a unit, show that / = R.

Suppose that in the ring Z the ideal (35) is a proper ideal of J and J
is a proper ideal of /. What are the possibilities for J? What are the
possibilities for /?

Give an example of a ring that has exactly two maximal ideals.
Suppose that R is a commutative ring and |RI = 30. If / is an ideal
of R and I/l = 10, prove that / is a maximal ideal.

Let R and / be as described in Example 10. Prove that / is an ideal
of R.

Let I = (2). Prove that I[x] is not a maximal ideal of Z[x] even
though / is a maximal ideal of Z.

Verify the claim made in Example 10 about the size of R/I.

Give an example of a commutative ring that has a maximal ideal
that is not a prime ideal.

Show that the set B in the latter half of the proof of Theorem 14.4
is an ideal of R. (This exercise is referred to in this chapter.)

If R is a commutative ring with unity and A is a proper ideal of R,
show that R/A is a commutative ring with unity.

Prove that the only ideals of a field F are {0} and F itself.
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29.

30.

31.

32,

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.
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Show that R[x]/(x> + 1) is a field.

In Z[x], the ring of polynomials with integer coefficients, let I =
{f(x) € Z[x] | f(0) = 0}. Prove that I = (x). (This exercise is re-
ferred to in this chapter and in Chapter 15.)

Show that A = {(3x, y) | x, y € Z} is a maximal ideal of Z & Z.
Generalize. What happens if 3x is replaced by 4x? Generalize.

Let R be the ring of continuous functions from R to R. Show that
A = {f€ RIf(0) =0} is a maximal ideal of R.

Let R = Zg D Zs. Find all maximal ideals of R, and for each max-
imal ideal /, identify the size of the field R/I.

How many elements are in Z[i]/{(3 + i)? Give reasons for your
answer.

In Z[x], the ring of polynomials with integer coefficients, let / =
{f(x) € Z[x] | £(0) = 0}. Prove that I is not a maximal ideal.

InZ® Z, letl = {(a,0) ! a € Z}. Show that I is a prime ideal but
not a maximal ideal.

Let R be a ring and let / be an ideal of R. Prove that the factor ring
R/I'is commutative if and only if rs — sr € [ for all » and s in R.

In Z[x], let I = {fix) € Z[x] | f(0) is an even integer}. Prove that
I = (x, 2). Is I a prime ideal of Z[x]? Is I a maximal ideal? How
many elements does Z[x]/I have? (This exercise is referred to in
this chapter.)

Prove that I = (2 + 2i) is not a prime ideal of Z[i]. How many
elements are in Z[{]/I? What is the characteristic of Z[i]/I?

In Zs[x], let I = (x> + x + 2). Find the multiplicative inverse of 2x +
3 + Iin Zs[x]/I.

Let R be a ring and let p be a fixed prime. Show that I, = {r € R |
additive order of r is a power of p} is an ideal of R.

An integral domain D is called a principal ideal domain if every
ideal of D has the form {(a) = {ad | d € D} for some a in D. Show
that Z is a principal ideal domain. (This exercise is referred to in
Chapter 18.)

a b ros
LetRZ{[ }|a,b,dEZ} and SZ{{ ]|r,s,tEZ,s
0 d 0 ¢

is even . If S is an ideal of R, what can you say about r and ¢?

If R and S are principal ideal domains, prove that R € S is a princi-

pal ideal ring.
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44.

45.

46.

47.

48.

49.

50.
51.

52.

53.

54.

55.

56.

57.

58.
59.

60.

Let a and b belong to a commutative ring R. Prove that {x € R |
ax € bR} is an ideal.

Let R be a commutative ring and let A be any subset of R. Show
that the annihilator of A, Ann(A) = {r E Rlra = 0forallain A},
is an ideal.

Let R be a commutative ring and let A be any ideal of R. Show that
the nil radical of A, N(A) = {r € R | r" € A for some positive in-
teger n (n depends on r)}, is an ideal of R. [N({0)) is called the nil
radical of R.]

LetR = Zz7. Find

a. N(0y), b. N((3)), c. N({9)).

Let R = Zs¢. Find

a. N(0y), b. N({4)), c. N(6)).

Let R be a commutative ring. Show that R/N({0)) has no nonzero
nilpotent elements.

Let A be an ideal of a commutative ring. Prove that N(N(A)) = N(A).
Let Z,[x] be the ring of all polynomials with coefficients in Z, (that
is, coefficients are O or 1, and addition and multiplication of coef-
ficients are done modulo 2). Show that Z,[x]/{x> + x + 1) is a
field.

List the elements of the field given in Exercise 51, and make an ad-
dition and multiplication table for the field.

Show that Zs[x]/(x* + x + 1) is not a field.

Let R be a commutative ring without unity, and let a € R. Describe
the smallest ideal  of R that contains a (that is, if J is any ideal that
contains a, then I C J).

Let R be the ring of continuous functions from R to R. Let A =
{f€ R1f(0)is an even integer}. Show that A is a subring of R,
but not an ideal of R.

Show that Z[i]/{1 — i) is a field. How many elements does this
field have?

If R is a principal ideal domain and / is an ideal of R, prove that
every ideal of R/l is principal (see Exercise 41).

How many elements are in Zs[i]/{1 + i)?

Let R be a commutative ring with unity that has the property that
a* = aforall ain R. Let I be a prime ideal in R. Show that IR/l = 2.
Let R be a commutative ring with unity, and let / be a proper ideal
with the property that every element of R that is not in / is a unit of R.
Prove that / is the unique maximal ideal of R.
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61. Let I, = { fix) € Z|x] | f(0) = 0}. For any positive integer n, show
that there exists a sequence of strictly increasing ideals such that

62. Let R = {(a;, ay, a3, .. .)}, where each a; € Z. Let [ = {(ay, a»,
as, . .. )}, where only a finite number of terms are nonzero. Prove
that / is not a principal ideal of R.

63. Let R be a commutative ring with unity and let a, b € R. Show that
(a, b), the smallest ideal of R containing a and b, is [ = {ra + sb!
r, s € R}. That is, show that I contains a and b and that any ideal
that contains a and b also contains /.

Computer Exercises

What is the common denominator of intellectual accomplishment? In math,
science, economics, history, or any other subject, the answer is the same:
great thinkers notice patterns.

DAVID NIVEN, PSYCHOLOGIST

Software for the computer exercises in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software determines the number of elements in the ring Z[i]/
(a + bi) (where i* = —1). Run the program for several cases and
formulate a conjecture based on your data.

2. This software determines the characteristic of the ring Z[i]/{a + bi)
(where i = —1). Let d = gcd(a, b). Run the program for several
cases with d = 1 and formulate a conjecture based on your data.
Run the program for several cases with d > 1 and formulate a con-
jecture in terms of a, b, and d based on your data. Does the formula
you found for d > 1 also work in the case that d = 1?

3. This software determines when the ring Z[i]/{a + bi) (where i* = —1)
is isomorphic to the ring Z2, ;2. Run the program for several cases
and formulate a conjecture based on your data.


http://www.d.umn.edu/~jgallian

Richard Dedekind

Richard Dedekind was not only
a mathematician, but one of the wholly
great in the history of mathematics, now
and in the past, the last hero of a great
epoch, the last pupil of Gauss, for four
decades himself a classic, from whose
works not only we, but our teachers and
the teachers of our teachers, have drawn.

EDMUND LANDAU,
Commemorative Address
to the Royal Society of Géttingen

T EE T T R T TR T W TR T TT T

This stamp was issued by East Germany
in 1981 to commemorate the 150th
anniversary of Dedekind’s birth. Notice
that it features the representation of an
ideal as the product of powers of prime
ideals.

RicHARD DEDEKIND was born on October 6,
1831, in Brunswick, Germany, the birth-
place of Gauss. Dedekind was the youngest
of four children of a law professor. His early
interests were in chemistry and physics, but
he obtained a doctor’s degree in mathemat-
ics at the age of 21 under Gauss at the
University of Gottingen. Dedekind contin-
ued his studies at Gottingen for a few years,
and in 1854 he began to lecture there.
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Dedekind spent the years 1858—1862 as a
professor in Ziirich. Then he accepted a po-
sition at an institute in Brunswick where he
had once been a student. Although this
school was less than university level,
Dedekind remained there for the next 50
years. He died in Brunswick in 1916.

During his career, Dedekind made numer-
ous fundamental contributions to mathemat-
ics. His treatment of irrational numbers,
“Dedekind cuts,” put analysis on a firm,
logical foundation. His work on unique
factorization led to the modern theory of
algebraic numbers. He was a pioneer in the
theory of rings and fields. The notion of
ideals as well as the term itself are attributed
to Dedekind. Mathematics historian Morris
Kline has called him “the effective founder
of abstract algebra.”

To find more
Dedekind, visit:

information about

http://www-groups.dcs
.st-and.ac.uk/~history/


http://www-groups.dcs.st-and.ac.uk/~history/
http://www-groups.dcs.st-and.ac.uk/~history/

In the judgment of the most competent
living mathematicians, Fraulein Noether
was the most significant creative mathe-
matical genius thus far produced since the
higher education of women began. In the
realm of algebra, in which the most gifted
mathematicians have been busy for cen-
turies, she discovered methods which have
proved of enormous importance in the de-
velopment of the present-day younger
generation of mathematicians.

ALBERT EINSTEIN, The New York Times

EMmmy NOETHER was born on March 23,
1882, in Germany. When she entered the
University of Erlangen, she was one of
only two women among the 1000 students.
Noether completed her doctorate in 1907.
In 1916, Noether went to Gottingen and,
under the influence of David Hilbert and
Felix Klein, became interested in general
relativity. While there, she made a major
contribution to physics with her theorem
that whenever there is a symmetry in nature,
there is also a conservation law, and vice
versa. Hilbert tried unsuccessfully to obtain
a faculty appointment at Gottingen for
Noether, saying, “I do not see that the sex of
the candidate is an argument against her ad-
mission as Privatdozent. After all, we are a
university and not a bathing establishment.”

It was not until she was 38 that Noether’s
true genius revealed itself. Over the next
13 years, she used an axiomatic method to
develop a general theory of ideals and non-
commutative algebras. With this abstract
theory, Noether was able to weld together
many important concepts. Her approach was
even more important than the individual re-
sults. Hermann Weyl said of Noether, “She
originated above all a new and epoch-mak-
ing style of thinking in algebra.”

With the rise of Hitler in 1933, Noether, a
Jew, fled to the United States and took a po-
sition at Bryn Mawr College. She died sud-
denly on April 14, 1935, following an oper-
ation.

To find more information about Noether,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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http://www-groups.dcs.st-and.ac.uk/~history/In
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If at

first you do succeed—try to hide your astonishment.

HARRY F. BANKS

True/false questions for Chapters 12—14 are available on the Web at:

10.

11.

12.

13.

14.

http://www.d.umn.edu/~jgallian/TF

. Find all idempotent elements in Z;q, Z,o, and Z3,. (Recall that a is

idempotent if a> = a.)

. If m and n are relatively prime integers greater than 1, prove that

Z,.» has at least two idempotents besides 0 and 1.

. Suppose that R is a ring in which a*> = 0 implies a = 0. Show that

R has no nonzero nilpotent elements. (Recall that b is nilpotent if
b" = 0 for some positive integer n.)

. Let R be a commutative ring with more than one element. Prove

that if for every nonzero element a of R we have aR = R, then R is
a field.

. Let A, B, and C be ideals of aring R. If AB C C and C is a prime

ideal of R, show that A C C or B C C. (Compare this with Euclid’s
Lemma in Chapter 0.)

. Show, by example, that the intersection of two prime ideals need

not be a prime ideal.

. Let R denote the ring of real numbers. Determine all ideals of R D R.

What happens if R is replaced by any field F?

. Determine all factor rings of Z.
. Suppose that n is a square-free positive integer (that is, n is not

divisible by the square of any prime). Prove that Z, has no nonzero
nilpotent elements.

Let R be a commutative ring with unity. Suppose that a is a unit
and b is nilpotent. Show that a + b is a unit. (Hint: See Exercise 29
in Chapter 12.)

Let A, B, and C be subrings of aring R. [f A C B U C, show that
ACBorACC.

For any element a in a ring R, define (a) to be the smallest ideal of
R that contains a. If R is a commutative ring with unity, show that
(a) = aR = {ar | r € R}. Show, by example, that if R is commuta-
tive but does not have a unity, then (a) and aR may be different.
Let R be a ring with unity. Show that (a) = {s,at, + s,at, + - - - +
sqat, | s, t; € R and n is a positive integer}.

Show that Z,[x] has characteristic n.


http://www.d.umn.edu/~jgallian/TF

15.

16.

17.

18.
19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.
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Let A and B be ideals of aring R. If A N B = {0}, show thatab = 0
whena € Aand b € B.

Show that the direct sum of two integral domains is not an integral
domain.

Consider the ring R = {0, 2, 4, 6, 8, 10} under addition and multi-
plication modulo 12. What is the characteristic of R?

What is the characteristic of Z,, @ Z,? Generalize.

Let R be a commutative ring with unity. Suppose that the only
ideals of R are {0} and R. Show that R is a field.

Suppose that / is an ideal of J and that J is an ideal of R. Prove that
if I has a unity, then / is an ideal of R. (Be careful not to assume that
the unity of / is the unity of R. It need not be—see Exercise 2 in
Chapter 12.)

Recall that an idempotent element b in a ring is one with the property
that b> = b. Find a nontrivial idempotent (that is, not 0 and not 1) in
Ox]/{x* + x?).

In a principal ideal domain, show that every nontrivial prime ideal
is a maximal ideal.

Find an example of a commutative ring R with unity such that a,
b E R, a # b,and @" = b" and @ = b™, where n and m are positive
integers that are relatively prime. (Compare with Exercise 35, part b,
in Chapter 13.)

Let O( \/2) denote the smallest subfield of R that contains Q and
\/2. [That is, o( \3/5) is the subfield with the property that Q( \3/2)
contains Q and /2 and if F is any subfield containing Q and \3f2,
then F contains Q(%).] Describe the elements of Q( \3f2).

Let R be an integral domain with nonzero characteristic. If A is a
proper ideal of R, show that R/A has the same characteristic as R.
Let F be a field of order p". Determine the group isomorphism
class of F under the operation addition.

If R is a finite commutative ring with unity, prove that every prime
ideal of R is a maximal ideal of R.

Let R be a noncommutative ring and let C(R) be the center of R
(see Exercise 19 in Chapter 12). Prove that the additive group of
R/C(R) is not cyclic.

Ty

a, b, c,dEZz}
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30.

31.

32,

33.

34.

35.

36.

37.
38.
39.
40.

41.
42,
43.

44.

with ordinary matrix addition and multiplication modulo 2. Show that

o= e

is not an ideal of R. (Hence, in Exercise 7 in Chapter 14, the com-
mutativity assumption is necessary.)

If R is an integral domain and A is a proper ideal of R, must R/A be
an integral domain?

LetA={a+bila,b& Z amod?2 = bmod2}. How many ele-
ments does Z[i]/A have? Show that A is a maximal ideal of Z[].
Suppose that R is a commutative ring with unity such that for each
a in R there is a positive integer n greater than 1 (n depends on a)
such that a" = a. Prove that every prime ideal of R is a maximal
ideal of R.

State a “finite subfield test; that is, state conditions that guarantee
that a finite subset of a field is a subfield.

Let F be a finite field with more than two elements. Prove that the
sum of all of the elements of F is 0.

Show that if there are nonzero elements a and b in Z, such that > +
b* = 0, then the ring Z,[i] = {x + yi | x, y € Z,} has zero-divisors.
Use this fact to find a zero-divisor in Z3[{].

Suppose that R is a ring with no zero-divisors and that R contains a
nonzero element b such that »> = b. Show that b is a unity for R.
Find the characteristic of Z[i]/{(2 + i).

Show that the characteristic of Z[i]/{a + bi) divides a* + b>.

Show that 4x*> + 6x + 3 is a unit in Zg[x].

For any commutative ring R, R[x, y] is the ring of polynomials in x
and y with coefficients in R (that is, R[x, y] consists of all finite sums
of terms of the form ax’y/, where a € R and i and j are nonnegative
integers). (For example, x* — 3x%y — y* € Z[x, y].) Prove that (x, y)
is a prime ideal in Z[x, y] but not a maximal ideal in Z[x, y].

Prove that (x, y) is a maximal ideal in Zs[x, y].

Prove that (2, x, y) is a maximal ideal in Z[x, y].

Let R and S be rings. Prove that (a, b) is nilpotent in R & S if and
only if both a and b are nilpotent.

Let R and S be commutative rings. Prove that (a, b) is a zero-divisor

in R & S if and only if @ or b is a zero-divisor or exactly one of a or
bis 0.



45.
46.

47.

48.

49.
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Determine all idempotents in Z,«, where p is a prime.

Let R be a commutative ring with unity 1. Show that a is an idem-
potent if and only if there exists an element b in R such thatab = 0
anda + b =1.

Let Z,[\V2] = {a + b2l a, b € Z,}. Define addition and multi-
plication as in Z[\V/2], except that modulo n arithmetic is used to
combine the coefficients. Show that Z3[\f2] is a field but Z7[\@]
is not.

Let p be a prime. Prove that every zero-divisor in Z,, is a nilpotent
element.

If x is a nilpotent element in a commutative ring R, prove that rx is
nilpotent for all r in R.



Ring Homomorphisms

If there is one central idea which is common to
all aspects of modern algebra it is the notion of homomorphism.
I. N. HERSTEIN, Topics in Algebra

Definition and Examples

280

In our work with groups, we saw that one way to discover information
about a group is to examine its interaction with other groups by way of
homomorphisms. It should not be surprising to learn that this concept
extends to rings with equally profitable results.

Just as a group homomorphism preserves the group operation, a ring
homomorphism preserves the ring operations.

Definitions Ring Homomorphism, Ring Isomorphism
A ring homomorphism ¢ from a ring R to a ring S is a mapping from
R to S that preserves the two ring operations; that is, for all @, b in R,

¢a+b)=d@ +b) and  Pab) = Ha)(b).

A ring homomorphism that is both one-to-one and onto is called a
ring isomorphism.

As is the case for groups, in the preceding definition the operations
on the left of the equal signs are those of R, whereas the operations on
the right of the equal signs are those of S.

Again as with group theory, the roles of isomorphisms and homomor-
phisms are entirely distinct. An isomorphism is used to show that two
rings are algebraically identical; a homomorphism is used to simplify a
ring while retaining certain of its features.

A schematic representation of a ring homomorphism is given in
Figure 15.1. The dashed arrows indicate the results of performing the
ring operations.

The following examples illustrate ring homomorphisms. The reader
should supply the missing details.
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°
p(a) + ¢(b)

Figure 15.1

B EXAMPLE 1 For any positive integer n, the mapping k — k mod n is
a ring homomorphism from Z onto Z, (see Exercise 11 in Chapter 0).
This mapping is called the natural homomorphism from Z to Z,. |

B EXAMPLE 2 The mapping a + bi — a — bi is a ring isomorphism
from the complex numbers onto the complex numbers (see Exercise 25
in Chapter 6). |

B EXAMPLE 3 Let R[x] denote the ring of all polynomials with real
coefficients. The mapping f(x) — f(1) is a ring homomorphism from
R[x] onto R. |

I EXAMPLE 4 The correspondence ¢: x — 5x from Z, to Z,
is a ring homomorphism. Although showing that ¢(x + y) =
d(x) + ¢(y) appears to be accomplished by the simple statement that
5(x + y) = 5x + 5y, we must bear in mind that the addition on the left is
done modulo 4, whereas the addition on the right and the multiplication
on both sides are done modulo 10. An analogous difficulty arises in show-
ing that ¢ preserves multiplication. So, to verify that ¢ preserves both op-
erations, we write x + y = 4¢, + ryand xy = 4q, + rp, where 0 = r; < 4
and 0 =r, <4.Then p(x +y) = ¢(r;)) = 5r, =5(x +y — 4q)) = 5x +
S5y — 20q, = 5x + 5y = ¢p(x) + ¢(y) in Z,. Similarly, using the fact that
5.5 =5in Z,, we have ¢p(xy) = ¢(r,) = 5r, = 5(xy — 4q,) = 5xy —
20g, = (5 - 5)xy = 5x5y = $x)$(y) in Z,. i

B EXAMPLE 5 We determine all ring homomorphisms from Z;, to Z,.
By Example 10 in Chapter 10, the only group homomorphisms from Z;,
to Z3, are x — ax, where a = 0, 15, 10, 20, 5, or 25. But, since 1 - 1 =1
in Z,,, we must have a - a = a in Zy. This requirement rules out 20 and 5
as possibilities for a. Finally, simple calculations show that each of the re-
maining four choices does yield a ring homomorphism. |
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B EXAMPLE 6 Let R be a commutative ring of characteristic 2. Then
the mapping a — a? is a ring homomorphism from R to R. |

# EXAMPLE 7 Although 2Z, the group of even integers under addi-
tion, is group-isomorphic to the group Z under addition, the ring 2Z is
not ring-isomorphic to the ring Z. (Quick! What does Z have that 2Z
doesn’t?) |

Our next two examples are applications to number theory of the nat-
ural homomorphism given in Example 1.

1 EXAMPLE 8 (Test for Divisibility by 9)

An integer n with decimal representation aqia,_; - - - a, is divisible by 9
ifand only if @, + a,_; + - - - + ay is divisible by 9. To verify this, ob-
serve that n = @, 10 + a;,_;10"! 4+ - - - + q,. Then, letting « denote
the natural homomorphism from Z to Zy [in particular, a(10) = 1], we
note that 7 is divisible by 9 if and only if

0 = a(n) = ala)(@(10))* + ala;_)(a(10)) ' + - - - + a(ay)
= alay) + alag—y) + -+ alay)
=ala, + a_; + - -+ apy).

But a(a; + a,_; + + - - + ay) = Ois equivalent to a, + a;_; + + - - +
a, being divisible by 9. |

§ EXAMPLE 9 (Theorem of Gersonides)

Among the most important unsolved problems in number theory is the
so-called “abc conjecture.” This conjecture is a natural generalization
of a theorem first proved in the fourteenth century by the Rabbi
Gersonides. Gersonides proved that the only pairs of positive integers
that are powers of 2 and powers of 3 which differ by 1 are 1, 2; 2, 3; 3,
4; and 8, 9. That is, these four pairs are the only solutions to the equa-
tions 2" = 3" = 1. To verify that this is so for 2” = 3" + 1, observe that
for all n we have 3" mod 8 = 3 or 1. Thus, 3" + 1 mod 8 = 4 or 2. On
the other hand, for m > 3, we have 2" mod 8 = 0. To handle the case
where 2" = 3" — 1, we first note that for all n, 3 mod 16 = 3,9, 11, or
1, depending on the value of n mod 4. Thus, (3" — 1) mod 16 = 2, 8, 10,
or 0. Since 2" mod 16 = 0 for m = 4, we have ruled out the cases where
nmod4 = 1,2, or 3. Because 3* mod 5 = (3**mod 5 = 1¥*mod 5 =
1, we know that (3* — 1) mod 5 = 0. But the only values for 2" mod 5
are 2, 4, 3, and 1. This contradiction completes the proof. |
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Properties of Ring Homomorphisms

I Theorem 15.1 Properties of Ring Homomorphisms

Let ¢ be a ring homomorphism from a ring R to a ring S. Let A be a
subring of R and let B be an ideal of S.

1.

SRk

For any r € R and any positive integer n, ¢(nr) = n¢(r) and
d(r") = (o))"

@d(A) = {p(a) | a € A} is a subring of S.

If A is an ideal and ¢ is onto S, then ¢(A) is an ideal.
¢~1(B) = {r € R | ¢(r) € B} is an ideal of R.

If R is commutative, then ¢(R) is commutative.

If R has a unity 1, S # {0}, and ¢ is onto, then ¢(1) is the unity
of S.

¢ is an isomorphism if and only if ¢ is onto and Ker ¢ =
{r e R|¢(r) = 0} = {0}.

If ¢ is an isomorphism from R onto S, then ¢~ is an
isomorphism from S onto R.

PROOF The proofs of these properties are similar to those given in
Theorems 10.1 and 10.2 and are left as exercises (Exercise 1). |

The student should learn the various properties of Theorem 15.1
in words in addition to the symbols. Property 2 says that the homomor-
phic image of a subring is a subring. Property 4 says that the pullback
of an ideal is an ideal, and so on.

The next three theorems parallel results we had for groups. The
proofs are nearly identical to their group theory counterparts and are
left as exercises (Exercises 2, 3, and 4).

B Theorem 15.2 Kernels Are Ideals

Let ¢ be a ring homomorphism from a ring R to a ring S. Then Ker ¢
= {r € R | ¢(r) = 0} is an ideal of R.

I Theorem 15.3 First Isomorphism Theorem for Rings

Let ¢ be a ring homomorphism from R to S. Then the mapping from
R/Ker ¢ to $(R), given by r + Ker ¢ — ¢(r), is an isomorphism. In
symbols, R/IKer ¢ = $(R).
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B Theorem 15.4 ldeals Are Kernels

Every ideal of a ring R is the kernel of a ring homomorphism of R.
In particular, an ideal A is the kernel of the mappingr —>r + A
Jfrom R to R/A.

The homomorphism from R to R/A given in Theorem 15.4 is called
the natural homomorphism from R to R/A. Theorem 15.3 is often re-
ferred to as the Fundamental Theorem of Ring Homomorphisms.

In Example 17 in Chapter 14 we gave a direct proof that (x) is a
prime ideal of Z[x] but not a maximal ideal. In the following example
we illustrate a better way to do this kind of problem.

§ EXAMPLE 10 Since the mapping ¢ from Z[x] onto Z given by
¢(f(x)) = f(0) is a ring homomorphism with Ker ¢ = (x) (see Exercise
29 in Chapter 14), we have, by Theorem 15.3, Z[x]/{(x) = Z. And because
Z is an integral domain but not a field, we know by Theorems 14.3 and
14.4 that the ideal (x) is prime but not maximal in Z[x]. |

I Theorem 15.5 Homomorphism from Z to a Ring with Unity

Let R be a ring with unity 1. The mapping ¢: Z — R givenbyn —n - 1
is a ring homomorphism.

PROOF Since the multiplicative group property a”*" = a™a" translates to
(m + n)a = ma + na when the operation is addition, we have ¢(m + n) =
(m+n)y-1=m-1+n-1.So, ¢ preserves addition.

That ¢ also preserves multiplication follows from Exercise 15 in
Chapter 12, which says that (m - a)(n - b) = (mn) - (ab) for all integers
m and n. Thus, ¢(mn) = (mn) - 1 = (mn) - (1)(1)) =(m - DH(n-1) =
d(m)dp(n). So, ¢ preserves multiplication as well. |

I Corollary 1 A Ring with Unity Contains Z, or Z

If R is a ring with unity and the characteristic of R is n > 0, then
R contains a subring isomorphic to Z,. If the characteristic of R is 0,
then R contains a subring isomorphic to Z.

PROOF Let 1 be the unity of Rand let S = {k - 1 | kK € Z}. Theorem 15.5
shows that the mapping ¢ from Z to S given by ¢(k) = k - 1 is a homo-
morphism, and by the First Isomorphism Theorem for rings, we have
ZIKer ¢ = S. But, clearly, Ker ¢ = (n), where n is the additive order of 1
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and, by Theorem 13.3, n is also the characteristic of R. So, when R
has characteristic n, S = Z/(n) =~ Z,. When R has characteristic 0, S =
ZK0) = Z. |

1 Corollary 2 Z, Isa Homomorphic Image of Z

For any positive integer m, the mapping of ¢: Z — Z,, given by x —
x mod m is a ring homomorphism.

PROOF This follows directly from the statement of Theorem 15.5,
since in the ring Z,,, the integer x mod m is x - 1. (For example, in Zs, if
x=5 wehave5-1=1+1+1+1+1=2) |

I Corollary 3 A Field Contains Z, or Q (Steinitz, 1910)

If F is a field of characteristic p, then F contains a subfield
isomorphic to Z,. If F is a field of characteristic 0, then F contains
a subfield isomorphic to the rational numbers.

PROOF By Corollary 1, F contains a subring isomorphic to Z, if F has
characteristic p, and F has a subring S isomorphic to Z if F has charac-
teristic 0. In the latter case, let

T={ab 'la,beES,b+0}.
Then T is isomorphic to the rationals (Exercise 63). |

Since the intersection of all subfields of a field is itself a subfield
(Exercise 11), every field has a smallest subfield (that is, a subfield
that is contained in every subfield). This subfield is called the prime
subfield of the field. It follows from Corollary 3 that the prime
subfield of a field of characteristic p is isomorphic to Z,, whereas the
prime subfield of a field of characteristic 0 is isomorphic to Q. (See
Exercise 67.)

The Field of Quotients

Although the integral domain Z is not a field, it is at least contained in a
field—the field of rational numbers. And notice that the field of rational
numbers is nothing more than quotients of integers. Can we mimic the
construction of the rationals from the integers for other integral do-
mains? Yes. The field constructed in Theorem 15.6 is called the field of
quotients of D. Throughout the proof of Theorem 15.6, you should keep
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in mind that we are using the construction of the rationals from the inte-
gers as a model for our construction of the field of quotients of D.

Theorem 15.6 Field of Quotients

Let D be an integral domain. Then there exists a field F (called the
field of quotients of D) that contains a subring isomorphic to D.

PROOF LetS = {(a,b) l a,b € D, b # 0}. We define an equivalence
relation on S by (a, b) = (¢, d) if ad = bc (compare with Example 14
in Chapter 0). Now, let F be the set of equivalence classes of S under
the relation = and denote the equivalence class that contains (x, y) by
x/y. We define addition and multiplication on F by

alb + c/d = (ad + bc)/(bd) and alb - cld = (ac)/(bd).

(Notice that here we need the fact that D is an integral domain to ensure
that multiplication is closed; that is, bd # 0 whenever b # 0 and d # 0.)

Since there are many representations of any particular element of F'
(just as in the rationals, we have 1/2 = 3/6 = 4/8), we must show that
these two operations are well defined. To do this, suppose that a/b = a'/b’
and c¢/d = ¢'/d’, so that ab’ = a’'b and c¢d’ = ¢'d. It then follows that

(ad + be)b'd’ = adb'd’ + beb'd' = (ab')dd' + (cd')bb'
= (@'b)dd' + (c'd)bb' = a'd'bd + b'c'bd
= (@'d" + b'c")bd.

Thus, by definition, we have
(ad + bo)/(bd) = (a'd" + b'cHI(b'd"),

and, therefore, addition is well defined. We leave the verification that
multiplication is well defined as an exercise (Exercise 55). That F'is a
field is straightforward. Let 1 denote the unity of D. Then 0/1 is the
additive identity of F. The additive inverse of a/b is —a/b; the multi-
plicative inverse of a nonzero element a/b is b/a. The remaining field
properties can be checked easily.

Finally, the mapping ¢: D — F given by x — x/1 is a ring isomor-
phism from D to ¢(D) (see Exercise 7). |

B EXAMPLE 11 Let D = Z|x]. Then the field of quotients of D is
{f(x)/g(x) | f(x), gx) € D, where g(x) is not the zero polynomial }. |

When F is a field, the field of quotients of F[x] is traditionally de-
noted by F(x).
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B EXAMPLE 12 Letp be a prime. Then Z,(x) = {f(x)/g(x) | f(x), g(x) €
Z,[x], g(x) # 0} is an infinite field of characteristic p. |

We can work it out.

Nk W

10.

11.

12.

13.

TITLE OF SONG BY JOHN LENNON AND
PAUL MCCARTNEY, December 1965

Prove Theorem 15.1.

Prove Theorem 15.2.

Prove Theorem 15.3.

Prove Theorem 15.4.

Show that the correspondence x — 5x from Zs to Z;, does not pre-
serve addition.

Show that the correspondence x — 3x from Z, to Z;, does not pre-
serve multiplication.

. Show that the mapping ¢: D — F in the proof of Theorem 15.6 is a

ring homomorphism.

. Prove that every ring homomorphism ¢ from Z, to itself has the

form ¢(x) = ax, where a’> = a.

. Suppose that ¢ is a ring homomorphism from Z,, to Z,. Prove that

if ¢(1) = a, then a®> = a. Give an example to show that the converse
is false.

a. Is the ring 2Z isomorphic to the ring 32?
b. Is the ring 2Z isomorphic to the ring 42?

Prove that the intersection of any collection of subfields of a field
F is a subfield of F. (This exercise is referred to in this chapter.)

Let Z;[i] = {a + bil a, b € Z;} (see Example 9 in Chapter 13). Show
that the field Z;[/] is ring-isomorphic to the field Z;[x]/{x* + 1).

Y

Show that ¢p: C — S given by
b
bla + bi) = [ “ }
—b a

is a ring isomorphism.

a,bER}.
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24,

25.

26.

27.

28.
29.
30.

31.

Let Z[V2] = {a + bNV2 1 a, b € Z}. Let

n=Als %)

Show that Z[\/2] and H are isomorphic as rings.

a, b EZ}.

a b
c

|-
d

Consider the mapping from M,(Z) into Z given by {

Prove or disprove that this is a ring homomorphism.

n{fy !

b
g ] — a is a ring homomorphism.
c

Is the mapping from Zs to Z;, given by x — 6x a ring homomor-
phism? Note that the image of the unity is the unity of the image
but not the unity of Zs,.

a,b,c €z } Prove or disprove that the map-

ping {

Is the mapping from Z,, to Z;, given by x — 2x a ring homomor-
phism?
Describe the kernel of the homomorphism given in Example 3.

Recall that a ring element a is called an idempotent if a*> = a. Prove
that a ring homomorphism carries an idempotent to an idempotent.

Determine all ring homomorphisms from Zg to Zy. Determine all
ring homomorphisms from Z,, to Zsy,.

Determine all ring isomorphisms from Z, to itself.

Determine all ring homomorphisms from Z to Z.

Suppose ¢ is a ring homomorphism from Z © Z into Z & Z. What
are the possibilities for ¢((1, 0))?

Determine all ring homomorphisms from Z & Z into Z ® Z.

InZ, let A = (2) and B = (8). Show that the group A/B is isomor-
phic to the group Z, but that the ring A/B is not ring-isomorphic to
the ring Z,.

Let R be a ring with unity and let ¢ be a ring homomorphism from R
onto S where S has more than one element. Prove that S has a unity.
Show that (Z @ Z)/({a) D (b)) is ring-isomorphic to Z, D Z,.
Determine all ring homomorphisms from Z b Z to Z.

Prove that the sum of the squares of three consecutive integers can-
not be a square.

Let m be a positive integer and let n be an integer obtained from m
by rearranging the digits of m in some way. (For example, 72345 is
a rearrangement of 35274.) Show that m — n is divisible by 9.
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(Test for divisibility by 11) Let n be an integer with decimal repre-
sentation qa,_; - * - a;a,. Prove that n is divisible by 11 if and only
ifay— a; + a, — - - - (—1)kay is divisible by 11.

Show that the number 7,176,825,942,116,027,211 is divisible by 9
but not divisible by 11.

Show that the number 9,897,654,527,609,805 is divisible by 99.
(Test for divisibility by 3) Let n be an integer with decimal repre-
sentation a;a;_, - + - a,a,. Prove that n is divisible by 3 if and only
ifa, +a,_,+ -+ a + ayis divisible by 3.

(Test for divisibility by 4) Let n be an integer with decimal repre-

sentation a;a;_, - * - a,a,. Prove that n is divisible by 4 if and only
if a,a, is divisible by 4.
Show that no integer of the form 111,111,111, ... ,111 is prime.

Consider an integer n of the form @, 111,111,111,111,111,111,

111,111,12b. Find values for a and b such that n is divisible by 99.

Suppose n is a positive integer written in the form n = 3% +

a3+ - -+ + a,3 + a,, where each of the ;s is 0, 1, or 2 (the

base 3 representative of n). Show that n is even if and only if a;, +

ay_, + -+ a; + ayiseven.

Find an analog of the condition given in the previous exercise for

characterizing divisibility by 4.

In your head, determine (2 - 107> + 2)'% mod 3 and (10'%° + 1)%°

mod 3.

Determine all ring homomorphisms from Q to Q.

Let R and S be commutative rings with unity. If ¢ is a homomor-

phism from R onto S and the characteristic of R is nonzero, prove

that the characteristic of S divides the characteristic of R.

Let R be a commutative ring of prime characteristic p. Show that

the Frobenius map x — x” is a ring homomorphism from R to R.

Is there a ring homomorphism from the reals to some ring whose

kernel is the integers?

Show that a homomorphism from a field onto a ring with more

than one element must be an isomorphism.

Suppose that R and S are commutative rings with unities. Let ¢ be a

ring homomorphism from R onto S and let A be an ideal of S.

a. If A is prime in S, show that ¢ 1(A) = {x E R | ¢(x) € A} is
prime in R.

b. If A is maximal in S, show that ¢~ !(A) is maximal in R.
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48.
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58.
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60.
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62.
63.

A principal ideal ring is a ring with the property that every ideal

has the form (a). Show that the homomorphic image of a principal

ideal ring is a principal ideal ring.

Let R and S be rings.

a. Show that the mapping from R € S onto R given by (a, b) — a
is a ring homomorphism.

b. Show that the mapping from R to R @ S given by a — (a, 0) is a
one-to-one ring homomorphism.

c. Show that R @ S is ring-isomorphic to S & R.

Show that if m and n are distinct positive integers, then mZ is not

ring-isomorphic to nZ.

Prove or disprove that the field of real numbers is ring-isomorphic

to the field of complex numbers.

Show that the only ring automorphism of the real numbers is the
identity mapping.

Determine all ring homomorphisms from R to R.

Suppose that n divides m and that a is an idempotent of Z, (that is,
a’> = a). Show that the mapping x — ax is a ring homomorphism
from Z,, to Z,. Show that the same correspondence need not yield a
ring homomorphism if # does not divide m.

Show that the operation of multiplication defined in the proof of
Theorem 15.6 is well defined.

Let O[V2] = {a + b2 | a, b € Q} and O[V5] = {a + b\V/5 |
a, b € Q}. Show that these two rings are not ring-isomorphic.

Let Z[i] = {a + bi | a, b € Z}. Show that the field of quotients of
Z[i] is ring-isomorphic to Q[i] = {r + si | r, s € Q}. (This exercise
is referred to in Chapter 18.)

Let F be a field. Show that the field of quotients of F is ring-
isomorphic to F.

Let D be an integral domain and let F' be the field of quotients of D.
Show that if E is any field that contains D, then E contains a
subfield that is ring-isomorphic to F. (Thus, the field of quotients
of an integral domain D is the smallest field containing D.)
Explain why a commutative ring with unity that is not an integral do-
main cannot be contained in a field. (Compare with Theorem 15.6.)
Show that the relation = defined in the proof of Theorem 15.6 is an
equivalence relation.

Give an example of a ring without unity that is contained in a field.

Prove that the set 7 in the proof of Corollary 3 to Theorem 15.5 is
ring-isomorphic to the field of rational numbers.
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64. Suppose that ¢: R — S is a ring homomorphism and that the
image of ¢ is not {0}. If R has a unity and S is an integral domain,
show that ¢ carries the unity of R to the unity of S. Give an ex-
ample to show that the preceding statement need not be true if S
is not an integral domain.

65. Let f(x) € R[x]. If a + bi is a complex zero of f(x) (here i = V—1),
show that a — bi is a zero of f(x). (This exercise is referred to in
Chapter 32.)

66. Let R = {[“ b}
b a

a
tak
aes[b

a, b e Z}, and let ¢ be the mapping that

b
}toa—b.
a

. Show that ¢ is a homomorphism.

. Determine the kernel of ¢.

Show that R/Ker ¢ is isomorphic to Z.

. Is Ker ¢ a prime ideal?

Is Ker ¢ a maximal ideal?

67. Show that the prime subfield of a field of characteristic p is ring-
isomorphic to Z, and that the prime subfield of a field of charac-
teristic 0 is ring-isomorphic to Q. (This exercise is referred to in
this chapter.)

Y]

e T

68. Let n be a positive integer. Show that there is a ring isomorphism
from Z, to a subring of Z,, if and only if n is odd.

69. Show that Z,, is ring-isomorphic to Z,, & Z, when m and n are rel-
atively prime.

Suggested Readings

J. A. Gallian and J. Van Buskirk, “The Number of Homomorphisms from
Z, into Z,,” American Mathematical Monthly 91 (1984): 196-197.

In this article, formulas are given for the number of group homomor-
phisms from Z,, into Z, and the number of ring homomorphisms from
Z,, into Z,,. This article can be downloaded at http://www.d.umn.edu/
~jgallian/homs.pdf
Lillian Kinkade and Joyce Wagner, “When Polynomial Rings Are
Principal Ideal Rings,” Journal of Undergraduate Mathematics 23
(1991): 59-62.
In this article written by undergraduates, it is shown that R[x] is a
principal ideal ring if and only if R = R, ® R, D - - - D R,, where
each R; is a field.


http://www.d.umn.edu/~jgallian/homs.pdf
http://www.d.umn.edu/~jgallian/homs.pdf
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Mohammad Saleh and Hasan Yousef, “The Number of Ring Homomor-
phisms from Z,, ©@ - - - ® Z,, into Z, D - - - D Z, " American Mathe-
matical Monthly 105 (1998): 259-260.

This article gives a formula for the number described in the title.

Suggested Website

http://www.d.umn.edu/~jgallian/puzzle

This site has a math puzzle that is based on the ideas presented in this
chapter. The user selects an integer and then proceeds through a series of
steps to produce a new integer. Finally, another integer is created by using
all but one of the digits of the previous integer in any order. The software
then determines the digit not used.


http://www.d.umn.edu/~jgallian/puzzle

Polynomial Rings

Wit lies in recognizing the resemblance among things which differ and the
difference between things which are alike.

MADAME DE STAEL

Notation and Terminology

One of the mathematical concepts that students are most familiar with
and most comfortable with is that of a polynomial. In high school,
students study polynomials with integer coefficients, rational coeffi-
cients, real coefficients, and perhaps even complex coefficients. In ear-
lier chapters of this book, we introduced something that was probably
new—polynomials with coefficients from Z,. Notice that all of these
sets of polynomials are rings, and, in each case, the set of coefficients is
also a ring. In this chapter, we abstract all of these examples into one.

Definition Ring of Polynomials over R
Let R be a commutative ring. The set of formal symbols

R[x] ={ax" + a,_x" '+ - - +ax+aylq;ER,
n is a nonnegative integer}

is called the ring of polynomials over R in the indeterminate x.
Two elements

ax" + a,_x" '+ +ax + aq
and

b, x™ + by_x™ 1+ .-+ bx+ b,

of R[x] are considered equal if and only if a; = b, for all nonnegative
integers i. (Define @; = 0 when i > n and b; = 0 when i > m.)

293
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In this definition, the symbols x, x?, ..., x* do not represent
“unknown” elements or variables from the ring R. Rather, their purpose
is to serve as convenient placeholders that separate the ring elements
Ay, Ap—1,s - - ., ay. We could have avoided the x’s by defining a polyno-
mial as an infinite sequence ay, a;, d,, . . ., a,, 0,0, 0, ..., but our
method takes advantage of the student’s experience in manipulating
polynomials where x does represent a variable. The disadvantage of our
method is that one must be careful not to confuse a polynomial with the
function determined by a polynomial. For example, in Z;[x], the poly-
nomials f(x) = x* and g(x) = x> determine the same function from Z;
to Z;, since f(a) = g(a) for all a in Z;." But f(x) and g(x) are different
elements of Z;[x]. Also, in the ring Z,[x], be careful to reduce only the
coefficients and not the exponents modulo n. For example, in Z;[x],
5x = 2x, but x> # x2.

To make R[x] into a ring, we define addition and multiplication in
the usual way.

Definition Addition and Multiplication in R[x]
Let R be a commutative ring and let
f)=ax"+a,_x" 1+ +ax+a,
and
8x) = by x™ + by x™ 1+ - - + bix + by
belong to R[x]. Then

f(X) + g(x) = (as + bs)xs + (as—l + bs—l)xbu1
+"'+(a1+b1)x+a0+b0,

where s is the maximum of m and n, a; = 0 for i > n, and b; = 0 for
i > m. Also,

J)8(X) = CppnX™ " + Cpyin X"+ X +
where
ce = apby + ay_1by + - - - + aiby 1 + apby
fork=0,...,m+ n.

Although the definition of multiplication might appear complicated,
it is just a formalization of the familiar process of using the distributive

"In general, given f(x) in R[x] and a in R, f(a) means substitute a for x in the formula
for f(x). This substitution is a homomorphism from R[x] to R.



16 | Polynomial Rings 295

property and collecting like terms. So, just multiply polynomials over a
commutative ring R in the same way that polynomials are always mul-
tiplied. Here is an example.
Consider f(x) = 2x* + x> + 2x + 2 and g(x) = 2x*> + 2x + 1 in Z5[x].
Then, in our preceding notation, as = 0, a4, = 0,a3 = 2,a, = 1,a, = 2,
ay=2,and bs=0,b,=0,b3=0,b, =2,b, =2, by = 1. Now, using
the definitions and remembering that addition and multiplication of the
coefficients are done modulo 3, we have

fix) +gxv) =2+ 0)x3 +A+2x*+Q2+2x+2+1)
=23 +0x2+1x+0
=2 + x
and

- gx)=0-1+0-2+2-2+1-0+2-0+2-0)x
+O0-1+2-24+1-2+2-0+2-0x*
+Q2-1+1-2+2-2+2-0%

+ (1 14+224+2-22+Q2-1+2-2x+2-1
=x +0x* + 23+ 0x2 + 0x + 2
=xX+23+2

Our definitions for addition and multiplication of polynomials were
formulated so that they are commutative and associative, and so that
multiplication is distributive over addition. We leave the verification
that R[x] is a ring to the reader.

It is time to introduce some terminology for polynomials. If

f()C) = an-xn + an—l-xni1 +--t apx + ap,

where a, # 0, we say that f(x) has degree n; the term a,, is called the
leading coefficient of f(x), and if the leading coefficient is the multi-
plicative identity element of R, we say that f(x) is a monic polynomial.
The polynomial fix) = 0 has no degree. Polynomials of the form
J(x) = a, are called constant. We often write deg f(x) = n to indicate
that f(x) has degree n. In keeping with our experience with polynomials
with real coefficients, we adopt the following notational conventions:
We may insert or delete terms of the form Ox*; 1x* will be denoted by
X% + (—a)xF will be denoted by —a,x*.

Very often properties of R carry over to R[x]. Our first theorem is a
case in point.
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§ Theorem 16.1 D an Integral Domain Implies D[x] an Integral Domain

If D is an integral domain, then D|x] is an integral domain.

PROOF Since we already know that D[x] is a ring, all we need
to show is that D[x] is commutative with a unity and has no zero-divisors.
Clearly, D[x] is commutative whenever D is. If 1 is the unity element of
D, it is obvious that f{x) = 1 is the unity element of D[x]. Finally, sup-
pose that

f) =ax"+ a,_x" 1+ +a
and
800 = b+ by 0+ by

where a,, # 0 and b,, # 0. Then, by definition, f(x)g(x) has leading co-
efficient a,b,, and, since D is an integral domain, a,b,, # 0. |

The Division Algorithm
and Consequences

One of the properties of integers that we have used repeatedly is the
division algorithm: If @ and b are integers and b # 0, then there exist
unique integers g and r such that a = bg + r, where 0 = r < |bl. The
next theorem is the analogous statement for polynomials over a field.

I Theorem 16.2 Division Algorithm for F[x]

Let F be a field and let f(x) and g(x) € F[x] with g(x) # 0. Then
there exist unique polynomials q(x) and r(x) in F[x] such that f(x) =
g(x)q(x) + r(x) and either r(x) = 0 or deg r(x) < deg g(x).

PROOF We begin by showing the existence of g(x) and r(x). If
fix) = 0 or deg flx) < deg g(x), we simply set g(x) = 0 and r(x) = f(x).
So, we may assume that n = deg f(x) = deg g(x) = m and let f{x) =
ax" + -+ + agand g(x) = b,x" + - - - + by. The idea behind this
proof is to begin just as if you were going to “long divide” g(x) into
f(x), then use the Second Principle of Mathematical Induction on
deg f(x) to finish up. Thus, resorting to long division, we let fi(x) =
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fx) — a,b,, 'x""g(x)." Then, f;(x) = 0 or deg f;(x) < deg f(x); so, by
our induction hypothesis, there exist ¢;(x) and r;(x) in F[x] such that
[0 = g(@)q,(x) + r(x), where ri(x) = 0 or deg ry(x) < deg g(x).
[Technically, we should get the induction started by proving the case
in which deg f(x) = 0, but this is trivial.] Thus,

fo) = ayb,, 'xg(x) + fi(x)
= a,b, ') + qi(0)g(x) + ri(x)
= la,by, X" + qi(0)]g(x) + r(x).

So, the polynomials g(x) = a,b,, 'x" ™ + q,(x) and r(x) = r;(x) have
the desired properties.

To prove uniqueness, suppose that f{x) = g(x)g(x) + r(x) and fix) =
gx) g(x) + r(x), where r(x) = 0 or deg r(x) < deg g(x) and r(x) = 0
or deg r (x) < deg g(x). Then, subtracting these two equations, we obtain

0 = g)[g(x) — g(x)] + [r(x) — r(x)]

or

r(x) — r(x) = g)lgx) — g(x)].

Thus, r(x) — r(x) is 0, or the degree of r(x) — r(x) is at least that of
g(x). Since the latter is clearly impossible, we have r(x) = r(x) and
q(x) = q(x) as well. |

The polynomials g(x) and r(x) in the division algorithm are called
the quotient and remainder in the division of f{x) by g(x). When the
ring of coefficients of a polynomial ring is a field, we can use the long
division process to determine the quotient and remainder.

"For example,

(3/2)x*
2x2 + 2 )3x7 +x+1
3t + 327
-3+ x+1

So,
B+ x+1=3x"+x+1— GR2x*2%+2)
In general,
anbm—lxn—m
by + -
ax +
fi(x)
So,
i) = @ + - 2) = ab, by )
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# EXAMPLE 1 To find the quotient and remainder upon dividing
flx) = 3x* + x> + 2x*> + 1 by g(x) = x> + 4x + 2, where f(x) and g(x)
belong to Zs[x], we may proceed by long division, provided we keep in
mind that addition and multiplication are done modulo 5. Thus,

3x% + 4x
PAdx+2 )3+ P+ 2 +1
3+ 2+ &P
47 + ¥ +1
48 + x* + 3x

2x + 1
So, 3x? + 4x is the quotient and 2x + 1 is the remainder. Therefore,

3+ 3+ 2%+ 1= (2 + 4x + 2)(Bx* + 4x) + 2x + 1. |

Let D be an integral domain. If f{x) and g(x) € D[x], we say that g(x)
divides f(x) in D[x] [and write g(x) | f{x)] if there exists an h(x) € D[x]
such that fix) = g(x)h(x). In this case, we also call g(x) a factor of f(x).
An element a is a zero (or a root) of a polynomial fix) if fla) = 0.
[Recall that f{a) means substitute a for x in the expression for f(x).]
When F'is a field, @ € F, and f(x) € F[x], we say that a is a zero of
multiplicity k (k = 1) if (x — a)* is a factor of f{x) but (x — a)**! is not
a factor of f(x). With these definitions, we may now give several impor-
tant corollaries of the division algorithm. No doubt you have seen these
for the special case where F is the field of real numbers.

I Corollary 1 The Remainder Theorem

Let F be a field, a € F, and f(x) € F[x]. Then f(a) is the remainder in
the division of f(x) by x — a.

PROOF The proof of Corollary 1 is left as an exercise (Exercise 5).
I Corollary 2 The Factor Theorem

Let F be a field, a € F, and f(x) € F[x]. Then a is a zero of f(x) if
and only if x — a is a factor of f(x).

PROOF The proof of Corollary 2 is left as an exercise (Exercise 7).
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1 Corollary 3 Polynomials of Degree n Have at Most n Zeros

A polynomial of degree n over a field has at most n zeros, counting
multiplicity.

PROOF We proceed by induction on n. Clearly, a polynomial of
degree O over a field has no zeros. Now suppose that f(x) is a polyno-
mial of degree n over a field and a is a zero of f(x) of multiplicity .
Then, f(x) = (x — a)*q(x) and g(a) # 0; and, since n = deg f(x) =
deg (x — a)fq(x) = k + deg g(x), we have k = n (see Exercise 17). If
Jf(x) has no zeros other than a, we are done. On the other hand, if b # a
and b is a zero of f(x), then 0 = f(b) = (b — a)*q(b), so that b is also a
zero of g(x) with the same multiplicity as it has for f(x) (see Exercise
19). By the Second Principle of Mathematical Induction, we know
that g(x) has at most deg g(x) = n — k zeros, counting multiplicity. Thus,
Jf(x) has at most k + n — k = n zeros, counting multiplicity. |

We remark that Corollary 3 is not true for arbitrary polynomial rings.
For example, the polynomial x> + 3x + 2 has four zeros in Z,. (See
Exercise 3.) Lagrange was the first to prove Corollary 3 for polynomi-
als in Z,[x].

I EXAMPLE 2 The Complex Zeros of x" — 1

We find all complex zeros of x* — 1. Let @ = cos(360°/n) +
i sin(360°/n). It follows from DeMoivre’s Theorem (see Example 7
in Chapter 0) that " = 1 and o* # 1 for 1 < k < n. Thus, each of 1,
w, %, ..., " 'isazero of x* — 1 and, by Corollary 3, there are no
others. |

The complex number w in Example 2 is called the primitive nth root
of unity.

We conclude this chapter with an important theoretical application
of the division algorithm, but first an important definition.

Definition Principal Ideal Domain (PID)

A principal ideal domain is an integral domain R in which every ideal
has the form {(a) = {ra | r € R} for some a in R.

B Theorem 16.3 F[x]IsaPID

Let F be a field. Then F|x] is a principal ideal domain.
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PROOF By Theorem 16.1, we know that F[x] is an integral domain.
Now, let I be an ideal in F[x]. If I = {0}, then I = (0). If I # {0}, then
among all the elements of /, let g(x) be one of minimum degree. We will
show that I = (g(x)). Since g(x) € I, we have (g(x)) C I. Now
let fix) € I. Then, by the division algorithm, we may write f(x) =
g(x)g(x) + r(x), where r(x) = 0 or deg r(x) < deg g(x). Since r(x) = f(x) —
g(x)g(x) € I, the minimality of deg g(x) implies that the latter condition
cannot hold. So, r(x) = 0 and, therefore, f(x) € (g(x)). This shows that

1C (g(x)). I
The proof of Theorem 16.3 also establishes the following.

I Theorem 16.4 Criterion for I = (g(x))

Let F be a field, 1 a nonzero ideal in F|x], and g(x) an element of
F[x]. Then, I = (g(x)) if and only if g(x) is a nonzero polynomial of
minimum degree in L.

As an application of the First Isomorphism Theorem for Rings
(Theorem 15.3) and Theorem 16.4, we verify the remark we made in
Example 12 in Chapter 14 that the ring R[x]/{(x?> 4+ 1) is isomorphic to
the ring of complex numbers.

B EXAMPLE 3 Consider the homomorphism ¢ from R[x] onto C given
by f(x) — f(i) (that is, evaluate a polynomial in R[x] at 7). Then
x*> + 1 € Ker ¢ and is clearly a polynomial of minimum degree in Ker ¢.
Thus, Ker ¢ = (x*> + 1) and R[x]/(x*> + 1) is isomorphic to C. |

If | feel unhappy, | do mathematics to become happy. If | am happy, | do
mathematics to keep happy.
PAUL TURAN

1. Let fix) = 4x> + 2x> + x + 3and g(x) = 3x* + 33 + 3x2 + x + 4,
where f(x), g(x) € Zs[x]. Compute fix) + g(x) and fix) - g(x).

2. In Z;[x], show that the distinct polynomials x* + x and x> + x
determine the same function from Z; to Z;.

3. Show that x> + 3x + 2 has four zeros in Z,. (This exercise is
referred to in this chapter.)
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If R is a commutative ring, show that the characteristic of R[x] is
the same as the characteristic of R.

Prove Corollary 1 of Theorem 16.2.

List all the polynomials of degree 2 in Z,[x].

Prove Corollary 2 of Theorem 16.2.

Let R be a commutative ring. Show that R[x] has a subring isomor-
phic to R.

If ¢: R — S is a ring homomorphism, define $:R[x] — S[x] by
(a X"+« + + ay) = dla)x" + « - - + P(ay). Show that ¢ is a ring
homomorphism. (This exercise is referred to in Chapter 33.)

If the rings R and S are isomorphic, show that R[x] and S[x] are
isomorphic.

Let fix) = x> + 2x + 4 and g(x) = 3x + 2 in Zs[x]. Determine the
quotient and remainder upon dividing f(x) by g(x).

Let fix) = 5x* + 3x* + 1 and g(x) = 3x> + 2x + 1 in Z;[x].
Determine the quotient and remainder upon dividing f(x) by g(x).
Show that the polynomial 2x + 1 in Z,[x] has a multiplicative in-
verse in Z,[x].

Are there any nonconstant polynomials in Z[x] that have multi-
plicative inverses? Explain your answer.

Let p be a prime. Are there any nonconstant polynomials in Z,[x]
that have multiplicative inverses? Explain your answer.

Show that Corollary 3 of Theorem 16.2 is false for any commuta-
tive ring that has a zero divisor.

(Degree Rule) Let D be an integral domain and f(x), g(x) € Dl[x].
Prove that deg (f(x) - g(x)) = deg f(x) + deg g(x). Show, by exam-
ple, that for commutative ring R it is possible that deg f(x)g(x) <
deg f(x) + deg g(x) where f(x) and g(x) are nonzero elements in
R[x]. (This exercise is referred to in this chapter, Chapter 17, and
Chapter 18.)

Prove that the ideal {(x) in Q[x] is maximal.

Let f(x) belong to F[x], where F is a field. Let a be a zero of f(x) of
multiplicity n, and write f(x) = (x — a)"q(x). If b # a is a zero of
g(x), show that b has the same multiplicity as a zero of g(x) as it
does for f(x). (This exercise is referred to in this chapter.)

Prove that for any positive integer n, a field F' can have at most a
finite number of elements of order at most 7.

Let F be an infinite field and let fix) € F[x]. If fla) = 0O for infi-
nitely many elements a of F, show that f{x) = 0.
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22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32,

33.

34.

35.
36.
37.

Let F be an infinite field and let f{x), g(x) € F[x]. If fla) = g(a) for

infinitely many elements a of F, show that f{ix) = g(x).

Let F be a field and let p(x) € Flx]. If fix), g(x) € Flx] and

deg fix) < deg p(x) and deg g(x) < deg p(x), show that fix) +

(p(x)) = gx) + {(p(x)) implies fix) = g(x). (This exercise is

referred to in Chapter 20.)

Prove that Z[x] is not a principal ideal domain. (Compare this with

Theorem 16.3.)

Find a polynomial with integer coefficients that has 1/2 and —1/3

as zeros.

Let f(x) € R[x]. Suppose that f(a) = 0 but f’(a) # 0, where f'(x) is

the derivative of f(x). Show that a is a zero of f(x) of multiplicity 1.

Show that Corollary 2 of Theorem 16.2 is true over any commuta-

tive ring with unity.

Show that Corollary 3 of Theorem 16.2 is true for polynomials

over integral domains.

Let F be a field and let
I={ax"+a,_x"'+---+ayla,a,,...,a0EF and

a, ta, ,+---+a =0}

Show that / is an ideal of F[x] and find a generator for /.

Let F be a field and let fix) = ax" + a,_x* ' + - - - + a, € F[x].

Prove that x — 1 is a factor of f(x) if and only ifa,, + a,_; + - - - +

ap = 0.

Let m be a fixed positive integer. For any integer a, let a denote

a mod m. Show that the mapping of ¢: Z[x] — Z,[x] given by

d)(anxn + an*lxnil R aO) = an-xn + 5,1,1.)6"71 +oee+ a0

is a ring homomorphism. (This exercise is referred to in Chapters
17 and 33.)

Find infinitely many polynomials f{x) in Z;[x] such that f{a) = O for
all a in Z;.

For every prime p, show that
W= DE=2) k= (p = D]

in Z,[x].

(Wilson’s Theorem) For every integer n > 1, prove that (n — 1)!

mod n = n — 1 if and only if # is prime.

For every prime p, show that (p — 2)! mod p = 1.
Find the remainder upon dividing 98! by 101.
Prove that (50!)> mod 101 = —1 mod 101.
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If 7 is an ideal of a ring R, prove that I[x] is an ideal of R[x].

Give an example of a commutative ring R with unity and a
maximal ideal 7 of R such that I[x] is not a maximal ideal of R[x].
Let R be a commutative ring with unity. If / is a prime ideal of R,
prove that /[x] is a prime ideal of R[x].

Let F be a field, and let f{x) and g(x) belong to F[x]. If there is no
polynomial of positive degree in F[x] that divides both f{x) and g(x)
[in this case, f{x) and g(x) are said to be relatively prime], prove that
there exist polynomials /(x) and k(x) in F[x] with the property that
So)h(x) + g(x)k(x) = 1. (This exercise is referred to in Chapter 20.)
Prove that Q[x]/{(x> — 2) is ring-isomorphic to Q[\fZ] = {a +
b\V2 la, b € Q).

Let fix) € R[x]. If la) = 0 and f'(a) = 0 [f’(a) is the derivative of
f(x) at a], show that (x — a)? divides f(x).

Let F be a field and let I = {fix) € F[x] | fla) = 0 for all a in F}.
Prove that 7 is an ideal in F[x]. Prove that [ is infinite when F is fi-
nite and / = {0} when F is infinite. When F is finite, find a monic
polynomial g(x) such that I = (g(x)).

Let g(x) and h(x) belong to Z[x] and let A(x) be monic. If A(x) di-
vides g(x) in Q[x], show that h(x) divides g(x) in Z[x]. (This exer-
cise is referred to in Chapter 33.)

For any field F, recall that F(x) denotes the field of quotients of the
ring F[x]. Prove that there is no element in F(x) whose square is x.
Let F be a field. Show that there exist a, b € F with the property
that x> + x + 1 divides x* + ax + b.

Letf(x) = a,x"™ + a,,_x" '+ - - - + gyand g(x) = b,x* + b,_x" ' +
-+ + + by belong to Q[x] and suppose that fo g belongs to Z[x]. Prove
that a;b; is an integer for every i and j.

Let f(x) belong to Z[x]. If a mod m = b mod m, prove that f(a)
mod m = f(b) mod m. Prove that if both f(0) and f(1) are odd then
f has no zero in Z.

Find the remainder when x°! is divided by x + 4 in Z;[x].

Show that 1 is the only solution of x*> — 1 = 0 in Z;.
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Factorization

of Polynomials

The value of a principle is the number of things it will explain.
RALPH WALDO EMERSON

Reducibility Tests

In high school, students spend much time factoring polynomials and
finding their zeros. In this chapter, we consider the same problems in a
more abstract setting.

To discuss factorization of polynomials, we must first introduce the
polynomial analog of a prime integer.

Definition Irreducible Polynomial, Reducible Polynomial

Let D be an integral domain. A polynomial f(x) from D[x] that is
neither the zero polynomial nor a unit in D[x] is said to be irreducible
over D if, whenever f(x) is expressed as a product f(x) = g(x)h(x), with
g(x) and h(x) from D[x], then g(x) or A(x) is a unit in D[x]. A nonzero,
nonunit element of D[x] that is not irreducible over D is called
reducible over D.

In the case that an integral domain is a field F, it is equivalent and more
convenient to define a nonconstant f{x) € F[x] to be irreducible if f{x) can-
not be expressed as a product of two polynomials of lower degree.

B EXAMPLE 1 The polynomial fix) = 2x> + 4 is irreducible over Q
but reducible over Z, since 2x2 + 4 = 2(x* + 2) and neither 2 nor x* + 2
is a unit in Z[x]. |

B EXAMPLE 2 The polynomial f{x) = 2x*> + 4 is irreducible over R
but reducible over C. |

B EXAMPLE 3 The polynomial x> — 2 is irreducible over Q but re-
ducible over R. ]
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B EXAMPLE 4 The polynomial x* + 1 is irreducible over Z, but re-
ducible over Z.. |

In general, it is a difficult problem to decide whether or not a partic-
ular polynomial is reducible over an integral domain, but there are spe-
cial cases when it is easy. Our first theorem is a case in point. It applies
to the three preceding examples.

I Theorem 17.1 Reducibility Test for Degrees 2 and 3

Let F be a field. If f(x) € F[x] and deg f(x) is 2 or 3, then f(x) is
reducible over F if and only if f(x) has a zero in F.

PROOF Suppose that f(x) = g(x)h(x), where both g(x) and h(x) belong
to F[x] and have degrees less than that of f{x). Since deg f{x) = deg g(x) +
deg h(x) (Exercise 17 in Chapter 16) and deg f(x) is 2 or 3, at least one
of g(x) and h(x) has degree 1. Say g(x) = ax + b. Then, clearly, —a~'b
is a zero of g(x) and therefore a zero of f{x) as well.

Conversely, suppose that fla) = 0, where a € F. Then, by the Factor
Theorem, we know that x — a is a factor of f(x) and, therefore, f(x) is
reducible over F. |

Theorem 17.1 is particularly easy to use when the field is Z , be-
cause, in this case, we can check for reducibility of f{x) by simply test-
ing to see if fla) = O fora =0, 1,..., p — 1. For example, since 2 is a
zero of x2 + 1 over Z,, x* + 1 is reducible over Z,. On the other hand,
because neither 0, 1, nor 2 is a zero of x> + 1 over Z,, x* + 1 is irre-
ducible over Z,.

Note that polynomials of degree larger than 3 may be reducible over
a field, even though they do not have zeros in the field. For example, in
Qlx], the polynomial x* + 2x> + 1 is equal to (x> + 1), but has no
zeros in Q.

Our next three tests deal with polynomials with integer coefficients.
To simplify the proof of the first of these, we introduce some terminol-
ogy and isolate a portion of the argument in the form of a lemma.

Definition Content of Polynomial, Primitive Polynomial

The content of a nonzero polynomial a x" + a, x" "'+ - - - + a,
where the a’s are integers, is the greatest common divisor of the
integersa,, a, ,,...,a, A primitive polynomial is an element of Z[x]
with content 1.
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I Gauss’s Lemma

The product of two primitive polynomials is primitive.

PROOF Let fix) and g(x) be primitive polynomials, and suppose that
fix)g(x) is not primitive. Let p be a prime divisor of the content of
flx)g(x), and let f(x), g(x), and f(x)g(x) be the polynomials obtained
from f(x), g(x), and f(x)g(x) by reducing the coefficients modulo p.
Then, f(x) and g(x) belong to the integral domain Z [x ] and f (x)glx) =

Sfix)g(x) = 0, the zero element of Z [x] (see Exer01se 31 in Chapter 16).
Thus, f(x) = 0 or g(x) = 0. This means that either p divides every co-
efficient of f(x) or p divides every coefficient of g(x). Hence, either f(x)
is not primitive or g(x) is not primitive. This contradiction completes
the proof. |

Remember that the question of reducibility depends on which ring of
coefficients one permits. Thus, x> — 2 is irreducible over Z but
reducible over Q[V/2]. In Chapter 20, we will prove that every poly-
nomial of degree greater than 1 with coefficients from an integral
domain is reducible over some field. Theorem 17.2 shows that in the
case of polynomials irreducible over Z, this field must be larger than

the field of rational numbers.
I Theorem 17.2 Reducibility over Q Implies Reducibility Over Z

Let f(x) € Z[x]. If f(x) is reducible over Q, then it is reducible over Z.

PROOF Suppose that f(x) = g(x)h(x), where g(x) and h(x) € QOlx].
Clearly, we may assume that f(x) is primitive because we can divide
both f(x) and g(x) by the content of f(x). Let a be the least common
multiple of the denominators of the coefficients of g(x), and b the least
common multiple of the denominators of the coefficients of /(x). Then
abf(x) = ag(x) - bh(x), where ag(x) and bh(x) € Z[x]. Let c, be the con-
tent of ag(x) and let ¢, be the content of bh(x). Then ag(x) = ¢, g,(x) and
bh(x) = c,h,(x), where both g, (x) and &, (x) are primitive and abf(x) =
¢,0,8,(X)h (x). Since f(x) is primitive, the content of abf(x) is ab. Also,
since the product of two primitive polynomials is primitive, it follows
that the content of ¢, c,g,(x)h,(x) is ¢,c,. Thus, ab = c,c, and fix) =

g,(x)h,(x), where g,(x) and h,(x) € Z[x] and deg g,(x) = deg g(x) and
deg h,(x) = deg h(x). |
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B EXAMPLE 5 We illustrate the proof of Theorem 17.2 by tracing
through it for the polynomial f(x) = 6x> + x — 2 = (3x — 3/2)(2x +
4/3) = g(x)h(x). In this case we havea = 2,b = 3,¢, = 3,¢, = 2, g,(x) =
2x — 1,and h,(x) = 3x + 2,s0 that 2 - 3(6x* + x —2) =3 - 2(2x —
D@x+2)or6x?+x—2=2x — DH3x + 2). |

Irreducibility Tests

Theorem 17.1 reduces the question of irreducibility of a polynomial of
degree 2 or 3 to one of finding a zero. The next theorem often allows us
to simplify the problem even further.

1 Theorem 17.3 Mod p Irreducibility Test

Let p be a prime and suppose that f(x) € Z|x] with deg f(x) = 1.

Let f(x) be the polynomial in Zp[x] obtained from f(x) by reducing

all the coefficients of f(x) modulo p. If f(x) is irreducible over ZP and
deg f(x) = deg f(x), then f(x) is irreducible over Q.

PROOF It follows from the proof of Theorem 17.2 that if f{x) is re-
ducible over Q, then flx) = g(x)h(x) with g(x), h(x) € Z[x], and both
g(x) and h(x) have degree less than that of f{x). Let f(x), g(x), and A(x)
be the polynomials obtained from f{x), g(x), and h(x) by reducing all
the coefficients modulo p. Since deg fix) = deg f(x), we have deg
g(x) = deg g(x) < deg f(x) and deg h(x) = deg h(x) < deg f(x). But,
f(x) = g(x)h(x), and this contradicts our assumption that f(x) is irre-
ducible over Zp. |

B EXAMPLE 6 Let fix) = 21x3 —}xz + 2x + 9. Then, over Z,, we
have f(x) = x> + x> + 1 and, since f(0) = 1 and f(1) = 1, we see that
f(x) is irreducible over Z,. Thus, f(x) is irreducible over Q. Notice that,
over Z,, f(x) = 2x is irreducible, but we may not apply Theorem 17.3
to conclude that f(x) is irreducible over Q. |

Be careful not to use the converse of Theorem 17.3. If fix) € Z[x]
and f(x) is reducible over Zp for some p, f(x) may still be irreducible
over Q. For example, consider f(x) = 21x3 — 3x27+ 2x + 8. Then, over
Z,, f(x) = x> + x> = x*(x + 1). But over Z, f(x) has no zeros and
therefore is irreducible over Z.. So, f(x) is irreducible over Q. Note that
this example shows that the Mod p Irreducibility Test may fail for
some p and work for others. To conclude that a particular f(x) in Z[x] is
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irreducible over Q, all we need to do is find a single p for which the cor-
responding polynomial f (x) in Z_ is irreducible. However, this is not al-
ways possible, since fix) = x* + 1 is irreducible over Q but reducible
over Zp for every prime p. (See Exercise 29.)

The Mod p Irreducibility Test can also be helpful in checking for
irreducibility of polynomials of degree greater than 3 and polynomials
with rational coefficients.

B EXAMPLE 7 Let f(x) = (3/7)x* — (2/T)x*> + (9/35)x + 3/5. We will
show that f(x) is irreducible over Q. First, let h(x) = 35f(x) = 15x* —
10x*> 4+ 9x + 21. Then f(x) is irreducible over Q if h(x) is irreducible
over Z. Next, applying the Mod 2 Irreducibility Test to h(x), we get
h(x) = x* + x + 1. Clearly, h(x) has no zeros in Z,. Furthermore, A(x)
has no quadratic factor in Z,[x] either. [For if so, the factor would have
to be either x> + x + 1 or x> + 1. Long division shows that x> + x + 1
is not a factor, and x* + 1 cannot be a factor because it has a zero
whereas /1(x) does not.] Thus A(x) is irreducible over Z,[x]. This guaran-
tees that A(x) is irreducible over Q. |

B EXAMPLE 8 Let f(x) = x° + 2x + 4. Obviously, neither Theorem
17.1 nor the Mod 2 Irreducibility Test helps here. Let’s try mod 3.
Substitution of 0, 1, and 2 into f (x) does not yield 0, so there are no linear
factors. But f (x) may have a quadratic factor. If so, we may assume it has
the form x*> + ax + b (see Exercise 5). This gives nine possibilities to
check. We can immediately rule out each of the nine that has a zero over
Zs, since f (x) does not have one. This leaves only x> + 1, x*> + x + 2, and
x* + 2x + 2 to check. These are eliminated by long division. So, since
S (x) is irreducible over Z;, f(x) is irreducible over Q. (Why is it unnec-
essary to check for cubic or fourth-degree factors?) |

Another important irreducibility test is the following one, credited to
Ferdinand Eisenstein (1823-1852), a student of Gauss. The corollary
was first proved by Gauss by a different method.

B Theorem 17.4 Eisenstein’s Criterion (1850)
Let

fy=ax"+a, x"'+---+a, € Zx].

If there is a prime p such thatp t a,pla, ,...,pla, and p* + a,,
then f(x) is irreducible over Q.
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PROOF If f(x) is reducible over O, we know by Theorem 17.2 that
there exist elements g(x) and A(x) in Z[x] such that f(x) = g(x)h(x) and
1 = deg g(x), and 1 = deg h(x) < n. Say g(x) = b x" + -+ - + b, and
h(x) = ¢, x* + - - - + ¢,. Then, since p | a,,, prr ay, and a, = bc,, it fol-
lows that p divides one of b, and c,, but not the other. Let us say p | b,
and p 4 ¢,. Also, since p + a, = b ¢, we know that p + b.. So, there is a
least integer 7 such that p + b,. Now, consider a, = bc, + b,_jc, + - -+
+ b,c,. By assumption, p divides a, and, by choice of 7, every summand
on the right after the first one is divisible by p. Clearly, this forces p to

divide b ¢, as well. This is impossible, however, since p is prime and p

divides neither b, nor c,,. |
I Corollary Irreducibility of pth Cyclotomic Polynomial
For any prime p, the pth cyclotomic polynomial
<I>(x)=u=xp‘1+xp‘2+---+x+1
4 x—1
is irreducible over Q.
PROOF Let
x+1)P—1
fo=d,(ct n=ST DT oy <p> X2 <p) X34 -+<p>.
x+DhH—1 1 2 1

Then, since every coefficient except that of x”~! is divisible by p and
the constant term is not divisible by p?, by Eisenstein’s Criterion, f(x) is
irreducible over Q. So, if <I>p(x) = g(x)h(x) were a nontrivial factoriza-
tion of CDp(x) over Q, then f(x) = CI)p(x + 1) =glx+ 1) hx+1
would be a nontrivial factorization of f(x) over Q. Since this is impossi-
ble, we conclude that CI)p(x) is irreducible over Q. |

B EXAMPLE 9 The polynomial 3x° + 15x* — 20x* + 10x + 20 is
irreducible over Q because 5 + 3 and 25 + 20 but 5 does divide 15,
—20, 10, and 20. |

The principal reason for our interest in irreducible polynomials
stems from the fact that there is an intimate connection among them,
maximal ideals, and fields. This connection is revealed in the next the-
orem and its first corollary.



17 | Factorization of Polynomials 311
1 Theorem 17.5 (p(x)) Is Maximal If and Only If p(x) Is Irreducible

Let F be a field and let p(x) € F[x]. Then (p(x)) is a maximal ideal
in F[x] if and only if p(x) is irreducible over F.

PROOF Suppose first that {p(x)) is a maximal ideal in F[x]. Clearly,
p(x) is neither the zero polynomial nor a unit in F[x], because neither
{0} nor F[x] is a maximal ideal in F[x]. If p(x) = g(x)h(x) is a factor-
ization of p(x) over F, then (p(x)) C {g(x)) C F[x]. Thus, {p(x)) = (g(x))
or F[x] = (g(x)). In the first case, we must have deg p(x) = deg g(x). In
the second case, it follows that deg g(x) = 0 and, consequently, deg i(x) =
deg p(x). Thus, p(x) cannot be written as a product of two polynomials
in F[x] of lower degree.

Now, suppose that p(x) is irreducible over F. Let I be any ideal of
F[x] such that {p(x)) C I C F[x]. Because F[x] is a principal ideal do-
main, we know that 7 = (g(x)) for some g(x) in F[x]. So, p(x) € {g(x))
and, therefore, p(x) = g(x)h(x), where h(x) € F[x]. Since p(x) is irre-
ducible over F, it follows that either g(x) is a constant or i(x) is a con-
stant. In the first case, we have I = FJ[x]; in the second case, we have
(p(x)) = (g(x)) = I. So, {p(x)) is maximal in F[x]. |

B Corollary 1 F[x]/{p(x))Is a Field

Let F be a field and p(x) an irreducible polynomial over F. Then
F[x]Kp(x)) is a field.

PROOF This follows directly from Theorems 17.5 and 14.4. |

The next corollary is a polynomial analog of Euclid’s Lemma for
primes (see Chapter 0).

I Corollary 2 p(x) | a(x)b(x) Implies p(x) | a(x) or p(x) | b(x)

Let F be a field and let p(x), a(x), b(x) € F[x]. If p(x) is irreducible
over F and p(x) | a(x)b(x), then p(x) | a(x) or p(x) | b(x).

PROOF Since p(x) is irreducible, F[x]/ p(x)) is a field and, therefore, an
integral domain. From Theorem 14.3, we know that (p(x)) is a prime
ideal, and since p(x) divides a(x)b(x), we have a(x)b(x) € {p(x)). Thus,
a(x) € (p(x)) or b(x) € (p(x)). This means that p(x) | a(x) or p(x) | b(x). i

The next two examples put the theory to work.
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B EXAMPLE 10 We construct a field with eight elements. By
Theorem 17.1 and Corollary 1 of Theorem 17.5, it suffices to find a
cubic polynomial over Z, that has no zero in Z,. By inspection, x* +
x + 1 fills the bill. Thus, Z,[x]Kx* + x + 1) = {ax* + bx + ¢ + (* +
x+Dlab,cE Z,} is a field with eight elements. For practice, let us
do a few calculations in this field. Since the sum of two polynomials of
the form ax” + bx + c is another one of the same form, addition is easy.
For example,

F+x+l+@+Hx+1)+@+1+HE +x+1)
=x+ & +x+1).

On the other hand, multiplication of two coset representatives need not
yield one of the original eight coset representatives:

Prx+1+EE+x+1)-P+1+EE+x+1))
=X+ +tx+1+EF+x+ =+ +x+1)

(since the ideal absorbs the last three terms). How do we express this in
the form ax?> + bx + ¢ + (x* + x + 1)? One way is to long divide x* by
x* + x + 1 to obtain the remainder of x> + x (just as one reduces
12 + (5) to 2 + (5) by dividing 12 by 5 to obtain the remainder 2).
Another way is to observe that x> + x + 1 + (x> + x + 1) = 0 +
(> + x+ 1)implies x> + (x> + x + 1) = x + 1 + (x* + x + 1). Thus,
we may multiply both sides by x to obtain

*HE+Hx+D)=x2+x+ &3 +x+1).
Similarly,

F+rx+@+x+1)-x+ @ +x+1)
=3+ + @ +x+1)
=x2+x+1+&+x+1).

A partial multiplication table for this field is given in Table 17.1. To
simplify the notation, we indicate a coset by its representative only.

Table 17.1 A Partial Multiplication Table for Example 10

1 x x+1 x2 x2+1 x2+x X2+x+1
1 1 X x+1 x2 2+1 X2+ x 2+x+1
X x x2 X2+ x x+1 1 24+x+1 2+1
x+1 |[x+1 P+x P+1 X+x+1 A 1 X
x? x? x+1 xX2+x+1 xX+x x xX2+1 1
xX2+1|x2+1 1 x2 X X2+x+1 x+1 X2+ x
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(Complete the table yourself. Keep in mind that x* can be replaced by
x + 1 and x* by x> + x.) |

B EXAMPLE 11 Since x* + 1 has no zero in Z,, it is irreducible over
Z,. Thus, Z,[x]Kx* + 1) is a field. Analogous to Example 12 in Chapter 14,
Z3[)c]/(x2 + D ={ax+b+ &+ 1labe Z.}. Thus, this field has
nine elements. A multiplication table for this field can be obtained from
Table 13.1 by replacing i by x. (Why does this work?) |

Unique Factorization in Z[x]

As a further application of the ideas presented in this chapter, we next
prove that Z[x] has an important factorization property. In Chapter 18,
we will study this property in greater depth. The first proof of Theorem
17.6 was given by Gauss. In reading this theorem and its proof, keep in
mind that the units in Z[x] are precisely fix) = 1 and fix) = —1 (see
Exercise 25 in Chapter 12), the irreducible polynomials of degree O
over Z are precisely those of the form f(x) = p and fix) = —p where p is
a prime, and every nonconstant polynomial from Z[x] that is irreducible
over Z is primitive (see Exercise 3).

I Theorem 17.6 Unique Factorization in Z[x]

Every polynomial in Z|x] that is not the zero polynomial or a unit

in Z[x] can be written in the form b.b, - - - b, p,(x)p,(x) - - - p,(%),
where the b;’s are irreducible polynomials of degree 0, and the p(x)’s
are irreducible polynomials of positive degree. Furthermore, if

bb, - bp,X)p,(x) - p,(x)=cc, - ¢,q(0)q,(x) - q,x),

where the b’s and c’s are irreducible polynomials of degree 0, and the
p(x)’s and q(x)’s are irreducible polynomials of positive degree, then
s = t, m = n, and, after renumbering the c’s and q(x)’s, we have b, =
*cfori=1,...,s;andp(x) = £qx) fori=1,..., m.

PROOF Let filx) be a nonzero, nonunit polynomial from Z[x]. If
deg fix) = 0, then f(x) is constant and the result follows from the
Fundamental Theorem of Arithmetic. If deg f(x) > 0, let b denote the
content of f(x), and let b b, - - - b_be the factorization of b as a product

172
of primes. Then, f(x) = b,b, - - - b_f,(x), where f,(x) belongs to Z[x], is
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primitive and deg f,(x) = deg f(x). Thus, to prove the existence portion
of the theorem, it suffices to show that a primitive polynomial f(x) of
positive degree can be written as a product of irreducible polynomials
of positive degree. We proceed by induction on deg f(x). If deg fix) = 1,
then f(x) is already irreducible and we are done. Now suppose that
every primitive polynomial of degree less than deg f(x) can be written
as a product of irreducibles of positive degree. If f(x) is irreducible,
there is nothing to prove. Otherwise, fix) = g(x)h(x), where both g(x)
and A(x) are primitive and have degree less than that of f(x). Thus, by in-
duction, both g(x) and A(x) can be written as a product of irreducibles of
positive degree. Clearly, then, f(x) is also such a product.

To prove the uniqueness portion of the theorem, suppose that
f&x) = bbby -+ b p(X)py(x) * - p,x) = ¢y €,q(0)gy(x)
q,(x), where the b’s and ¢’s are irreducible polynomials of degree 0, and
the p(x)’s and g(x)’s are irreducible polynomials of positive degree. Let

b=bb, - b and ¢ = c,c, - -+ c,. Since the p(x)’s and g(x)’s are
primitive, it follows from Gauss’s Lemma that p,(x)p,(x) - - - p, (x) and
q,(x)g,(x) - -+ q,(x) are primitive. Hence, both b and ¢ must equal plus

or minus the content of f{x) and, therefore, are equal in absolute value.
It then follows from the Fundamental Theorem of Arithmetic that s = ¢
and, after renumbering, b, = *c¢,fori = 1,2, ..., s. Thus, by cancel-
ing the constant terms in the two factorizations for f(x), we have
PP, - p, () = £q,(x) g,(x) - - - q,(x). Now, viewing the p(x)’s
and g(x)’s as elements of Q[x] and noting that p,(x) divides g (x) - -
q,(x), it follows from Corollary 2 of Theorem 17.5 and induction (see
Exercise 27) that p,(x) | g(x) for some i. By renumbering, we may as-
sume i = 1. Then, since g, (x) is irreducible, we have g,(x) = (r/s)p,(x),
where r, s € Z. However, because both ¢, (x) and p, (x) are primitive, we
must have r/s = *=1. So, g,(x) = £p,(x). Also, after canceling, we have
p,(x) *++ p,(x) = £g,(x) -+ * q,(x). Now, we may repeat the argument
above with p,(x) in place of p,(x). If m < n, after m such steps we
would have 1 on the left and a nonconstant polynomial on the right.
Clearly, this is impossible. On the other hand, if m > n, after n steps we
would have %1 on the right and a nonconstant polynomial on the left—
another impossibility. So, m = n and p(x) = *q/x) after suitable
renumbering of the g(x)’s. |

Weird Dice: An Application
of Unique Factorization

B EXAMPLE 12 Consider an ordinary pair of dice whose faces are
labeled 1 through 6. The probability of rolling a sum of 2 is 1/36, the
probability of rolling a sum of 3 is 2/36, and so on. In a 1978 issue of
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Scientific American [1], Martin Gardner remarked that if one were to
label the six faces of one cube with the integers 1, 2, 2, 3, 3, 4 and the six
faces of another cube with the integers 1, 3, 4, 5, 6, 8, then the probabil-
ity of obtaining any particular sum with these dice (called Sicherman
dice) would be the same as the probability of rolling that sum with ordi-
nary dice (that is, 1/36 for a 2, 2/36 for a 3, and so on). See Figure 17.1.
In this example, we show how the Sicherman labels can be derived, and
that they are the only possible such labels besides 1 through 6. To do so,
we utilize the fact that Z[x] has the unique factorization property.

T e ] IR Y

3 4 5 6 7 8 4 5 5 6 6 7

4 5 6 7 8 9 5 6 6 7 7 8

5 6 7 8 9 10 7 7 8 8 9

6 7 8 9 10 | 11 7 8 8 9 9 10

7 8 9 10 | 11 | 12 9 | 10 | 10 | 1L | 11 | 12

b e 5 A D
c3% e O R [ D

Figure 17.1

To begin, let us ask ourselves how we may obtain a sum of 6, say, with
an ordinary pair of dice. Well, there are five possibilities for the two faces:
5,1),(4,2),3,3),(2,4), and (1, 5). Next we consider the product of the
two polynomials created by using the ordinary dice labels as exponents:

O+ + X+ +2+ 000+ + 2+ 3+ 22+ x).

Observe that we pick up the term x% in this product in precisely the fol-
lowing ways: x3 - x!, x* - x>, x3 - x3, x> - x*, x! - x°. Notice the correspon-
dence between pairs of labels whose sums are 6 and pairs of terms
whose products are x°. This correspondence is one-to-one, and it is valid
for all sums and all dice—including the Sicherman dice and any other
dice that yield the desired probabilities. So, let a,, a,, a,, a,, a5, a; and
b, b,, b,, b,, bs, b, be any two lists of positive integer labels for the faces
of a pair of cubes with the property that the probability of rolling any
particular sum with these dice (let us call them weird dice) is the same as
the probability of rolling that sum with ordinary dice labeled 1 through

6. Using our observation about products of polynomials, this means that
CHP+ A+ P+ 2RO+ + )
= (x4 + x% + x% + x% + x5 + x%) -
(b1 + xb2 4+ xPs + xbs + xbs + xPo). (1)
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Now all we have to do is solve this equation for the a’s and b’s. Here is
where unique factorization in Z[x] comes in. The polynomial x® + x> +
x* 4+ x3 + x? + x factors uniquely into irreducibles as

x(x+ D +Hx+ D2 —x+1)
so that the left-hand side of Equation (1) has the irreducible factorization
x4+ DX+ x+ DX(x*—x + 1)~

So, by Theorem 17.6, this means that these factors are the only possible
irreducible factors of P(x) = x% + x% + x% + x% + x% + x%. Thus,
P(x) has the form

X(x + 1702+ x + 102 —x + 1),

where 0 =g, r, t,u = 2.

To restrict further the possibilities for these four parameters, we eval-
uate P(1) in two ways. P(1) = 191 + 12 + --- + 1% = 6 and
P(1) = 19273"1". Clearly, this means that » = 1 and # = 1. What about ¢?
Evaluating P(0) in two ways shows that ¢ # 0. On the other hand, if
q = 2, the smallest possible sum one could roll with the corresponding
labels for dice would be 3. Since this violates our assumption, we have
now reduced our list of possibilities for ¢, r, t,and utog = 1, r = 1,
t=1,andu = 0, 1, 2. Let’s consider each of these possibilities in turn.

When u = 0, P(x) = x* + x3 + x3 + x2 + x2 + x, so the die labels
are 4, 3, 3, 2, 2, 1—a Sicherman die.

Whenu = 1, P(x) = x° + x> + x* + x> + x2 + x, so the die labels
are 6, 5, 4, 3, 2, 1—an ordinary die.

When u = 2, P(x) = x% + x° + x> + x* + x3 + x, so the die labels
are 8, 0, 5, 4, 3, 1—the other Sicherman die.

This proves that the Sicherman dice do give the same probabilities
as ordinary dice and that they are the only other pair of dice that have
this property. |

No matter how good you are at something, there’s always about a million
people better than you.

HOMER SIMPSON

1. Verify the assertion made in Example 2.

2. Suppose that D is an integral domain and F is a field containing D.
If fix) € D[x] and f(x) is irreducible over F but reducible over D,
what can you say about the factorization of f{x) over D?
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10.

11.

12.
13.

14.

15.

16.

. Suppose that flx) = x" + a,
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. Show that a nonconstant polynomial from Z[x] that is irreducible

over Z is primitive. (This exercise is referred to in this chapter.)
Xt 4 ay € Z[x] If ris ra-
tional and x — r divides f{x), show that r is an integer.

. Let F' be a field and let a be a nonzero element of F.

a. If afix) is irreducible over F, prove that f(x) is irreducible over F.

b. If flax) is irreducible over F, prove that f(x) is irreducible over F.

c. If fix + a) is irreducible over F, prove that f(x) is irreducible
over F.

d. Use part ¢ to prove that 8x* — 6x + 1 is irreducible over Q.

(This exercise is referred to in this chapter.)

- Suppose that f(x) € Z [x] and is irreducible over Z , where p is a

prime. If deg f(x) = n, prove that Zp[x]/( f(x)) is a field with p" ele-
ments.

. Construct a field of order 25.
. Construct a field of order 27.
. Show that x* + x?> + x + 1 is reducible over Q. Does this fact con-

tradict the corollary to Theorem 17.4?

Determine which of the polynomials below is (are) irreducible
over Q.

X+ 1242+ 6

X+ x+ 1

x*+3x2+3

Lo +52+ 1

(5/2)x° + (9/2)x* + 155 + (3/7)x> + 6x + 3/14

Show that x* + 1 is irreducible over Q but reducible over R. (This
exercise is referred to in this chapter.)

Show that x* + x + 4 is irreducible over Z, .

Letfix) =x*+ 6 € Z.[x]. Write f(x) as a product of irreducible
polynomials over Z..

Let fix) = x> + x> + x + 1 € Z,[x]. Write f(x) as a product of irre-
ducible polynomials over Z,.

ceao T

Let p be a prime.

a. Show that the number of reducible polynomials over Zp of the
form x> + ax + bis p(p + 1)/2.

b. Determine the number of reducible quadratic polynomials over Z,

Let p be a prime.

a. Determine the number of irreducible polynomials over Zp of the
form x> + ax + b.

b. Determine the number of irreducible quadratic polynomials
over Zp.
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17.
18.

19.

20.

21.
22,

23.

24.

25.

26.

27.

28.

29.

30.

Show that for every prime p there exists a field of order p>.

Prove that, for every positive integer n, there are infinitely many
polynomials of degree n in Z[x] that are irreducible over Q.

Show that the field given in Example 11 in this chapter is isomor-
phic to the field given in Example 9 in Chapter 13.

Let fix) € Zp[x]. Prove that if f{x) has no factor of the form x> +
ax + b, then it has no quadratic factor over Zp.

Find all monic irreducible polynomials of degree 2 over Z,.

Given that 77 is not the zero of a nonzero polynomial with rational
coefficients, prove that 77 2 cannot be written in the form a7 + b,

where a and b are rational.
2

Find all the zeros and their multiplicities of x* + 4x* + 4x3 — x
4x + 1 over Z.

Find all zeros of f(x) = 3x* + x + 4 over Z, by substitution. Find
all zeros of f(x) by using the Quadratic Formula (—b = Vb2 —4ac) -
(2a)~! (all calculations are done in Z,). Do your answers agree?
Should they? Find all zeros of g(x) = 2x* + x + 3 over Z, by sub-
stitution. Try the Quadratic Formula on g(x). Do your answers
agree? State necessary and sufficient conditions for the Quadratic
Formula to yield the zeros of a quadratic from Zp[x], where p is a
prime greater than 2.

(Rational Root Theorem) Let

f&x) =ax"+ anflx”_l + -+ a, € Z[x]

and a, # 0. Prove that if r and s are relatively prime integers and
f(rls) = 0,thenrla,ands | a,

Let F be a field and f{ix) € F[x]. Show that, as far as deciding upon
the irreducibility of f(x) over F is concerned, we may assume that
f(x) is monic. (This assumption is useful when one uses a computer
to check for irreducibility.)

Let F be a field and let p(x), a,(x), a,(x), . . ., a,(x) € F[x], where
p(x) is irreducible over F. If p(x) | a,(x)a,(x) - - - a,(x), show that
p(x) divides some a(x). (This exercise is referred to in the proof of
Theorem 17.6.)

Explain how the Mod p Irreducibility Test (Theorem 17.3) can be
used to test members of Q[x] for irreducibility.

Show that x* + 1 is reducible over Z, for every prime p. (This ex-
ercise is referred to in this chapter.)
If p is a prime, prove that x*~! — x?72 + x*73 — -+ - —x + 1 is

irreducible over Q.



31.

32,

33.

34.

35.

36.

37.

38.
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Let F be a field and let p(x) be irreducible over F. If E is a field
that contains F and there is an element a in E such that p(a) = 0,
show that the mapping ¢: F[x] — E given by f(x) — f(a) is a ring
homomorphism with kernel {p(x)). (This exercise is referred to in
Chapter 20.)

Prove that the ideal (x> + 1) is prime in Z[x] but not maximal in Z[x].

Let F be a field and let p(x) be irreducible over F. Show that {a +
(p(x)) | a € F} is a subfield of F[x]/{p(x)) isomorphic to F. (This
exercise is referred to in Chapter 20.)

Suppose there is a real number r with the property that » + 1/r is
an odd integer. Prove that r is irrational.

In the game of Monopoly, would the probabilities of landing on
various properties be different if the game were played with
Sicherman dice instead of ordinary dice? Why?

Carry out the analysis given in Example 12 for a pair of tetrahe-
drons instead of a pair of cubes. (Define ordinary tetrahedral dice
as the ones labeled 1 through 4.)

Suppose in Example 12 that we begin with n (n > 2) ordinary dice
each labeled 1 through 6, instead of just two. Show that the only
possible labels that produce the same probabilities as n ordinary
dice are the labels 1 through 6 and the Sicherman labels.

Show that one two-sided die labeled with 1 and 4 and another 18-
sided die labeled with 1, 2, 2, 3,3,3,4,4,4,5,5,5,6,6,6,7,7, 8
yield the same probabilities as an ordinary pair of cubes labeled
1 through 6. Carry out an analysis similar to that given in Example
12 to derive these labels.

The experiment serves two purposes, often independent one from the
other: it allows the observation of new facts, hitherto either unsuspected,
or not yet well defined; and it determines whether a working hypothesis
fits the world of observable facts.

RENE J. DUBOS

Software for the computer exercises in this chapter is available at the
website:

1.

http://www.d.umn.edu/~jgallian

This software implements the Mod p Irreducibility Test. Use it to
test the polynomials in the examples given in this chapter and the
polynomials given in Exercise 10 for irreducibility.


http://www.d.umn.edu/~jgallian
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2. Use software such as Mathematica, Maple, or GAP to express
x" — 1 as a product of irreducible polynomials with integer coeffi-
cients for n = 4, 8, 12, and 20. On the basis of these data, make a
conjecture about the coefficients of the irreducible factors of x* — 1.
Test your conjecture for n = 105. Does your conjecture hold up?

3. Use software such as Mathematica, Maple, or GAP to express x”" — x
as a product of irreducibles over Z for several choices of the prime
p and n. On the basis of these data, make a conjecture relating the
degrees of the irreducible factors of x?" — x and n.
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Divisibility in

Integral Domains

Give me a fruitful error anytime, full of seeds, bursting with its own
corrections. You can keep your sterile truth for yourself.
VILFREDO PARETO

Irreducibles, Primes
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In the preceding two chapters, we focused on factoring polynomials
over the integers or a field. Several of those results—unique factoriza-
tion in Z[x] and the division algorithm for F[x], for instance—are nat-
ural counterparts to theorems about the integers. In this chapter and the
next, we examine factoring in a more abstract setting.

Definition Associates, Irreducibles, Primes

Elements a and b of an integral domain D are called associates if

a = ub, where u is a unit of D. A nonzero element « of an integral
domain D is called an irreducible if a is not a unit and, whenever b,

¢ € D with a = bc, then b or c is a unit. A nonzero element a of an
integral domain D is called a prime if a is not a unit and a | bc implies
alboralc.

Roughly speaking, an irreducible is an element that can be factored
only in a trivial way. Notice that an element a is a prime if and only if
(a) is a prime ideal.

Relating the definitions above to the integers may seem a bit confus-
ing, since in Chapter O we defined a positive integer to be a prime if it
satisfies our definition of an irreducible, and we proved that a prime in-
teger satisfies the definition of a prime in an integral domain (Euclid’s
Lemma). The source of the confusion is that in the case of the integers,
the concepts of irreducibles and primes are equivalent, but in general, as
we will soon see, they are not.

The distinction between primes and irreducibles is best illustrated by
integral domains of the form Z[\/c_l] ={a+ bNVdla,b€E Z}, where d is
not 1 and is not divisible by the square of a prime. (These rings are of
fundamental importance in number theory.) To analyze these rings, we
need a convenient method of determining their units, irreducibles, and
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primes. To do this, we define a function N, called the norm, from Z[\/d]
into the nonnegative integers by N(a + b\/d) = la* — db*. We leave it
to the reader (Exercise 1) to verify the following four properties: N(x) = 0
if and only if x = 0; N(xy) = N(x)N(y) for all x and y; x is a unit if and
only if N(x) = 1; and, if N(x) is prime, then x is irreducible in Z[\Vd].

B EXAMPLE 1 We exhibit an irreducible in Z[\@] that is not prime.
Here, N(a + b\/-3) = a + 3b% Consider 1 + V=3. Suppose that we
can factor this as xy, where neither x nor y is a unit. Then N(xy) =
N(X)N(y) = N(1 + V-3) = 4, and it follows that N(x) = 2. But there are
no integers a and b that satisfy a> + 3b> = 2. Thus, x or y is a unit and
1 + V-3 is an irreducible. To verify that it is not prime, we observe that
(1 +V-3)(1 —V-3)=4=2-2,s0that | + /-3 divides 2 - 2. On the
other hand, for integers a and b to exist so that 2 = (1 + \/—73)(51 +
b\/—?) =(a—3b) + (a + b)\/—»3, we must have a — 3b = 2 and a +
b = 0, which is impossible. |

Showing that an element of a ring of the form Z[\V/d] is irreducible is
more difficult when d > 1. The next example illustrates one method of
doing this. The example also shows that the converse of the fourth
property above for the norm is not true. That is, it shows that x may be
irreducible even if N(x) is not prime.

B EXAMPLE 2 The element 7 is irreducible in the ring Z[\/5]. To verify
this assertion, suppose that 7 = xy, where neither x nor y is a unit. Then
49 = N(7) = N(x) N(y), and since x is not a unit, we cannot have N(x) =
1. This leaves only the case N(x) = 7. Letx = a + b\/5. Then there are
integers a and b satisfying la*> — 5b°| = 7. This means that a> — 5b*> =
*7. Viewing this equation modulo 7 and trying all possible cases for a
and b reveals that the only solutions are a = 0 = b. But this means that
both a and b are divisible by 7, and this implies that la> — 5b%| = 7 is
divisible by 49, which is false. |

Example 1 raises the question of whether or not there is an integral
domain containing a prime that is not an irreducible. The answer: no.

I Theorem 18.1 Prime Implies Irreducible

In an integral domain, every prime is an irreducible.
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PROOF Suppose that a is a prime in an integral domain and a = bc.
We must show that b or ¢ is a unit. By the definition of prime, we know
thata |l boralc.Say at = b. Then 1b = b = at = (bc)t = b(ct) and,
by cancellation, 1 = ct. Thus, c is a unit. |

Recall that a principal ideal domain is an integral domain in which
every ideal has the form (a). The next theorem reveals a circumstance
in which primes and irreducibles are equivalent.

I Theorem 18.2 PID Implies Irreducible Equals Prime

In a principal ideal domain, an element is an irreducible if and only
if it is a prime.

PROOF Theorem 18.1 shows that primes are irreducibles. To prove the
converse, let a be an irreducible element of a principal ideal domain D
and suppose that a | bc. We must show that a | b or a | c. Consider the
ideal I = {ax + by | x, y € D} and let (d) = I. Since a € I, we can write
a = dr, and because a is irreducible, d is a unit or r is a unit. If d is a
unit, then / = D and we may write 1 = ax + by. Then ¢ = acx + bcy,
and since a divides both terms on the right, a also divides c.

On the other hand, if r is a unit, then {a) = (d) = I, and, because b € I,
there is an element ¢ in D such that at = b. Thus, a divides b. |

It is an easy consequence of the respective division algorithms for Z
and Fx], where F is a field, that Z and F[x] are principal ideal domains
(see Exercise 41 in Chapter 14 and Theorem 16.3). Our next example
shows, however, that one of the most familiar rings is not a principal
ideal domain.

# EXAMPLE 3 We show that Z[x] is not a principal ideal domain.
Consider the ideal I = {f(x) € Z[x] | f0) is even}. We claim that / is not
of the form (A(x)). If this were so, there would be f(x) and g(x) in Z[x]
such that 2 = A(x)f(x) and x = h(x)g(x), since both 2 and x belong to 1.
By the degree rule (Exercise 17 in Chapter 16), 0 = deg 2 = deg h(x) +
deg f(x), so that h(x) is a constant polynomial. To determine which
constant, we observe that 2 = h(1)f(1). Thus, (1) = =1 or £2. Since
1 is not in /, we must have i(x) = *=2. But then x = *2g(x), which is
nonsense. |

We have previously proved that the integral domains Z and Z[x] have
important factorization properties: Every integer greater than 1 can be
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uniquely factored as a product of irreducibles (that is, primes), and
every nonzero, nonunit polynomial can be uniquely factored as a prod-
uct of irreducible polynomials. It is natural to ask whether all integral
domains have this property. The question of unique factorization in in-
tegral domains first arose with the efforts to solve a famous problem in
number theory that goes by the name Fermat’s Last Theorem.

Historical Discussion
of Fermat’s Last Theorem

There are infinitely many nonzero integers x, y, z that satisfy the equa-
tion x> + y? = z2. But what about the equation x* + y* = z3 or, more
generally, X" + y" = 7", where n is an integer greater than 2 and x, y, z
are nonzero integers? Well, no one has ever found a single solution of
this equation, and for more than three centuries many have tried to
prove that there is none. The tremendous effort put forth by the likes of
Euler, Legendre, Abel, Gauss, Dirichlet, Cauchy, Kummer, Kronecker,
and Hilbert to prove that there are no solutions to this equation has
greatly influenced the development of ring theory.

About a thousand years ago, Arab mathematicians gave an incorrect
proof that there were no solutions when n = 3. The problem lay dor-
mant until 1637, when the French mathematician Pierre de Fermat
(1601-1665) wrote in the margin of a book, *. . . it is impossible to
separate a cube into two cubes, a fourth power into two fourth powers,
or, generally, any power above the second into two powers of the same
degree: I have discovered a truly marvelous demonstration [of this gen-
eral theorem] which this margin is too narrow to contain.”

Because Fermat gave no proof, many mathematicians tried to prove
the result. The case where n = 3 was done by Euler in 1770, although
his proof was incomplete. The case where n = 4 is elementary and was
done by Fermat himself. The case where n = 5 was done in 1825 by
Dirichlet, who had just turned 20, and by Legendre, who was past 70.
Since the validity of the case for a particular integer implies the valid-
ity for all multiples of that integer, the next case of interest was n = 7.
This case resisted the efforts of the best mathematicians until it was
done by Gabriel Lamé in 1839. In 1847, Lamé stirred excitement by
announcing that he had completely solved the problem. His approach
was to factor the expression x” + y”, where p is an odd prime, into

x+tyx+ay): - @x+arly),
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where « is the complex number cos(27z/p) + i sin(27/p). Thus, his
factorization took place in the ring Z[a] = {a, + & + -+ +
apflapfl la, € Z}. But Lamé made the mistake of assuming that, in
such a ring, factorization into the product of irreducibles is unique. In
fact, three years earlier, Ernst Eduard Kummer had proved that this is
not always the case. Undaunted by the failure of unique factorization,
Kummer began developing a theory to “save” factorization by creat-
ing a new type of number. Within a few weeks of Lamé’s announce-
ment, Kummer had shown that Fermat’s Last Theorem is true for all
primes of a special type. This proved that the theorem was true for all
exponents less than 100, prime or not, except for 37, 59, 67, and 74.
Kummer’s work has led to the theory of ideals as we know it today.

Over the centuries, many proposed proofs have not held up under
scrutiny. The famous number theorist Edmund Landau received so many
of these that he had a form printed with “On page , lines to
, you will find there is a mistake.” Martin Gardner, ‘“Mathematical
Games” columnist of Scientific American, had postcards printed to
decline requests from readers asking him to examine their proofs.

Recent discoveries tying Fermat’s Last Theorem closely to modern
mathematical theories gave hope that these theories might eventually
lead to a proof. In March 1988, newspapers and scientific publications
worldwide carried news of a proof by Yoichi Miyaoka (see Figure 18.1).
Within weeks, however, Miyaoka’s proof was shown to be invalid. In
June 1993, excitement spread through the mathematics community
with the announcement that Andrew Wiles of Princeton University had
proved Fermat’s Last Theorem (see Figure 18.2). The Princeton math-
ematics department chairperson was quoted as saying, “When we
heard it, people started walking on air.” But once again a proof did not
hold up under scrutiny. This story does have a happy ending. The math-
ematical community has agreed on the validity of the revised proof
given by Wiles and Richard Taylor in September of 1994.

In view of the fact that so many eminent mathematicians were un-
able to prove Fermat’s Last Theorem, despite the availability of the
vastly powerful theories, it seems highly improbable that Fermat had a
correct proof. Most likely, he made the error that his successors made
of assuming that the properties of integers, such as unique factoriza-
tion, carry over to integral domains in general.
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Figure 18.2 Andrew Wiles

Unique Factorization Domains

We now have the necessary terminology to formalize the idea of
unique factorization.

Definition Unique Factorization Domain (UFD)
An integral domain D is a unique factorization domain if

1. every nonzero element of D that is not a unit can be written as a
product of irreducibles of D, and

2. the factorization into irreducibles is unique up to associates and
the order in which the factors appear.

Another way to formulate part 2 of this definition is the following:
Ifp,"'p,"* - - - p,"rand q,"'q,"* - - - q /™ are two factorizations of some
element as a product of irreducibles, where no two of the p.’s are asso-
ciates and no two of the ¢ ’s are associates, then r = s, and each p . is an
associate of one and only one q; and n, = m;.

Of course, the Fundamental Theorem of Arithmetic tells us that the
ring of integers is a unique factorization domain, and Theorem 17.6
says that Z[x] is a unique factorization domain. In fact, as we shall soon
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see, most of the integral domains we have encountered are unique fac-
torization domains.

Before proving our next theorem, we need the ascending chain con-
dition for ideals.

I Lemma Ascending Chain Condition for a PID

In a principal ideal domain, any strictly increasing chain of ideals
I, C I, C - - must be finite in length.

PROOF Let I, C I, C - - - be a chain of strictly increasing ideals in
an integral domain D, and let / be the union of all the ideals in this chain.
We leave it as an exercise (Exercise 3) to verify that / is an ideal of D.
Then, since D is a principal ideal domain, there is an element a in D
such that I = (a). Because a € I and I = UI,, a belongs to some mem-
ber of the chain, say a € I . Clearly, then, for any member /; of the
chain, we have I. C I = {a) C I, so that I, must be the last member of
the chain. |

I Theorem 18.3 PID Implies UFD

Every principal ideal domain is a unique factorization domain.

PROOF Let D be a principal ideal domain and let a, be any nonzero
nonunit in D. We will show that a, is a product of irreducibles (the
product might consist of only one factor). We begin by showing that
a, has at least one irreducible factor. If a is irreducible, we are done.
Thus, we may assume that a, = b,a,, where neither b, nor a, is a unit
and a, is nonzero. If a, is not irreducible, then we can write a, = b,a,,
where neither b, nor a, is a unit and a, is nonzero. Continuing in this
fashion, we obtain a sequence b, b,, . . . of elements that are not units
in D and a sequence a,, a,, a,, . . . of nonzero elements of D with a, =
b,.a,., for each n. Hence, {a,) C {(a,) C - - - is a strictly increasing
chain of ideals (see Exercise 5), which, by the preceding lemma, must
be finite, say, (a,) C (a,) C - - - C {a,). In particular, a,_is an irre-
ducible factor of a,. This argument shows that every nonzero nonunit
in D has at least one irreducible factor.

Now write a, = p,c,, where p, is irreducible and ¢, is not a unit. If ¢,
is not irreducible, then we can write ¢, = p,c,, where p, is irreducible
and c, is not a unit. Continuing in this fashion, we obtain, as before, a
strictly increasing sequence (a,) C {(c,) C {c,) C - - -, which must end
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in a finite number of steps. Let us say that the sequence ends with {c ).
Then c_ is irreducible and a, = p,p, - - - p.c,, where each p, is also irre-
ducible. This completes the proof that every nonzero nonunit of a prin-
cipal ideal domain is a product of irreducibles.

It remains to be shown that the factorization is unique up to associ-
ates and the order in which the factors appear. To do this, suppose that
some element a of D can be written

a:plpz...pr:qlqz...qs,

where the p’s and ¢’s are irreducible and repetition is permitted. We in-
ducton r. If r = 1, then a is irreducible and, clearly, s = 1 and p, = q,.
So we may assume that any element that can be expressed as a product
of fewer than r irreducible factors can be so expressed in only one way
(up to order and associates). Since p, divides q,q, * - - g, it must divide
some g, (see Exercise 29), say, p, | ¢,. Then, g, = up,, where u is a unit
of D. Since

up\p, - p,=uq,q, " q, = q,(uq,) - - q,

and

up, = 4q,,

we have, by cancellation,

pyop, =gy g

The induction hypothesis now tells us that these two factorizations are
identical up to associates and the order in which the factors appear.
Hence, the same is true about the two factorizations of a. |

In the existence portion of the proof of Theorem 18.3, the only
way we used the fact that the integral domain D is a principal ideal
domain was to say that D has the property that there is no infinite,
strictly increasing chain of ideals in D. An integral domain with this
property is called a Noetherian domain, in honor of Emmy Noether,
who inaugurated the use of chain conditions in algebra. Noetherian
domains are of the utmost importance in algebraic geometry. One
reason for this is that, for many important rings R, the polynomial
ring R[x] is a Noetherian domain but not a principal ideal domain.
One such example is Z[x]. In particular, Z[x] shows that a UFD need
not be a PID (see Example 3).

As an immediate corollary of Theorem 18.3, we have the follow-
ing fact.
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Corollary F[x]Isa UFD

Let F be a field. Then F|x] is a unique factorization domain.

PROOF By Theorem 16.3, F[x] is a principal ideal domain. So, F[x]
is a unique factorization domain, as well. |

As an application of the preceding corollary, we give an elegant
proof, due to Richard Singer, of Eisenstein’s Criterion (Theorem 17.4).

I EXAMPLE4 Let
f&) =ax"+ a,Hx”_1 + o+ a, € Z[x],
and suppose that p is prime such that
pta,pla_ . ....,pla, and  p?fa,

We will prove that f(x) is irreducible over Q. If f(x) is reducible over Q,
we know by Theorem 17.2 that there exist elements g(x) and A(x) in Z[x]
such that f(x) = g(x)h(x) and 1 = deg g(x) <nand 1 = deg h(x) <n. Let
f(x), g(x), and h(x) be the polynomials in Zp[x] obtained from f(x),
g(x), and h(x) by reducing all coefficients modulo p. Then, since p di-
vides all the coefficients of f(x) except a , we have a x" = f(x) = g(x)
h(x). Since Zp is a field, Zp[xlis a unique factorization domain. Thus, x |
g(x) and x | A(x). So, g(0) = h(0) = 0 and, therefore, p | g(0) and p | h(0).
But, then, p? | g(0)h(0) = £(0) = a,, which is a contradiction. |

Euclidean Domains

Another important kind of integral domain is a Euclidean domain.

Definition Euclidean Domain

An integral domain D is called a Euclidean domain if there is a
function d (called the measure) from the nonzero elements of D to
the nonnegative integers such that

1. d(a) = d(ab) for all nonzero a, b in D; and
2. ifa, b € D, b # 0, then there exist elements g and r in D such
that a = bq + r, where r = 0 or d(r) < d(b).

B EXAMPLE 5 The ring Z is a Euclidean domain with d(a) = lal (the
absolute value of a). |
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B EXAMPLE 6 Let F be a field. Then F[x] is a Euclidean domain with
d(f(x)) = deg f(x) (see Theorem 16.2). |

Examples 5 and 6 illustrate just one of many similarities between the
rings Z and F[x]. Additional similarities are summarized in Table 18.1.

Table 18.1 Similarities Between Z and F[x]

VA

F[x]

Form of elements:

a 10" + (1’17110’“‘l + - +a,10 + q,

Euclidean domain:

d(a) = lal

Units:

a is a unit if and only if lal = 1

Division algorithm:

Fora,b € Z, b # 0, there existq, r € Z
such thata = bg + r,0 = r < |bl

PID:

Every nonzero ideal I = {a), where
a # 0 and lal is minimum

Prime:

No nontrivial factors

UFD:

Every element is a “unique” product of
primes

Form of elements:

ax"+ a’rlx”“ +-rtax+a,

Euclidean domain:

d(fix)) = deg flx)

Units:

f(x) is a unit if and only if deg fix) = 0

Division algorithm:

For f(x), g(x) € Flx], g(x) # 0, there
exist g(x), r(x) € F[x] such that f(x)
= g(0)q(x) + r(x), 0 = deg r(x) <
deg g(x) or r(x) = 0

PID:

Every nonzero ideal I = (f(x)), where
deg f(x) is minimum

Irreducible:

No nontrivial factors

UFD:

Every element is a “unique” product of
irreducibles

B EXAMPLE 7 The ring of Gaussian integers
Zlil={a+bila, beZ}

is a Buclidean domain with d(a + bi) = a> + b*. Unlike the previous
two examples, in this example the function d does not obviously sat-
isfy the necessary conditions. That d(x) = d(xy) for x, y € Z[i] follows
directly from the fact that d(xy) = d(x)d(y) (Exercise 7). To verify that
condition 2 holds, observe that if x, y € Z[i]and y # 0, thenxy ' €
Qli], the field of quotients of Z[i] (Exercise 57 in Chapter 15). Say
xy ! = s + ti, where s, t € Q. Now let m be the integer nearest s, and
let n be the integer nearest ¢. (These integers may not be uniquely
determined, but that does not matter.) Thus, Im — sl = 1/2 and In — ¢l
= 1/2. Then

xyl=s+ti=(m—m+s)+m—n+oi
=m+ ni)+ [(s —m)+ (t — n)l.
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So,
x = (m + ni)y + [(s —m) + (t — n)i]y.
We claim that the division condition of the definition of a Euclidean
domain is satisfied with ¢ = m + ni and
r= [ —m)+ (t — n)ily.
Clearly, g belongs to Z[i], and since r = x — gy, so does r. Finally,

d(r) = d([(s —m) + (t — n)i])d(y)
= [(s — m)* + (t — n)*d(y)

11
= <4 + 4) d(y) < d(y). ]

I Theorem 18.4 ED (Euclidean Domain) Implies PID

Every Euclidean domain is a principal ideal domain.

PROOF Let D be a Euclidean domain and / a nonzero ideal of D. Among
all the nonzero elements of /, let a be such that d(a) is a minimum. Then
I = {a). For, if b € I, there are elements ¢ and r such that b = ag + r,
where r = 0 or d(r) < d(a). But r = b — aq € I, so d(r) cannot be less
than d(a). Thus, r = 0 and b € (a). Finally, the zero ideal is (0). |

Although it is not easy to verify, we remark that there are principal
ideal domains that are not Euclidean domains. The first such example
was given by T. Motzkin in 1949. A more accessible account of
Motzkin’s result can be found in [2].

As an immediate consequence of Theorems 18.3 and 18.4, we have
the following important result.

I Corollary ED Implies UFD

Every Euclidean domain is a unique factorization domain.

We may summarize our theorems and remarks as follows:

ED = PID = UFD
UFD 4PID £ED
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(You can remember these implications by listing the types alphabetically.)

In Chapter 17, we proved that Z[x] is a unique factorization domain.
Since Z is a unique factorization domain, the next theorem is a broad
generalization of this fact. The proof is similar to that of the special
case, and we therefore omit it.

I Theorem 18.5 D a UFD Implies D[x] a UFD

If D is a unique factorization domain, then D[x] is a unique
factorization domain.

We conclude this chapter with an example of an integral domain that
is not a unique factorization domain.

B EXAMPLE 8 The ring Z[\V—5] = {a + b\=5 | a, b € Z} is an inte-
gral domain but not a unique factorization domain. It is straightforward
that Z[\/—>5] is an integral domain (see Exercise 9 in Chapter 13). To
verify that unique factorization does not hold, we mimic the method
used in Example 1 with N(a + b\V=35) = a® + 5b% Since N(xy) =
N(x)N(y) and N(x) = 1 if and only if x is a unit (see Exercise 1), it fol-
lows that the only units of Z[\ﬁS] are =1.

Now consider the following factorizations:
46 =2 - 23,
46 = (1 + 3V=5)(1 — 3Vv—9).

We claim that each of these four factors is irreducible over Z[\E].
Suppose that, say, 2 = xy, where x, y € Z[\/—75] and neither is a unit.
Then 4 = N(2) = N(x)N(y) and, therefore, N(x) = N(y) = 2, which is
impossible. Likewise, if 23 = xy were a nontrivial factorization, then
N(x) = 23. Thus, there would be integers a and b such that a> + 5b* =
23. Clearly, no such integers exist. The same argument applies to 1 *

3V-5. ]

In light of Examples 7 and 8, one can’t help but wonder for which d < 0
is Z[\/d] a unique factorization domain. The answer is only when d = —1
or —2 (see [1, p. 297]). The case where d = —1 was first proved, naturally
enough, by Gauss.
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| tell them that if they will occupy themselves with the study of mathemat-
ics they will find in it the best remedy against lust of the flesh.

10.

11.

12.

13.

14.

15.

16.

THOMAS MANN, The Magic Mountain

. For the ring Z[\Vd] = {a + b\/d | a, b € Z}, where d # 1 and d is

not divisible by the square of a prime, prove that the norm N(a +
b\Nd) = la® — db?| satisfies the four assertions made preceding
Example 1. (This exercise is referred to in this chapter.)

. In an integral domain, show that a and b are associates if and only

if (a) = (b).

. Show that the union of a chain /;, C I, C - - - of ideals of aring R is

an ideal of R. (This exercise is referred to in this chapter.)

. In an integral domain, show that the product of an irreducible and a

unit is an irreducible.

. Suppose that a and b belong to an integral domain, b # 0, and a is

not a unit. Show that (ab) is a proper subset of (b). (This exercise is
referred to in this chapter.)

. Let D be an integral domain. Define a ~ b if a and b are associates.

Show that this defines an equivalence relation on D.
In the notation of Example 7, show that d(xy) = d(x)d(y).

. Let D be a Euclidean domain with measure d. Prove that « is a unit

in D if and only if d(u) = d(1).

. Let D be a Euclidean domain with measure d. Show that if ¢ and b

are associates in D, then d(a) = d(b).

Let D be a principal ideal domain and let p € D. Prove that (p) is a
maximal ideal in D if and only if p is irreducible.

Trace through the argument given in Example 7 to find ¢ and r in
Zli] such that 3 — 4i = (2 + 5i)q + rand d(r) < d(2 + 5i).

Let D be a principal ideal domain. Show that every proper ideal of
D is contained in a maximal ideal of D.

In Z[\V=5], show that 21 does not factor uniquely as a product of
irreducibles.

Show that 1 — i is an irreducible in Z[i].

Show that Z[\/—6] is not a unique factorization domain. (Hint:
Factor 10 in two ways.) Why does this show that Z[\/=6] is not a
principal ideal domain?

Give an example of a unique factorization domain with a subdo-
main that does not have a unique factorization.
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17.
18.
19.

20.
21.
22,

23.
24,
25.

26.

27.

28.
29.

30.

31.

32,

33.

34.

35.
36.

In Z[i], show that 3 is irreducible but 2 and 5 are not.

Prove that 7 is irreducible in Z[\/6], even though N(7) is not prime.
Prove that if p is a prime in Z that can be written in the form a®> + b?,
then a + bi is irreducible in Z[{]. Find three primes that have this
property and the corresponding irreducibles.

Prove that Z[\V~= 3] is not a principal ideal domain.

In Z[\V~5], prove that 1 + 3V~3 is irreducible but not prime.

In Z[\V5], prove that both 2 and 1 + \/5 are irreducible but not
prime.

Prove that Z[\fS] is not a unique factorization domain.

Let F be field. Show that in F[x] a prime ideal is a maximal ideal.
Let d be an integer less than —1 that is not divisible by the square
of a prime. Prove that the only units of Z[\/d] are +1 and —1.

If a and b belong to Z[\/d], where d is not divisible by the square
of a prime and ab is a unit, prove that a and b are units.

Prove or disprove that if D is a principal ideal domain, then D[x] is
a principal ideal domain.

Determine the units in Z[{].

Let p be a prime in an integral domain. If p | a,a, - - - a , prove that
p divides some a,. (This exercise is referred to in this chapter.)
Show that 3x%2 + 4x + 3 € Z[x] factors as (3x + 2)(x + 4) and
(4x + 1)(2x + 3). Explain why this does not contradict the corol-
lary of Theorem 18.3.

Let D be a principal ideal domain and p an irreducible element of D.
Prove that D/{p) is a field.

Show that an integral domain with the property that every strictly
decreasing chain of ideals /; D I, D - - - must be finite in length is
a field.

An ideal A of a commutative ring R with unity is said to be finitely
generated if there exist elements a, a,, . . ., a, of A such that A =
(a,,a, ...,a). Anintegral domain R is said to satisfy the ascend-
ing chain condition if every strictly increasing chain of ideals I, C
I, C - - - must be finite in length. Show that an integral domain R
satisfies the ascending chain condition if and only if every ideal of
R is finitely generated.

Prove or disprove that a subdomain of a Euclidean domain is a
Euclidean domain.

Show that for any nontrivial ideal I of Z[i], Z[i]/I is finite.

Find the inverse of 1 + V2 in Z[\/E]. What is the multiplicative
order of 1 + \/2?
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37. In Z[V~T], show that N(6 + 2V=7) = N(1 + 3V~=7) but 6 +
2V/~=7 and 1 + 3V/~7 are not associates.

38. LetR=ZD ZD - - - (the collection of all sequences of integers
under componentwise addition and multiplication). Show that R
has ideals 1,, I,, I, . . . with the property that/, C [, C I, C - - -.
(Thus R does not have the ascending chain condition.)

39. Prove that in a unique factorization domain an element is irre-
ducible if and only if it is prime.

40. Let F be a field and let R be the integral domain in F|x] generated by
x* and x°. (That is, R is contained in every integral domain in F[x] that
contains x* and x°.) Show that R is not a unique factorization domain.

41. Prove that for every field F, there are infinitely many irreducible el-
ements in F[x].

Computer Exercise

| never use a computer.
ANDREW WILES

Software for the computer exercise in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. In the ring Z[i] (where i> = —1), this software determines when a pos-
itive integer n is a prime in Z[i]. Run the program for several cases and
formulate a conjecture based on your data.

Reference

1. H. M. Stark, An Introduction to Number Theory, Chicago, Ill.: Markham,
1970.

2. J. C. Wilson, “A Principal Ideal Ring That Is Not a Euclidean Ring,”
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Suggested Readings
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Gina Kolata, “At Last, Shout of ‘Eureka!” in Age-Old Math Mystery,” The
New York Times, June 24, 1993.

This front-page article reports on Andrew Wiles’s announced proof of
Fermat’s Last Theorem.
C. Krauthhammer, “The Joy of Math, or Fermat’s Revenge,” Time, April 18,
1988; 92.
The demise of Miyaoka’s proof of Fermat’s Last Theorem is charm-
ingly lamented.
Sahib Singh, “Non-Euclidean Domains: An Example,” Mathematics Mag-
azine 49 (1976): 243.
This article gives a short proof that Z[V—n] = {a + bNV—nla,b€E Z}is
an integral domain that is not Euclidean when n > 2 and —n mod 4 = 2
or —nmod 4 = 3.
Simon Singh and Kenneth Ribet, “Fermat’s Last Stand,” Scientific Ameri-
can 277 (1997): 68-73.

This article gives an accessible description of Andrew Wiles’s proof of
Fermat’s Last Theorem.

Suggested Video

The Proof, Nova, http://shop.wgbh.org/product/show/7827
This documentary film shown on PBS’s NOVA program in 1997
chronicles the seven-year effort of Andrew Wiles to prove Fermat’s Last
Theorem. It can be viewed in five segments at www.youtube.com.

Suggested Websites

http://www.d.umn.edu/~jgallian

This website has images of postage stamps featuring Fermat’s Last
Theorem issued by France and the Czech Republic.

http://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem

This website provides a concise history of the efforts to prove Fermat’s Last
Theorem. It includes photographs, references and links.
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Sophie Germain

One of the very few women to overcome
the prejudice and discrimination that
tended to exclude women from the pursuit
of higher mathematics in her time was
Sophie Germain.

SopPHIE GERMAIN was born in Paris on April 1,
1776. She educated herself by reading the
works of Newton and Euler in Latin and the
lecture notes of Lagrange. In 1804, Germain
wrote to Gauss about her work in number
theory but used the pseudonym Monsieur
LeBlanc because she feared that Gauss would
not take seriously the efforts of a woman.
Gauss gave Germain’s results high praise and
a few years later, upon learning her true iden-
tity, wrote to her:

themselves only to those who have the
courage to go deeply into it. But when a
person of the sex which, according to our
customs and prejudices, must encounter
infinitely more difficulties than men to
familiarize herself with these thorny re-
searches, succeeds nevertheless in surmount-
ing these obstacles and penetrating the most
obscure parts of them, then without doubt she
must have the noblest courage, quite extraor-
dinary talents, and a superior genius.

Germain is best known for her work on

Fermat’s Last Theorem. She died on June
27, 1831, in Paris.

For more information about Germain,
visit:

But how to describe to you my admiration
and astonishment at seeing my esteemed cor-
respondent Mr. LeBlanc metamorphose him-
self into this illustrious personage who gives
such a brilliant example of what I would find
it difficult to believe. A taste for the abstract
sciences in general and above all the myster-
ies of numbers is excessively rare: it is not a
subject which strikes everyone; the enchant-
ing charms of this sublime science reveal

http://www-groups.dcs
.st-and.ac.uk/~history

339


http://www-groups.dcs.st-and.ac.uk/~history
http://www-groups.dcs.st-and.ac.uk/~history

Andrew Wiles

For spectacular contributions to number
theory and related fields, for major
advances on fundamental conjectures,
and for settling Fermat’s Last Theorem.
Citation for the Wolf Prize

=
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¥
t PIERRE DL FERMAT 1670
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-

» 2000 SVETOVY ROK MATEMATIKY

Postage stamp issued by the
Czech Republic in honor of
Fermat’s Last Theorem.

IN 1993, ANDREW WILES of Princeton electri-
fied the mathematics community by announc-
ing that he had proved Fermat’s Last Theorem
after seven years of effort. His proof, which
ran 200 pages, relied heavily on ring theory
and group theory. Because of Wiles’s solid
reputation and because his approach was
based on deep results that had already shed
much light on the problem, many experts in
the field believed that Wiles had succeeded
where so many others had failed. Wiles’s
achievement was reported in newspapers and
magazines around the world. The New York
Times ran a front-page story on it, and one TV
network announced it on the evening news.
Wiles even made People magazine’s list of the
25 most intriguing people of 1993! In San
Francisco a group of mathematicians rented a
1200-seat movie theater and sold tickets for
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$5.00 each for public lectures on the proof.
Scalpers received as much as $25.00 a ticket
for the sold-out event.

The bubble soon burst when experts
had an opportunity to scrutinize Wiles’s
manuscript. By December, Wiles released a
statement saying he was working to resolve
a gap in the proof. In September of 1994, a
paper by Wiles and Richard Taylor, a former
student of Wiles, circumvented the gap in
the original proof. Since then, many experts
have checked the proof and have found no
errors. One mathematician was quoted as
saying, “The exuberance is back.” In 1997,
Wiles’s proof was the subject of a PBS Nova
program.

Wiles was born in 1953 in Cambridge,
England. He obtained his bachelor’s degree at
Oxford and his doctoral degree at Cambridge
University in 1980. He was a professor at Har-
vard before accepting his present position at
Princeton in 1982, and he has received many
prestigious awards.

To find more information about Wiles,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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The intelligence is proved not by ease of learning, but by understanding
what we learn.

JOSEPH WHITNEY

True/false questions for Chapters 15—18 are available on the Web at

10.

11.
12.

13.

http://www.d.umn.edu/~jgallian/TF

. Suppose that F'is a field and there is a ring homomorphism from Z

onto F. Show that F'is isomorphic to Z, for some prime p.

. Let O[V2] = {r + s\V2 | r, s € Q}. Determine all ring automor-

phisms of Q[\@].

. (Second Isomorphism Theorem for Rings) Let A be a subring of R

and let B be an ideal of R. Show that A N B is an ideal of A and that
A/(A N B) is isomorphic to (A + B)/B. (Recall that A + B = {a +
bla€A, b€ B})

. (Third Isomorphism Theorem for Rings) Let A and B be ideals of

a ring R with B C A. Show that A/B is an ideal of R/B and
(R/B)/(A/B) is isomorphic to R/A.

. Let f{x) and g(x) be irreducible polynomials over a field F. If f(x)

and g(x) are not associates, prove that F[x]/{ f{x)g(x)) is isomorphic
to Fx]K fix)) @ Flx1/(g(x)).

. (Chinese Remainder Theorem for Rings) If R is a commutative

ring and / and J are two proper ideals with / + J = R, prove that
R/(I N J) is isomorphic to R/I & R/J. Explain why Exercise 5 is a
special case of this theorem.

. Prove that the set of all polynomials all of whose coefficients are

even is a prime ideal in Z[x].

.Let R =Z[V—5]andlet]l = {a + bV—51a,b &€ Z,a — b is

even}. Show that / is a maximal ideal of R.

Let R be a ring with unity and let @ be a unit in R. Show that the map-
ping from R into itself given by x — axa ™! is a ring automorphism.
Leta + bV-5 belong to Z[\/—?] with b # 0. Show that 2 does not
belong to {a + b\V/=75).

Show that Z[i]/(2 + i) is a field. How many elements does it have?
Is the homomorphic image of a principal ideal domain a principal
ideal domain?

InZ[\V2] = {a + b2 | a, b € Z}, show that every element of the
form (3 + 2V/2)" is a unit, where n is a positive integer.


http://www.d.umn.edu/~jgallian/TF
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14.

15.

16.

17.

18.

19.
20.

21.

22,

23.
24.
25.

26.

27.

28.

29.

30.
31.

32.
33.

Let p be a prime. Show that there is exactly one ring homomor-
phism from Z  to Zpk if p* does not divide m, and exactly two ring
homomorphisms from Z  to Z, if p¥ does divide m.

Recall that a is an idempotent if a> = a. Show that if 1 + k is an
idempotent in Z , then n — k is an idempotent in Z .

Show that Z (where n > 1) always has an even number of idempo-
tents. (The number is 29, where d is the number of distinct prime
divisors of n.)

Show that the equation x> + y> = 2003 has no solutions in the
integers.

Prove that if both k and k + 1 are idempotents in Z and k # 0, then
n = 2k.

Prove that x* + 15x + 7 is irreducible over Q.

For any integers m and n, prove that the polynomial x* + (5m + 1)x +
5n + 1 is irreducible over Z.

Prove that (\/2) is a maximal ideal in Z[V/2]. How many elements
are in the ring Z[V/2]/(\V/2)?

Prove that Z[\/-2] and Z[\V/2] are unique factorization domains.
(Hint: Mimic Example 7 in Chapter 18.)

Is (3) a maximal ideal in Z[{]?

Express both 13 and 5 + i as products of irreducibles from Z[i].
LetR={a/bla,b &€ Z 3+ b}.Prove that R is an integral domain.
Find its field of quotients.

Give an example of a ring that contains a subring isomorphic to Z
and a subring isomorphic to Z;.

Show that Z[i]/(3) is not ring-isomorphic to Z, ® Z,.

0 b} a,bEZn} is ring-

B { [a 0
For any n > 1, prove that R =
isomorphic to Z © Z .
Suppose that R is a commutative ring and / is an ideal of R. Prove
that R[x]/I[x] is isomorphic to (R/I)[x].
Find an ideal I of Zy[x] such that the factor ring Z,[x]/I is a field.

Find an ideal I of Z,[x] such that the factor ring Z,[x]/I is an integral
domain but not a field.

For any f(x) € Zp[x], show that fix") = (f(x))?.
Find an ideal 1 of Z[x] such that Z[x]/I is ring-isomorphic to Z,.



For online student resources, visit this textbook’s website at @
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Vector Spaces

Still round the corner there may wait
A new road or a secret gate.

J. R. R. TOLKIEN, Lord of the Rings

Definition and Examples

Abstract algebra has three basic components: groups, rings, and fields.
Thus far we have covered groups and rings in some detail, and we have
touched on the notion of a field. To explore fields more deeply, we need
some rudiments of vector space theory that are covered in a linear alge-
bra course. In this chapter, we provide a concise review of this material.

Definition Vector Space

A set Vis said to be a vector space over a field F if V is an Abelian
group under addition (denoted by +) and, if for each a € F and

v € V, there is an element av in V such that the following conditions
hold for alla, bin F and all u, vin V.

1. alv+u)=av +au
2. (a + by =av + by
3. a(bv) = (ab)v

4. lv=v

The members of a vector space are called vectors. The members of
the field are called scalars. The operation that combines a scalar a and
a vector v to form the vector av is called scalar multiplication. In gen-
eral, we will denote vectors by letters from the end of the alphabet,
such as u, v, w, and scalars by letters from the beginning of the alpha-
bet, such as a, b, c.
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Fields

B EXAMPLE 1 The set R" = {(a;, ay, ..., a,) | a; € R} is a vector

space over R. Here the operations are the obvious ones.
(al,az,...,an) +(bl,b2,...,bn)= ((l] +b1,a2+b2,...,an+bn)

and

b(ay, as, . ..,a,) = (bay, ba,, . .., ba,). |

B EXAMPLE 2 The set M,(Q) of 2 X 2 matrices with entries from Q is
a vector space over Q. The operations are

[al az] n {bl bz] _ [al + b, a,+ bz]
as ay b;y b, as + by a, + by

and
ba, ba
b|:al Clz] _ { a, 2]‘ 1
a3 a4 ba:; ba4
B EXAMPLE 3 The set Z,[x] of polynomials with coefficients from Z,
is a vector space over Z,, where p is a prime. |

B EXAMPLE 4 The set of complex numbers C = {a + bil a, b € R}
is a vector space over R. The operations are the usual addition and mul-
tiplication of complex numbers. |

The next example is a generalization of Example 4. Although it ap-
pears rather trivial, it is of the utmost importance in the theory of fields.

B EXAMPLE 5 Let E be a field and let F be a subfield of E. Then E is a
vector space over F. The operations are the operations of E. |

Subspaces

Of course, there is a natural analog of subgroup and subring.

Definition Subspace
Let V be a vector space over a field F and let U be a subset of V. We
say that U is a subspace of V if U is also a vector space over F under
the operations of V.

B EXAMPLE 6 The set {a,x> + a;x + ay | ag, a;, a; € R} is a sub-
space of the vector space of all polynomials with real coefficients
over R. |
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B EXAMPLE 7 Let V be a vector space over F and let vy, v,, ..., v, be
(not necessarily distinct) elements of V. Then the subset

WLve vy ={ayv, Fav, + - +ay,la,a,. .., a, € F}

is called the subspace of 'V spanned by vy, v,, . . . , v,. Any summand
of the form av; + a,v, + - - - + a,v, is called a linear combination
of Vi, Vay o, V. I vy, va, oo, v,y = V, we say that {vy, vy, ..., v,}
spans V. |

Linear Independence

The next definition is the heart of the theory.

Definition Linearly Dependent, Linearly Independent

A set S of vectors is said to be linearly dependent over the field F if
there are vectors vy, v,, . .., v, from S and elements a;, a5, . . . , a, from
F, not all zero, such that a,v; + a,v, + - - - + a,v, = 0. A set of vectors
that is not linearly dependent over F is called linearly independent
over F.

1 EXAMPLE 8 In R3 the vectors (1, 0, 0), (1,0, 1), and (1, 1, 1) are lin-
early independent over R. To verify this, assume that there are real
numbers a, b, and ¢ such that a(1, 0, 0) + b(1,0, 1) + c¢(1, 1, 1) =
(0,0,0). Then(a + b + ¢, c,b + ¢) = (0, 0, 0). From this we see that
a=b=c=0. |

Certain kinds of linearly independent sets play a crucial role in the
theory of vector spaces.

Definition Basis

Let V be a vector space over F. A subset B of V is called a basis for V
if B is linearly independent over F and every element of V is a linear
combination of elements of B.

The motivation for this definition is twofold. First, if B is a basis for
a vector space V, then every member of V is a unique linear combina-
tion of the elements of B (see Exercise 19). Second, with every vector
space spanned by finitely many vectors, we can use the notion of basis
to associate a unique integer that tells us much about the vector space.
(In fact, this integer and the field completely determine the vector space
up to isomorphism—see Exercise 31.)

a a+b
B EXAMPLE 9 The set V =

a-+b b
is a vector space over R (see Exercise 17). We claim that the set

a,bER}
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11 0 1
B = {L 0], [ ] 1]} is a basis for V over R. To prove that the set

B is linearly independent, suppose that there are real numbers a and b

such that
[1 1} [0 1} [0 0}
a + b = .
1 0 1 1 00
+b 0 0
This gives{ “ “ } = [ ], so that a = b = 0. On the other
a-+b b 0 O

hand, since every member of V has the form
[ a a+b]_ {1 1}“{0 1}
a+b b | 10 1)
we see that B spans V. |

We now come to the main result of this chapter.

B Theorem 19.1 Invariance of Basis Size

If {uy, uy, . .., u,} and {wy, w,, . .., w,} are both bases of a vector
space V over a field F, then m = n.

PROOF Suppose that m # n. To be specific, let us say that m < n.
Consider the set {wy, uy, u,,..., u,}. Since the u’s span V, we
know that w; is a linear combination of the u’s, say, w; = aju; +
auy + - - - + a,u,, where the a’s belong to F. Clearly, not all the a’s are
0. For convenience, say a; # 0. Then {w, u,, ..., u,} spans V (see
Exercise 21). Next, consider the set {w;, w,, U, . . ., u,,}. This time, w,
is a linear combination of wy, u,, . . . , u,, say, w, = byw, + byuy + - - -
+ b,u,,, where the b’s belong to F. Then at least one of b,, ..., b, is
nonzero, for otherwise the w’s are not linearly independent. Let us say
b, # 0. Then wy, wy, us, . . ., u,, span V. Continuing in this fashion, we
see that {wy, w,, ..., w,,} spans V. But then w,,. | is a linear combina-
tion of wy, w,, ..., w,, and, therefore, the set {w,..., w,} is not
linearly independent. This contradiction finishes the proof. |

Theorem 19.1 shows that any two finite bases for a vector space have
the same size. Of course, not all vector spaces have finite bases.
However, there is no vector space that has a finite basis and an infinite
basis (see Exercise 25).
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Definition Dimension

A vector space that has a basis consisting of n elements is said

to have dimension n. For completeness, the trivial vector space {0} is
said to be spanned by the empty set and to have dimension 0.

Although it requires a bit of set theory that is beyond the scope of

this text, it can be shown that every vector space has a basis. A vector
space that has a finite basis is called finite dimensional; otherwise, it is
called infinite dimensional.

Somebody who thinks logically is a nice contrast to the real world.

THE LAW OF THUMB

. Verify that each of the sets in Examples 1-4 satisfies the axioms

for a vector space. Find a basis for each of the vector spaces in Ex-
amples 1-4.

. (Subspace Test) Prove that a nonempty subset U of a vector space

V over a field F is a subspace of Vif, for every u and u’ in U and
everyain F,u + u' € Uand au € U.

. Verify that the set in Example 6 is a subspace. Find a basis for this

subspace. Is {x> + x + 1,x + 5, 3} a basis?

. Verify that the set (v{, v, . . ., v,) defined in Example 7 is a sub-
space.
. Determine whether or not the set {(2, —1, 0), (1,2,5), (7, —1,5)} is

linearly independent over R.

6. Determine whether or not the set
ol [VaF 1l
1 o [1 2] [1 1
is linearly independent over Zs.

7. If {u, v, w} is a linearly independent subset of a vector space, show
that {u#, u + v, u + v + w} is also linearly independent.

8. If S'is a linearly dependent set of vectors, prove that one of the vec-
tors in § is a linear combination of the others.

9. (Every finite spanning collection contains a basis.) If {v{, v, ..., v,}
spans a vector space V, prove that some subset of the v’s is a basis
for V.

10. (Every independent set is contained in a basis.) Let V be a finite-

dimensional vector space and let {v, v,, ..., v,} be a linearly
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independent subset of V. Show that there are vectors wy, wo, ..., w,,
such that {v;, v5, ..., v, Wy, ..., w,} is a basis for V.

11. If Vs a vector space over F of dimension 5 and U and W are sub-

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

spaces of V of dimension 3, prove that U N W # {0}. Generalize.
Show that the solution set to a system of equations of the form

apx; + - +ax, =0
a21x1+'~'+a2nxn20

axy + -+ ayx, =0,

where the a’s are real, is a subspace of R".

Let V be the set of all polynomials over Q of degree 2 together
with the zero polynomial. Is V a vector space over Q7
LetV=R3and W= {(a, b,c) €E VIa*+ b*> = ¢?}. Is Wa sub-
space of V? If so, what is its dimension?

Let V=R}and W = {(a,b,c) € VIa + b = c}.Is W a subspace
of V? If so, what is its dimension?

v =4[, ¢

over Q, and find a basis for V over Q.
Verify that the set V in Example 9 is a vector space over R.

LetP = {(a,b,c)la,b,c € R,a = 2b + 3c}. Prove that P is a sub-
space of R3. Find a basis for P. Give a geometric description of P.

a,b,c e Q}. Prove that V is a vector space

Let B be a subset of a vector space V. Show that B is a basis for V
if and only if every member of V is a unique linear combination of
the elements of B. (This exercise is referred to in this chapter and
in Chapter 20.)

If U is a proper subspace of a finite-dimensional vector space V,
show that the dimension of U is less than the dimension of V.
Referring to the proof of Theorem 19.1, prove that {wy, u,, . . . , u,,}
spans V.

If Vis a vector space of dimension n over the field Z,, how many
elements are in V?

LetS ={(a,b,c,d)a,b,c,dE R, a=c,d=a+ b}. Find a
basis for S.

Let U and W be subspaces of a vector space V. Show that U N W
is a subspace of Vandthat U+ W={u + wlu€ U,w &€ W}isa
subspace of V.



25.

26.

27.

28.

29.

30.

31.

32.
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If a vector space has one basis that contains infinitely many ele-
ments, prove that every basis contains infinitely many elements.
(This exercise is referred to in this chapter.)

Letu = (2,3,1),v=(1,3,0),and w = (2, —3, 3). Since ju —
_% — %w = (0, 0, 0), can we conclude that the set {u, v, w} is lin-
early dependent over Z,?

Define the vector space analog of group homomorphism and ring
homomorphism. Such a mapping is called a linear transformation.
Define the vector space analog of group isomorphism and ring iso-
morphism.

Let T be a linear transformation from V to W. Prove that the image
of Vunder 7 is a subspace of W.

Let T be a linear transformation of a vector space V. Prove that
{v € VIT{) = 0}, the kernel of T, is a subspace of V.

Let T be a linear transformation of V onto W. If {v{, vo, ..., v,}
spans V, show that {T(v,), T(v5), . .., T(v,)} spans W.

If V is a vector space over F of dimension n, prove that V is iso-
morphic as a vector space to F"" = {(a,, ay, . . ., a,) | a; € F}. (This
exercise is referred to in this chapter.)

Let V be a vector space over an infinite field. Prove that V is not the
union of finitely many proper subspaces of V.



Emil Artin

For Artin, to be a mathematician meant to
participate in a great common effort, to
continue work begun thousands of years
ago, to shed new light on old discoveries,
to seek new ways to prepare the develop-
ments of the future. Whatever standards
we use, he was a great mathematician.

RICHARD BRAUER,
Bulletin of the American
Mathematical Society

EmMIL ARTIN was one of the leading mathe-
maticians of the 20th century and a major
contributor to linear algebra and abstract al-
gebra. Artin was born on March 3, 1898, in
Vienna, Austria, and grew up in what was
recently known as Czechoslovakia. He re-
ceived a Ph.D. in 1921 from the University
of Leipzig. From 1923 until he emigrated to
America in 1937, he was a professor at the
University of Hamburg. After one year at
Notre Dame, Artin went to Indiana
University. In 1946, he moved to Princeton,
where he stayed until 1958. The last four
years of his career were spent where it
began, at Hamburg.

Artin’s mathematics is both deep and
broad. He made contributions to number the-
ory, group theory, ring theory, field theory,
Galois theory, geometric algebra, algebraic
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topology, and the theory of braids—a field he
invented. Artin received the American
Mathematical Society’s Cole Prize in number
theory, and he solved one of the 23 famous
problems posed by the eminent mathemati-
cian David Hilbert in 1900.

Artin was an outstanding teacher of
mathematics at all levels, from freshman
calculus to seminars for colleagues. Many of
his Ph.D. students as well as his son
Michael have become leading mathemati-
cians. Through his research, teaching, and
books, Artin exerted great influence among
his contemporaries. He died of a heart at-
tack, at the age of 64, in 1962.

For more information about Artin, visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Olga Taussky-Todd

“Olga Taussky-Todd was a distinguished
and prolific mathematician who wrote
about 300 papers.”

EDITH LUCHINS AND MARY ANN MCLOUGHLIN,

Notices of the American
Mathematical Society, 1996

OLGA Taussky-Topp was born on August 30,
1906, in Olmiitz in the Austro-Hungarian
Empire. Taussky-Todd received her doctoral
degree in 1930 from the University of Vienna.
In the early 1930s she was hired as an assis-
tant at the University of Gottingen to edit
books on the work of David Hilbert. She also
edited lecture notes of Emil Artin and as-
sisted Richard Courant. She spent 1934 and
1935 at Bryn Mawr and the next two years
at Girton College in Cambridge, England.
In 1937, she taught at the University of
London. In 1947, she moved to the United
States and took a job at the National Bureau
of Standards’ National Applied Mathematics
Laboratory. In 1957, she became the first
woman to teach at the California Institute of
Technology as well as the first woman to
receive tenure and a full professorship in
mathematics, physics, or astronomy there.
Thirteen Caltech Ph.D. students wrote their
Ph.D. theses under her direction.

In addition to her influential contribu-
tions to linear algebra, Taussky-Todd did
important work in number theory.

Taussky-Todd received many honors and
awards. She was elected a Fellow of the
American Association for the Advancement
of Science and vice president of the American
Mathematical Society. In 1990, Caltech estab-
lished an instructorship named in her honor.
Taussky-Todd died on October 7, 1995, at the
age of 89.

For more information about Taussky-
Todd, visit:

http://www-groups.dcs
.st-and.ac.uk/~history

http://www-scottlan
.edu/lriddle/women/women.html
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Extension Fields

In many respects this [Kronecker’s Theorem] is the
fundamental theorem of algebra.
RICHARD A. DEAN, Elements of Abstract Algebra

The Fundamental Theorem
of Field Theory

In our work on rings, we came across a number of fields, both finite
and infinite. Indeed, we saw that Z;[x]/(x> + 1) is a field of order 9,
whereas R[x]/(x> 4+ 1) is a field isomorphic to the complex numbers.
In the next three chapters, we take up, in a systematic way, the subject
of fields.

Definition Extension Field
A field E is an extension field of a field F if F C E and the operations
of F are those of E restricted to F.

Cauchy’s observation in 1847 that R[x]/(x*> + 1) is a field that con-
tains a zero of x> + 1 prepared the way for the following sweeping gen-
eralization of that fact.

I Theorem 20.1 Fundamental Theorem of Field Theory
(Kronecker’s Theorem, 1887)

354

Let F be a field and let f(x) be a nonconstant polynomial in F[x].
Then there is an extension field E of F in which f(x) has a zero.

PROOF Since F[x] is a unique factorization domain, f(x) has an irre-
ducible factor, say, p(x). Clearly, it suffices to construct an extension
field E of F in which p(x) has a zero. Our candidate for E is F[x]/{ p(x)).
We already know that this is a field from Corollary 1 of Theorem 17.5.
Also, since the mapping of ¢: F — E given by ¢(a) = a + (p(x)) is
one-to-one and preserves both operations, E has a subfield isomorphic
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to F. We may think of E as containing F if we simply identify the coset
a + {p(x)) with its unique coset representative a that belongs to F' [that
is, think of a + (p(x)) as just a and vice versa; see Exercise 33 in
Chapter 17].

Finally, to show that p(x) has a zero in E, write

px)=ax"+ a,_x" '+ -+ a,
Then, in E, x + (p(x)) is a zero of p(x), because

pix + {p(x))) = a,(x + {(pY)" + a,_(x + {pO)Y* ' + - - - + q
= a,(x" + <p(x)>) + an_l(x"‘l + <p(x)>) + -+ a

ax" + )" ag + (p(n)

p@) + (px)) =0 + (p(x)). 1

B EXAMPLE 1 Let f(x) = x> + 1 € Q[x]. Then, viewing f(x) as an
element of E[x] = (Q[x]/{x* + 1))[x], we have

e+ @ +1) =@+ 2+ 1)+ 1
=X+ + 1)+ 1
=x2+1+&+1)
=0+ &+ 1).

Of course, the polynomial x> + 1 has the complex number V—1 as a
zero, but the point we wish to emphasize here is that we have con-
structed a field that contains the rational numbers and a zero for the
polynomial x> + 1 by using only the rational numbers. No knowledge
of complex numbers is necessary. Our method utilizes only the field we
are given. |

B EXAMPLE 2 Let f(x) = x> + 2x*> 4+ 2x + 2 € Z3[x]. Then, the irre-
ducible factorization of f(x) over Z is (x> + 1)(x> + 2x + 2). So, to find
an extension E of Z3 in which f(x) has a zero, we may take £ = Z3[x]/
(x*> + 1), a field with nine elements, or E = Zs[x]/(x> + 2x + 2), a field
with 27 elements. |

Since every integral domain is contained in its field of quotients
(Theorem 15.6), we see that every nonconstant polynomial with coef-
ficients from an integral domain always has a zero in some field con-
taining the ring of coefficients. The next example shows that this is not
true for commutative rings in general.

B EXAMPLE 3 Letf(x) = 2x + 1 € Z,[x]. Then f(x) has no zero in any
ring containing Z, as a subring, because if 8 were a zero in such a ring,
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then 0 = 28 + 1, and therefore 0 = 228 + 1) = 2(2B) + 2 =
2-2)B+2=0-B+2=2.But0+# 2inZ,. |

Splitting Fields

To motivate the next definition and theorem, let’s return to Example 1 for
a moment. For notational convenience, in Q[x]/(x> + 1), let a =
x + (x> + 1). Then, since o and —a« are both zeros of x> + 1 in (Q[x]/
(x? + 1))[x], it should be the case that x> + 1 = (x — a)(x + a). Let’s
check this out. First note that

x—a)x+a)=x2—a?=x*— (2 + &*+ 1)).
At the same time,
XHEP+HDH=—-1+*+1)
and we have agreed to identify —1 and —1 + (x> + 1), so
C—a)x+a)=x*—(—1)=x>+1.

This shows that x> + 1 can be written as a product of linear factors in
some extension of Q. That was easy and you might argue coincidental.
The polynomial given in Example 2 presents a greater challenge. Is
there an extension of Z; in which that polynomial factors as a product
of linear factors? Yes, there is. But first a definition.

Definition Splitting Field

Let E be an extension field of F and let f(x) € F[x]. We say that f(x)
splits in E if f(x) can be factored as a product of linear factors in E[x].
We call E a splitting field for f(x) over F if f(x) splits in E but in no
proper subfield of E.

Note that a splitting field of a polynomial over a field depends not
only on the polynomial but on the field as well. Indeed, a splitting field
of f(x) over F is just a smallest extension field of F in which f(x) splits.
The next example illustrates how a splitting field of a polynomial f(x)
over field F depends on F.

B EXAMPLE 4 Consider the polynomial f(x) = x> + 1 € Q[x]. Since
X+l=x+ \ﬁl)(x - \ﬁl), we see that f(x) splits in C, but a splitting
field over Q is Q(i) = {r + si | r, s € Q}. A splitting field for x> + 1 over
Ris C. Likewise, x> — 2 € Q[x] splits in R, but a splitting field over Q is
o0NV2) = {r+sV2 Irs€EQ). ]
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There is a useful analogy between the definition of a splitting field and
the definition of an irreducible polynomial. Just as it makes no sense to
say “f(x) is irreducible,” it makes no sense to say “E is a splitting field for
f(x).” In each case, the underlying field must be specified; that is, one must
say “f(x) is irreducible over F”” and “E is a splitting field for f(x) over F.”’

The following notation is convenient. Let F be a field and let a;,
a,, ..., a, be elements of some extension E of F. We use F(ay,
a,, ..., a,) to denote the smallest subfield of E that contains F
and the set {ay, a,, . . ., a,}. It is an easy exercise to show that F(a,,
a,, . .., a,) is the intersection of all subfields of E that contain F' and
the set {a;, ay, . .., a,}.

Notice that if f(x) € F[x] and f(x) factors as

bx —apx —ay) -+ - (x — a,)

over some extension E of F, then F(ay, .. ., a,) is a splitting field for
f(x) over Fin E.

This notation appears to be inconsistent with the notation that we
used in earlier chapters. For example, we denoted the set {a + b\V/2 |
a,b € Z} by Z[\V/2] and the set {a + b2 1 a, b € Q) by 0(V2). The
difference is that Z[\fZ] is merely a ring, whereas Q(\@) is a field. In
general, parentheses are used when one wishes to indicate that the set is
a field, although no harm would be done by using, say, Q[\@] to denote
{a + b\V2 1 a, b € Q) if we were concerned with its ring properties
only. Using parentheses rather than brackets simply conveys a bit more
information about the set.

1 Theorem 20.2 Existence of Splitting Fields

Let F be a field and let f(x) be a nonconstant element of F(x]. Then
there exists a splitting field E for f(x) over F.

PROOF We proceed by induction on deg f(x). If deg f(x) = 1, then
f(x) is linear. Now suppose that the statement is true for all fields and
all polynomials of degree less than that of f(x). By Theorem 20.1,
there is an extension E of F in which f(x) has a zero, say, a;. Then we
may write f(x) = (x — a;)g(x), where g(x) € E[x]. Since deg g(x) <
deg f(x), by induction, there is a field K that contains £ and all the
zeros of g(x), say, a,, ..., a,. Clearly, then, a splitting field for f(x)
over Fis F(ay, a,, . . . , a,). |

B EXAMPLE 5 Consider
f)=x*—x>-2=x>-2)x*+1)
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over Q. Obviously, the zeros of f(x) in C are =V/2 and *i. So a split-
ting field for f(x) over Q is

0(V2,i) = Q(V2)(i) = {a + Bil a, B € O(V2)}
={(a+bV2)+(c+dV2)ilab,c,dEQ}. 1

B EXAMPLE 6 Consider f(x) = x> + x + 2 over Z;. Then Z;(i) =
{a + bila, b & Z;} (see Example 9 in Chapter 13) is a splitting field
for f(x) over Z; because

f) =[x — A+ dllx — A =Dl

At the same time, we know by the proof of Kronecker’s Theorem that
the element x + (x> + x + 2) of

F=2Zx){x* +x +2)

is a zero of f(x). Since f(x) has degree 2, it follows from the Factor
Theorem (Corollary 2 of Theorem 16.2) that the other zero of f(x) must
also be in F. Thus, f(x) splits in F, and because F is a two-dimensional
vector space over Z; we know that F'is also a splitting field of f(x) over
Z5. But how do we factor f(x) in F? Factoring f(x) in F is confusing be-
cause we are using the symbol x in two distinct ways: It is used as a
placeholder to write the polynomial f(x), and it is used to create the coset
representatives of the elements of F. This confusion can be avoided by
simply identifying the coset 1 + (x?> + x + 2) with the element 1 in Z; and
denoting the coset x + (x> + x + 2) by 8. With this identification, the field
Z3[x]/{x* + x + 2) can be represented as {0, 1,2,8,28,8 + 1,28 + 1,
B + 2,283 + 2}. These elements are added and multiplied just as polyno-
mials are, except that we use the observation that x> + x + 2 + (x*> +
x+2)=0impliesthat 3>+ B +2=0,sothat B> = - —2=28 + 1.
For example, 28 + (B +2) =22+ 58+2=22B8+ 1)+ 58 +
2 =98 + 4 = 1. To obtain the factorization of f(x) in F, we simply long
divide, as follows:

x+ (B +1)

x— B +x+2

x> — Bx

B+ Dx+2

B+ DHx—(B+1B

B+HB+2=g+B+2=0.

So, x> + x + 2 = (x — B)(x + B + 1). Thus, we have found two split-
ting fields for x> + x + 2 over Zs, one of the form F(a) and one of the
form F[x]/{p(x)) [where F = Z; and p(x) = x> + x + 2]. |
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The next theorem shows how the fields F(a) and F[x]/{p(x)) are
related in the case where p(x) is irreducible over F and a is a zero of
p(x) in some extension of F.

I Theorem 20.3 F(a) = F[x]/{p(x))

Let F be a field and let p(x) € F[x] be irreducible over F. If a is a
zero of p(x) in some extension E of F, then F(a) is isomorphic to
F[x]/{p(x)). Furthermore, if deg p(x) = n, then every member of F(a)
can be uniquely expressed in the form

Co1@™ 1+ cp0a™ 2+ -+ cia + g,

where cy, ¢y, ..., C,—1 € F.

PROOF Consider the function ¢ from F[x] to F(a) given by ¢(f(x)) =
f(a). Clearly, ¢ is a ring homomorphism. We claim that Ker ¢p = (p(x)).
(This is Exercise 31 in Chapter 17.) Since p(a) = 0, we have (p(x)) C
Ker ¢. On the other hand, we know by Theorem 17.5 that (p(x)) is a
maximal ideal in F[x]. So, because Ker ¢¢ # F[x] [it does not contain
the constant polynomial f(x) = 1], we have Ker ¢ = (p(x)). At this
point it follows from the First Isomorphism Theorem for Rings and
Corollary 1 of Theorem 17.5 that ¢(F[x]) is a subfield of F(a). Noting
that ¢p(F[x]) contains both F' and a and recalling that F(a) is the small-
est such field, we have F[x]/{p(x)) = ¢(F[x]) = F(a).

The final assertion of the theorem follows from the fact that every
element of F[x]/{p(x)) can be expressed uniquely in the form

CumtX" o + (),

where ¢, ..., ¢,—1 € F (see Exercise 23 in Chapter 16) and the
natural isomorphism from F[x]/{p(x)) to F(a) carries cx* + {p(x))
to c;at. ]

As an immediate corollary of Theorem 20.3, we have the following
attractive result.

I Corollary F(a) = F(b)
Let F be a field and let p(x) € F[x] be irreducible over F. If a is a

zero of p(x) in some extension E of F and b is a zero of p(x) in some
extension E' of F, then the fields F(a) and F(b) are isomorphic.
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PROOF From Theorem 20.3, we have
F(a) = F[x]Kp(x)) = F(b). 1

Recall that a basis for an n-dimensional vector space over a field F'
is a set of n vectors vy, v, . . ., v, with the property that every member
of the vector space can be expressed uniquely in the form a;v, +
av, + - - - + a,v,, where the a’s belong to F (Exercise 19 in Chapter 19).
So, in the language of vector spaces, the latter portion of Theorem 20.3 says
that if a is a zero of an irreducible polynomial over F of degree n, then the
set {1,a,...,a" '} 1is abasis for F(a) over F.

Theorem 20.3 often provides a convenient way of describing the
elements of a field.

B EXAMPLE 7 Consider the irreducible polynomial f(x) = x® — 2
over Q. Since {/2 is a zero of f(x), we know from Theorem 20.3 that the
set {1,216, 226 23/6 246 25/6) is 3 basis for O(Y/2) over Q. Thus,

0/2) = {ay + a;2"6 + a,2%6 + a32%6 + 246 + a25° | ¢, € Q).
This field is isomorphic to Q[x]/{x® — 2). |

In 1882, Ferdinand Lindemann (1852-1939) proved that 7 is not the
zero of any polynomial in Q[x]. Because of this important result, Theo-
rem 20.3 does not apply to Q() (see Exercise 11).

In Example 6, we produced two splitting fields for the polynomial
x> + x + 2 over Z;. Likewise, it is an easy exercise to show that both
Olx)/x* + 1) and Q@) = {r + si | r, s € Q} are splitting fields of the
polynomial x> + 1 over Q. But are these different-looking splitting fields
algebraically different? Not really. We conclude our discussion of split-
ting fields by proving that splitting fields are unique up to isomorphism.
To make it easier to apply induction, we will prove a more general result.

We begin by observing first that any ring isomorphism ¢ from F
to F’ has a natural extension from F[x] to F'[x] given by c,x" +
Coa X"V o+ ox + g = Plex™ + ple,_x + -+
d(cp)x + @(cy). Since this mapping agrees with ¢ on F, it is conve-
nient and natural to use ¢ to denote this mapping as well.

Let F be a field, let p(x) € F[x] be irreducible over F, and let a be a
zero of p(x) in some extension of F. If ¢ is a field isomorphism from
Fto F' and b is a zero of ¢(p(x)) in some extension of F', then there
is an isomorphism from F(a) to F'(b) that agrees with ¢ on F and
carries a to b.
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PROOF First observe that since p(x) is irreducible over F, ¢(p(x)) is
irreducible over F'. It is straightforward to check that the mapping

from F[x]/{p(x)) to F'[x]/{d(p(x))) given by
f&) + (p(x) = d(f0) + (p(p(x)))

is a field isomorphism. By a slight abuse of notation, we denote this
mapping by ¢ also. (If you object, put a bar over the ¢.) From the proof
of Theorem 20.3, we know that there is an isomorphism « from F(a) to
F[x]/{p(x)) that is the identity on F and carries a to x + (p(x)). Simi-
larly, there is an isomorphism B from F'[x]/{¢(p(x))) to F’(b) that is the
identity on F’ and carries x + (¢p(p(x))) to b. Thus, B« is the desired

mapping from F(a) to F'(b) . See Figure 20.1. |
F(a) Flx)/{p(x)) F'lx1/(¢ (p(x))) F'(b)
[ ] [ ]
o [ B
J L
F ¢ F
Figure 20.1

I Theorem 20.4 Extending ¢p: F — F'

Let ¢ be an isomorphism from a field F to a field F' and let
f(x) € Flx]. If E is a splitting field for f(x) over F and E' is a
splitting field for ¢(f(x)) over F', then there is an isomorphism
from E to E' that agrees with ¢ on F.

PROOF We induct on deg f(x). If deg f(x) = 1,then E = F and E’ =
F’, so that ¢ itself is the desired mapping. If deg f(x) > 1, let p(x) be
an irreducible factor of f(x), let a be a zero of p(x) in E, and let b be a
zero of ¢(p(x)) in E'. By the preceding lemma, there is an isomor-
phism « from F(a) to F'(b) that agrees with ¢ on F and carries a to b.
Now write f(x) = (x — a)g(x), where g(x) € F(a)[x]. Then E is a
splitting field for g(x) over F(a) and E' is a splitting field for a(g(x))
over F’(b). Since deg g(x) < deg f(x), there is an isomorphism from E
to E’ that agrees with « on F(a) and therefore with ¢ on F. |
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I Corollary Splitting Fields Are Unique

Let F be a field and let f(x) € F[x]. Then any two splitting fields
of f(x) over F are isomorphic.

PROOF Suppose that E and E' are splitting fields of f(x) over F. The
result follows immediately from Theorem 20.4 by letting ¢ be the
identity from F'to F. |

In light of the corollary above, we may refer to “the” splitting field
of a polynomial over F' without ambiguity.

Even though x® — 2 has a zero in Q(%), it does not split in Q(%).
The splitting field is easy to obtain, however.

I EXAMPLE 8 The Splitting Field of x" — a over Q
Let a be a positive rational number and let w be a primitive nth root of
unity (see Example 2 in Chapter 16). Then each of

al/n’ wal/n’ w2al/n’ e wn*lal/n
. . n
is a zero of X" — a in Q(\/E , ). |

Zeros of an Irreducible Polynomial

Now that we know that every nonconstant polynomial over a field
splits in some extension, we ask whether irreducible polynomials must
split in some special way. Yes, they do. To discover how, we borrow
something whose origins are in calculus.

Definition

Let f(x) = a,x" + a,_x" "' + - - - + a;x + a, belong to F[x]. The
derivative of f(x), denoted by f’(x), is the polynomial na,x""! +
(n — Da,_x"2+---+a,in Flx].

Notice that our definition does not involve the notion of a limit. The
standard rules for handling sums and products of functions in calculus
carry over to arbitrary fields as well.

I Lemma Properties of the Derivative

Let f(x) and g(x) € F[x] and let a € F. Then
L (f(x) + gx)" =f'(x) + g'x)
2. (af(x))" = af'(x)
3. (f(0)gx)" = f(x)g'(x) + gLoOf ' (x).



20 | Extension Fields 363

PROOF Parts 1 and 2 follow from straightforward applications of the
definition. Using part 1 and induction on deg f(x), part 3 reduces to
the special case in which f(x) = a,x". This also follows directly from
the definition. |

Before addressing the question of the nature of the zeros of an irre-
ducible polynomial, we establish a general result concerning zeros of
multiplicity greater than 1. Such zeros are called multiple zeros.

I Theorem 20.5 Criterion for Multiple Zeros

A polynomial f(x) over a field F has a multiple zero in some
extension E if and only if f(x) and f'(x) have a common factor of
positive degree in F[x].

PROOF If a is a multiple zero of f(x) in some extension E, then
there is a g(x) in E[x] such that f(x) = (x — a)’g(x). Since f'(x) =
(x — a)’g’(x) + 2(x — a)g(x), we see that f'(a) = 0. Thus x — a is a fac-
tor of both f(x) and f'(x) in the extension E of F. Now if f(x) and f’(x)
have no common divisor of positive degree in F[x], there are polynomials
h(x) and k(x) in F[x] such that f(x)h(x) + f'(x)k(x) = 1 (see Exercise 41
in Chapter 16). Viewing f(x)h(x) + f'(x)k(x) as an element of E[x], we
see also that x — a is a factor of 1. Since this is nonsense, f(x) and f'(x)
must have a common divisor of positive degree in F[x].

Conversely, suppose that f(x) and /' (x) have a common factor of posi-
tive degree. Let a be a zero of the common factor. Then a is a zero of f(x)
and f'(x). Since a is a zero of f(x), there is a polynomial g(x) such that
f(x) = (x — a)q(x). Then f'(x) = (x — a)g'(x) + q(x) and 0 = f"(a) =
g(a). Thus, x — a is a factor of g(x) and a is a multiple zero of f(x). |

B Theorem 20.6 Zeros of an Irreducible

Let f(x) be an irreducible polynomial over a field F. If F has
characteristic 0, then f(x) has no multiple zeros. If F has charac-
teristic p + 0, then f(x) has a multiple zero only if it is of the
form f(x) = g(xP) for some g(x) in F[x].

PROOF If f(x) has a multiple zero, then, by Theorem 20.5, f(x) and
f'(x) have a common divisor of positive degree in F[x]. Since the only
divisor of positive degree of f(x) in F[x] is f(x) itself (up to associates),
we see that f(x) divides f'(x). Because a polynomial over a field cannot
divide a polynomial of smaller degree, we must have f'(x) = 0.
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Now what does it mean to say that f’(x) = 0? If we write f(x) = a,x" +
a, x" '+ -+ ax + ag, then f'(x) = nax" ' + (n — Da,_x"2 +
-+« + a,. Thus, f'(x) = O only when ka;, = Ofork=1,...,n.

So, when char F = 0, we have f(x) = a,, which is not an irreducible
polynomial. This contradicts the hypothesis that f(x) is irreducible over
F. Thus, f(x) has no multiple zeros.

When char F = p # 0, we have a; = 0 when p does not divide k. Thus,
the only powers of x that appear in the sum a,x" + - - - + a;x + ay are
those of the form x?” = (xP)/. It follows that f(x) = g(x”) for some
g(x) € F[x]. [For example, if f(x) = x* + 3x% + xP + 1, then g(x) =
432+ x+ 1] |

Theorem 20.6 shows that an irreducible polynomial over a field of
characteristic 0 cannot have multiple zeros. The desire to extend this re-
sult to a larger class of fields motivates the following definition.

Definition
A field F is called perfect if F has characteristic 0 or if F has
characteristicpand FP = {a’ |la € F} = F.

The most important family of perfect fields of characteristic p is the
finite fields.

B Theorem 20.7 Finite Fields Are Perfect

Every finite field is perfect.

PROOF Let F be a finite field of characteristic p. Consider the map-
ping ¢ from F to F defined by ¢(x) = x” for all x € F. We claim that
¢ is a field automorphism. Obviously, ¢(ab) = (ab)? = a’b? =

d(a)p(b). Moreover, dp(a + b) = (a + b = a’ + <117> a1p +

(p) aP7r 4+ -+ ( p ) ab?~! + pbP = gP + bP, since each

2 p—1

<p) is divisible by p. Finally, since x» # 0 when x # 0, Ker ¢ = {0}.
i

Thus, ¢ is one-to-one and, since F is finite, ¢ is onto. This proves that
P =F. |
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I Theorem 20.8 Criterion for No Multiple Zeros

If f(x) is an irreducible polynomial over a perfect field F, then f(x) has
no multiple zeros.

PROOF The case where F has characteristic 0 has been done. So
let us assume that f(x) € F[x] is irreducible over a perfect field F of
characteristic p and that f(x) has multiple zeros. From Theorem 20.6
we know that f(x) = g(x?) for some g(x) € Fl[x], say, g(x) = a,x" +

a,_x" '+ -+ ax + a Since FP = F, each a; in F can be written
in the form bl_” for some b, in F. So, using Exercise 45a in Chapter 13,
we have

f(x) = g(xP) = b,PxP" + b,_PxP"=D + -« + bPxP + b’
= (byx" + by x" V4 - - - + bix + by) = (h(x))
where h(x) € F[x]. But then f{x) is not irreducible. |

The next theorem shows that when an irreducible polynomial does
have multiple zeros, there is something striking about the multiplicities.

I Theorem 20.9 Zeros of an Irreducible over a Splitting Field

Let f(x) be an irreducible polynomial over a field F and let E be a
splitting field of f(x) over F. Then all the zeros of f(x) in E have the
same multiplicity.

PROOF Leta and b be distinct zeros of f(x) in E. If a has multiplicity m,
then in E[x] we may write f(x) = (x — a)”g(x). It follows from the
lemma preceding Theorem 20.4 and from Theorem 20.4 that there is a
field isomorphism ¢ from E to itself that carries a to b and acts as the
identity on F. Thus,

J) = o(f(x) = (x — b)"$(g(x))

and we see that the multiplicity of b is greater than or equal to the mul-
tiplicity of a. By interchanging the roles of a and b, we observe that the
multiplicity of a is greater than or equal to the multiplicity of b. So, we
have proved that a and b have the same multiplicity. |

As an immediate corollary of Theorem 20.9 we have the following
appealing result.
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B Corollary Factorization of an Irreducible over a Splitting Field

Let f(x) be an irreducible polynomial over a field F and let E
be a splitting field of f(x). Then f(x) has the form

alx — a)"(x —a)" - - - (x — ay)"

where ay, a,, . . ., a; are distinct elements of E and a € F.

We conclude this chapter by giving an example of an irreducible
polynomial over a field that does have a multiple zero. In particular,
notice that the field we use is not perfect.

B EXAMPLE 9 Let F = Z,(¢) be the field of quotients of the ring Z,|1]
of polynomials in the indeterminate ¢ with coefficients from Z,. (We
must introduce a letter other than x, since the members of F' are going to
be our coefficients for the elements in F[x].) Consider f(x) = x> — t €
F[x]. To see that f(x) is irreducible over F, it suffices to show that it has
no zeros in F. Well, suppose that h(t)/k(¢) is a zero of f(x). Then
(h(t)/k(t))?> = t, and therefore (h(1))> = t(k(1))%. Since h(?), k(t) € Z,|1],
we then have h(t?) = tk(:*) (see Exercise 45 in Chapter 13). But
deg h(*) is even, whereas deg k() is odd. So, f(x) is irreducible over F.

Finally, since ¢ is a constant in F[x] and the characteristic of F'is 2, we
have f'(x) = 0, so that f'(x) and f(x) have f(x) as a common factor. So, by
Theorem 20.5, f(x) has a multiple zero in some extension of F. (Indeed, it
has a single zero of multiplicity 2 in K = F[x]/{(x*> — 1).) |

| have yet to see any problem, however complicated, which, when you
looked at it in the right way, did not become still more complicated.
PAUL ANDERSON, New Scientist

1. Describe the elements of Q(%).
2. Show that Q(\V/2, V3) = Q(V2 + V3).

3. Find the splitting field of x> — 1 over Q. Express your answer in
the form Q(a).

4. Find the splitting field of x* + 1 over Q.
S. Find the splitting field of

FHEXH1I=0+x+ DX —x+1)

over Q.
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11.
12.
13.

14.
15.

16.

17.

18.
19.
20.

21.

22,

23.
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. Leta, b € R with b # 0. Show that R(a + bi) = C.
. Find a polynomial p(x) in Q[x] such that Q(V1++/5) is ring-

isomorphic to Q[x]/{p(x)).

. Let F = Z, and let f(x) = x> + x + 1 € F[x]. Suppose that a is a

zero of f(x) in some extension of F. How many elements does F(a)
have? Express each member of F(a) in terms of a. Write out a
complete multiplication table for F(a).

. Let F(a) be the field described in Exercise 8. Express each of a°,

a2, and a'® in the form c,a® + c,a + c.

Let F(a) be the field described in Exercise 8. Show that a? and a® + a
are zeros of x> + x + 1.

Describe the elements in Q(77).

Let F = Q(a%). Find a basis for F(m) over F.

Write x” — x as a product of linear factors over Z;. Do the same for
x10 — x.

Find all ring automorphisms of Q(%).

Let F be a field of characteristic p and let f(x) = x? — a € F[x].
Show that f(x) is irreducible over F or f(x) splits in F.

Suppose that B is a zero of f(x) = x* + x + 1 in some field exten-
sion E of Z,. Write f(x) as a product of linear factors in E[x].

Find a, b, ¢ in Q such that
(1+ V&2 - V2)=a+bV2+cVa
Note that such a, b, ¢ exist, since
(1 +V8)I2 -V2)€QV2) = {a+bV2+cVilab,ceE Q).

Express (3 + 4V2)~ ! in the form a + b\/2, where a, b € Q.
Show that 0(4 — i) = Q(1 + i), where i = V1.

Let F be a field, and let a and b belong to F with a # 0. If ¢
belongs to some extension of F, prove that F(c) = F(ac + b).
(F “absorbs” its own elements.)

Let f(x) € F[x] and let a € F. Show that f(x) and f(x + a) have the
same splitting field over F.

Recall that two polynomials f(x) and g(x) from F[x] are said to be
relatively prime if there is no polynomial of positive degree in F[x]
that divides both f(x) and g(x). Show that if f(x) and g(x) are rela-
tively prime in F[x], they are relatively prime in K[x], where K is
any extension of F.

Determine all of the subfields of Q(V/2).



368

Fields

24,

25.

26.
27.
28.
29.
30.

31.

32.
33.

34.

35.

36.

37.

Let E be an extension of F and let a and b belong to E. Prove that
F(a, b) = F(a)(b) = F(b)(a).

Write x* + 2x + 1 as a product of linear polynomials over some
field extension of Zs.

Express x — x as a product of irreducibles over Z,.

Prove or disprove that 0(V/3) and Q(V—3) are ring-isomorphic.
For any prime p, find a field of characteristic p that is not perfect.
If B is a zero of x> + x + 2 over Zs, find the other zero.

Show that x* + x + 1 over Z, does not have any multiple zeros in
any field extension of Z,.

Show that x> + 2x® + 1 does not have multiple zeros in any
extension of Zs.

Show that x*! + 2x° + 1 has multiple zeros in some extension of Zs.
Let F be a field of characteristic p # 0. Show that the polynomial
f(x) = x?" — x over F has distinct zeros.

Find the splitting field for f(x) = (x> + x + 2)(x> + 2x + 2) over
Z5[x]. Write f(x) as a product of linear factors.

Let £ K, and L be fields with F C K C L. If L is a splitting field
for some nonconstant polynomial f(x) over F, show that L is a
splitting field for f(x) over K.

If a # 0 belongs to a field F and x" — a splits in some extension E
of F, prove that E contains all the nth roots of unity.

Suppose that f(x) is a fifth-degree polynomial that is irreducible
over Z,. Prove that every nonidentity element is a generator of the

cyclic group (Zy[x]/(f(x)))".



Leopold Kronecker

He [Kronecker] wove together the three
strands of his greatest interests—the
theory of numbers, the theory of
equations and elliptic functions—into
one beautiful pattern.

E. T. BELL

LeopoLD KRONECKER was born on December
7, 1823, in Leignitz, Prussia. As a schoolboy,
he received special instruction from the great
algebraist Kummer. Kronecker entered the
University of Berlin in 1841 and completed
his Ph.D. dissertation in 1845 on the units in a
certain ring.

Kronecker devoted the years 1845-1853 to
business affairs, relegating mathematics to a
hobby. Thereafter, being well-off financially,
he spent most of his time doing research in al-
gebra and number theory. Kronecker was one
of the early advocates of the abstract approach
to algebra. He innovatively applied rings and
fields in his investigations of algebraic num-
bers, established the Fundamental Theorem of
Finite Abelian Groups, and was the first math-
ematician to master Galois’s theory of fields.

Kronecker advocated constructive meth-
ods for all proofs and definitions. He believed
that all mathematics should be based on rela-
tionships among integers. He went so far as
to say to Lindemann, who proved that 7 is
transcendental, that irrational numbers do
not exist. His most famous remark on the
matter was “God made the integers, all the
rest is the work of man.” Henri Poincaré
once remarked that Kronecker was able to
produce fine work in number theory and
algebra only by temporarily forgetting his
own philosophy.

Kronecker died on December 29, 1891,
at the age of 68.

For more information about Kronecker,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Algebraic Extensions

Banach once told me, “Good mathematicians see analogies between
theorems or theories, the very best ones see analogies between analogies.”
S. M. ULAM, Adventures of a Mathematician

Characterization of Extensions

370

In Chapter 20, we saw that every element in the field Q(\/i) has the
particularly simple form a + b\/2, where a and b are rational. On the
other hand, the elements of Q(7) have the more complicated form

(am +a,_m" '+ + a /(b ™" + b a4+ by),

where the a’s and b’s are rational. The fields of the first type have a
great deal of structure. This structure is the subject of this chapter.

Definition Types of Extensions

Let E be an extension field of a field F and let a € E. We call a
algebraic over F if a is the zero of some nonzero polynomial in F[x]. If
a is not algebraic over F, it is called transcendental over F. An exten-
sion E of F is called an algebraic extension of F if every element of E is
algebraic over F. If E is not an algebraic extension of F, it is called a
transcendental extension of F. An extension of F of the form F(a) is
called a simple extension of F.

Leonhard Euler used the term transcendental for numbers that are
not algebraic because “they transcended the power of algebraic meth-
ods.” Although Euler made this distinction in 1744, it wasn’t until 1844
that the existence of transcendental numbers over Q was proved by
Joseph Liouville. Charles Hermite proved that e is transcendental over
Q in 1873, and Lindemann showed that 77 is transcendental over Q in
1882. To this day, it is not known whether 7 + e is transcendental over Q.
With a precise definition of “almost all,” it can be shown that almost all
real numbers are transcendental over Q.
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Theorem 21.1 shows why we make the distinction between elements
that are algebraic over a field and elements that are transcendental over
a field. Recall that F(x) is the field of quotients of F[x]; that is,

F(x) = {f(x)/g(x) | f(x), gx) € Flx], g(x) # 0}.
B Theorem 21.1 Characterization of Extensions

Let E be an extension field of the field F and let a € E. If a is
transcendental over F, then F(a) = F(x). If a is algebraic over E, then
F(a) = F[x]/{p(x)), where p(x) is a polynomial in F[x] of minimum
degree such that p(a) = 0. Moreover, p(x) is irreducible over F.

PROOF Consider the homomorphism ¢:F[x] — F(a) given by
f(x) = f(a). If a is transcendental over F, then Ker ¢ = {0}, and so
we may extend ¢ to an isomorphism ¢:F(x) — F(a) by defining
¢ (f0)/gx) = fla)lg(a).

If a is algebraic over F, then Ker ¢ # {0}; and, by Theorem 16.4,
there is a polynomial p(x) in F[x] such that Ker ¢ = (p(x)) and p(x) has
minimum degree among all nonzero elements of Ker ¢. Thus, p(a) = 0
and, since p(x) is a polynomial of minimum degree with this property,
it is irreducible over F. |

The proof of Theorem 21.1 can readily be adapted to yield the next
two results also. The details are left to the reader (see Exercise 1).

I Theorem 21.2 Uniqueness Property

If a is algebraic over a field F, then there is a unique monic irreduci-
ble polynomial p(x) in F[x] such that p(a) = 0.

The polynomial with the property specified in Theorem 21.2 is
called the minimal polynomial for a over F.

I Theorem 21.3 Divisibility Property

Let a be algebraic over F, and let p(x) be the minimal polynomial for
a over F. If f(x) € F[x] and f(a) = 0, then p(x) divides f(x) in F[x].

If E is an extension field of F, we may view FE as a vector space over F
(that is, the elements of E are the vectors and the elements of F' are the
scalars). We are then able to use such notions as dimension and basis in
our discussion.



372

Fields

Finite Extensions

Definition Degree of an Extension

Let E be an extension field of a field F. We say that E has degree n
over F and write [E:F]| = n if E has dimension n as a vector space
over F. If [E:F] is finite, E is called a finite extension of F; otherwise,
we say that FE is an infinite extension of F.

Figure 21.1 illustrates a convenient method of depicting the degree
of a field extension over a field.

0(\2) 02) 02) E
2 3 6 | n
o 0 Q0 F
[0(2):0] =2 [02):0]=3 [042):01=6 [E:F]=n
Figure 21.1

B EXAMPLE 1 The field of complex numbers has degree 2 over the
reals, since {1, i} is a basis. The field of complex numbers is an infinite
extension of the rationals. |

B EXAMPLE 2 If g is algebraic over F and its minimal polynomial
over F has degree n, then, by Theorem 20.3, we know that {1, a, . . .,
a" '} is a basis for F(a) over F; and, therefore, [F(a):F] = n. In this
case, we say that a has degree n over F. |

I Theorem 21.4 Finite Implies Algebraic

If E is a finite extension of F, then E is an algebraic extension of F.

PROOF Suppose that [E:F] = nand a € E. Then the set {1, q, ..., a"}
is linearly dependent over F; that is, there are elements ¢, ¢, ..., ¢, in F,
not all zero, such that

ca*+tec _a'+---+ca+c,=0.
n n—1 1 0

Clearly, then, a is a zero of the nonzero polynomial
fx) =cx"+c,_

1x"_l-i--~--|—clx—i-co. |
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The converse of Theorem 21.4 is not true, for otherwise, the de-
grees of the elements of every algebraic extension of E over F' would
be bounded. But Q(\fZ, \3@ %, ...) is an algebraic extension of Q
that contains elements of every degree over Q (see Exercise 3).

The next theorem is the field theory counterpart of Lagrange’s The-
orem for finite groups. Like all counting theorems, it has far-reaching
consequences.

B Theorem 21.5 [K:F] = [K:E][E:F]

Let K be a finite extension field of the field E and let E be a finite
extension field of the field F. Then K is a finite extension field
of F and [K:F) = [K:E|[E:F)].

PROOF Let X = {x, x,, ..., x,} be a basis for K over E, and let
Y={y.,y,...,y,} beabasis for E over F. It suffices to prove that

YX = {ijiIISjSm,ISiSn}
is a basis for K over F. To do this, let a € K. Then there are elements
by, by, ...,b, € Esuch that
a=bx +byx,+ -+bx.

And, for each i = 1, ..., n, there are elements ¢, c, eEF

such that

s Gy

by=cyy, tepy, oty
Thus,

a = 2 bix; = E(E c,-jyj> X; = 2 ci(yx:).
=1 i=1

i=1 i.J

This proves that YX spans K over F.
Now suppose there are elements ¢, in F such that
0= Ze(x) = ZAZ ()
Then, since each X ¢ ;Y; € E and X is a basis for K over E, we have
J

2c iy, = 0

J
for each i. But each ¢, € F and Y is a basis for E over F, so each ;= 0.
This proves that the set YX is linearly independent over F. |

Using the fact that for any field extension L of a field J, [L:J] = n if
and only if L is isomorphic to J" as vector spaces (see Exercise 29), we
may give a concise conceptual proof of Theorem 21.5, as follows. Let
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nm 4 E

[K:F] = [K:E][E:F]

Figure 21.2

[K:E] = nand [E:F] = m. Then K = E"and E = F", so that K = E"' =
(F™* = F™n Thus, [K:F] = mn.

The content of Theorem 21.5 can be pictured as in Figure 21.2. Ex-
amples 3, 4, and 5 show how Theorem 21.5 is often utilized.

B EXAMPLE 3 Since {1, V/3} is a basis for Q(V/3, V/5) over Q(\V'5)
(see Exercise 7) and {1, \/5} is a basis for Q(\/5) over Q, the proof of
Theorem 21.5 shows that {1, /3, V/5, V/15} is a basis for Q(\V/3, \[)
over Q. (See Figure 21.3.)

I EXAMPLE 4 Consider Q(V/2, V/3). Then [Q(V2, V/3) : O] =

For, clearly, [Q(V2, V/3) : Q] = [Q(V2, V/3) : Q(V2)] [0(V2) : Q]
and [Q(V/2,V/3) : 0] = [Q(V2,V/3) : Q(V/3)] [Q(V/3) : O] show that
both 3 = [Q(V2) : O] and 4 = [Q(V/3) : Q] divide [Q(V/2, V/3) : Q.
Thus, [Q(Y/2, V/3) : O] = 12. On the other hand, [0(V/2, V/3) : Q(V/2)]
is at most 4, since V3isazeroof x* — 3 € Q(%)[x]. Therefore,
[0(V2,V/3) : Q] = [Q(V2,V/3): QV2)][0(V2) : Q] = 4 -3 = 12.

(See Figure 21.4.) |
Q(35) 0(\2,43)
2 2 4 3
o(3) 4 o0s)  od2) 12 o{3)
2 2 3 4
0 Q
Figure 21.4

Figure 21.3
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Theorem 21.5 can sometimes be used to show that a field does not
contain a particular element.

B EXAMPLE 5 Recall from Example 7 in Chapter 17 that h(x) = 15x* —
10x? + 9x + 21 is irreducible over Q. Let 8 be a zero of A(x) in some ex-
tension of Q. Then, even though we don’t know what 3 is, we can still
prove that /2 is not an element of O(P). For, if so, then Q C Q(%) -
O(B) and 4 = [Q(B) : 01 = [Q(B) : Q(V2)IIQ(V'2) : Q] implies that
3 divides 4. Notice that this argument cannot be used to show that \/2
is not contained in Q(R). |

B EXAMPLE 6 Consider Q(V/3, V5). We claim that Q(\/3, V/5) =
O(V3 + \V/5). The inclusion Q(\/3 + V3) C Q(V3, V5) is clear.

. -1 = 1 \f—\fS =
Now note that since (V3 + V/5) V3t 5 V35

—% (V3 —\/5), we know that /3 — \/5 belongs to Q (V'3 + V/5). It

follows that [(V3 + V/53) + (V3 — V5)1/2 = V3 and [(V3 + V5)—
V3 — \@)]/2 = V5 both belong to O(\V/3 + \/5), and therefore
0(V3,V5) C O(V3 +V5). 1

B EXAMPLE 7 It follows from Example 6 and Theorem 20.3 that the
minimal polynomial for \/3 + /5 over Q has degree 4. How can we
find this polynomial? We begin with x = /3 + \/5. Then 2 = 3 +
2\V/15 + 5. From this we obtain x2 — 8 = 2\/15 and, by squaring both
sides, x* — 16x + 64 = 60. Thus, \/3 + \/5 is a zero of x* — 16x + 4.
We know that this is the minimal polynomial of V3 + /5 over Q
since it is monic and has degree 4. 1

Example 6 shows that an extension obtained by adjoining two ele-
ments to a field can sometimes be obtained by adjoining a single
element to the field. Our next theorem shows that, under certain condi-
tions, this can always be done.

§ Theorem 21.6 Primitive Element Theorem (Steinitz, 1910)

If F is a field of characteristic 0, and a and b are algebraic over F,
then there is an element c in F(a, b) such that F(a, b) = F(c).

PROOF Let p(x) and g(x) be the minimal polynomials over F for a and

b, respectively. In some extension K of F, leta,, a,, ..., a, and b,, b,,

..., b, be the distinct zeros of p(x) and g(x), respectively, where a = a,
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and b = b,. Among the infinitely many elements of F, choose an
element d not equal to (a, — a)/(b — bj) foralli=1andallj > 1.1In
particular, a, # a + d(b — bj) forj > 1.

We shall show that ¢ = a + db has the property that F(a, b) = F(c).
Certainly, F(c) C F(a, b). To verify that F(a, b) C F(c), it suffices to
prove that b € F(c), for then b, c, and d belong to F(c) and a = ¢ — bd.
Consider the polynomials g(x) and r(x) = p(c — dx) [that is, r(x) is
obtained by substituting ¢ — dx for x in p(x)] over F(c). Since both
q(b) = 0and r(b) = p(c — db) = p(a) = 0, both g(x) and r(x) are divis-
ible by the minimal polynomial s(x) for b over F(c) (see Theorem 21.3).
Because s(x) € F(c)[x], we may complete the proof by proving that
s(x) = x — b. Since s(x) is a common divisor of ¢g(x) and r(x), the only
possible zeros of s(x) in K are the zeros of g(x) that are also zeros of
r(x). But r(bj) =p(c — dbj) = p(a +db — dbj) =pla +db — bj)) and
d was chosen such that a + d(b — bj) # a, for j > 1. It follows that b
is the only zero of s(x) in K[x] and, therefore, s(x) = (x — b)". Since
s(x) is irreducible and F has characteristic 0, Theorem 20.6 guarantees
thatu = 1. |

In the terminology introduced earlier, it follows from Theorem 21.6
and induction that any finite extension of a field of characteristic 0 is a
simple extension. An element a with the property that £ = F(a) is
called a primitive element of E.

Properties of Algebraic Extensions

I Theorem 21.7 Algebraic over Algebraic Is Algebraic

If K is an algebraic extension of E and E is an algebraic extension
of E, then K is an algebraic extension of F.

PROOF Let a € K. It suffices to show that a belongs to some finite
extension of F. Since a is algebraic over E, we know that a is the zero

of some irreducible polynomial in E[x], say, p(x) = b x" + - - - + b,
Now we construct a tower of field extensions of F, as follows:
F, = F(b,),

F,=Fb),....,F,=F, _b,).
In particular,

F,=F(byb,,...,b),
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K

F(a) E

Figure 21.5

so that p(x) € F, [x]. Thus, [F (a):F] = n; and, because each b, is alge-
braic over F, we know that each [F, :F] is finite. So,

[F (a):F] = [F (a):F I[F:F,_ 1 [F:F[F,F]
is finite. (See Figure 21.5.) |

1 Corollary Subfield of Algebraic Elements

Let E be an extension field of the field F. Then the set of all elements
of E that are algebraic over F is a subfield of E.

PROOF Suppose that a, b € E are algebraic over F and b # 0. To
show that a + b, a — b, ab, and a/b are algebraic over F, it suffices to
show that [F(a, b):F] is finite, since each of these four elements be-
longs to F(a, b). But note that

[F(a, b):F] = [F(a, b):F(b)I[F(b):F].

Also, since a is algebraic over F, it is certainly algebraic over F(b).
Thus, both [F(a, b):F(b)] and [F(b):F] are finite. |

For any extension E of a field F, the subfield of E of the elements
that are algebraic over F is called the algebraic closure of F in E.

One might wonder if there is such a thing as a maximal algebraic
extension of a field F—that is, whether there is an algebraic extension £
of F that has no proper algebraic extensions. For such an E to exist, it is
necessary that every polynomial in E[x] splits in E. Otherwise, it follows
from Kronecker’s Theorem that £ would have a proper algebraic exten-
sion. This condition is also sufficient. If every member of E[x] splits in E,
and K is an algebraic extension of E, then every member of K is a zero of
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some element of E[x]. But the zeros of elements of E[x] are in E. A field
that has no proper algebraic extension is called algebraically closed. In
1910, Ernst Steinitz proved that every field F has a unique (up to isomor-
phism) algebraic extension that is algebraically closed. This field is
called the algebraic closure of F. A proof of this result requires a sophis-
ticated set theory background.

In 1799, Gauss, at the age of 22, proved that C is algebraically
closed. This fact was considered so important at the time that it was
called “The Fundamental Theorem of Algebra.” Over a 50-year period,
Gauss found three additional proofs of the Fundamental Theorem. To-
day more than 100 proofs exist. In view of the ascendancy of abstract
algebra in the 20th century, a more appropriate phrase for Gauss’s result
would be “The Fundamental Theorem of Classical Algebra.”

It matters not what goal you seek
Its secret here reposes:
You've got to dig from week to week
To get Results or Roses.
EDGAR GUEST

1. Prove Theorem 21.2 and Theorem 21.3.

2. Let E be the algebraic closure of F. Show that every polynomial in
Flx] splits in E.

3. Prove that Q(\@, \3@, \4/5, .. .) is an algebraic extension of Q but
not a finite extension of Q. (This exercise is referred to in this
chapter.)

4. Let E be an algebraic extension of F. If every polynomial in F[x]
splits in E, show that E is algebraically closed.

5. Suppose that F is a field and every irreducible polynomial in F[x]
is linear. Show that F is algebraically closed.

6. Suppose that f(x) and g(x) are irreducible over F and that deg f(x)
and deg g(x) are relatively prime. If a is a zero of f(x) in some ex-
tension of F, show that g(x) is irreducible over F(a).

7. Let a and b belong to Q with b # 0. Show that 0(\Va) = Q(Vb) if
and only if there exists some ¢ € Q such that a = bc?.

8. Find the degree and a basis for Q(\@4+ \f5) over Q(\V 15). Find
the degree and a basis for o(V2, \3f2 V/2) over Q.

9. Suppose that E is an extension of F of prime degree. Show that, for
everyain E, F(a) = For F(a) = E.



10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22,

23.

24,
25.

26.

27.
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Let a be a complex number that is algebraic over Q. Does your
argument work when Va is replaced by \/a? Show that Va is
algebraic over Q.

Suppose that E is an extension of F and a, b € E. If a is algebraic

over F of degree m, and b is algebraic over F of degree n, where m
and n are relatively prime, show that [F(a, b):F] = mn.

Find an example of a field F and elements a and b from some
extension field such that F(a, b) # F(a), F(a, b) # F(b), and
[F(a, b):F] < [F(a):FI[F(b):F].

Let K be a field extension of F and let a € K. Show that
[F(a):F(a®)] = 3. Find examples to illustrate that [F(a):F(a’)] can
be 1, 2, or 3.

Find the minimal polynomial for V=3 + /2 over Q.

Let K be an extension of F. Suppose that E, and E, are contained
in K and are extensions of F. If [E|:F] and [E,:F] are both prime,
show that £, = E,or E, N E, = F.

Find the minimal polynomial for /2 + V4 over 0.

Let E be a finite extension of R. Use the fact that C is algebraically
closed to prove that E = C or E = R.

Suppose that [E:Q] = 2. Show that there is an integer d such that
E = Q(Vd) where d is not divisible by the square of any prime.

Suppose that p(x) € F[x] and E is a finite extension of F. If p(x) is
irreducible over F and deg p(x) and [E:F] are relatively prime,
show that p(x) is irreducible over E.

Let E be a field extension of F. Show that [E:F] is finite if and only
ifE = Fa,,a,,...,a), wherea,a,,...,a, are algebraic over F.
If @ and B are real numbers and « and B are transcendental over Q,
show that either a8 or @ + 3 is also transcendental over Q.

Let f(x) be a nonconstant element of F[x]. If a belongs to some
extension of F and f(a) is algebraic over F, prove that a is alge-
braic over F.

Let f(x) = ax®> + bx + ¢ € Q[x]. Find a primitive element for the
splitting field for f(x) over Q.

Find the splitting field for x* — x* — 2 over Z,.

Let f(x) € Flx]. If deg f(x) = 2 and a is a zero of f(x) in some
extension of F, prove that F(a) is the splitting field for f(x) over F.

Let a be a complex zero of x> + x + 1 over Q. Prove that
QVa) = Q(a).

If F is a field and the multiplicative group of nonzero elements of
F is cyclic, prove that F is finite.
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28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.
40.

41.

Let a be a complex number that is algebraic over Q and let r be a
rational number. Show that a” is algebraic over Q.

Prove that, if K is a field extension of F, then [K:F] = n if and only
if K is isomorphic to F" as vector spaces. (See Exercise 27 in
Chapter 19 for the appropriate definition. This exercise is referred
to in this chapter.)

Let a be a positive real number and let n be an integer greater than 1.
Prove or disprove that [Q(a'"):Q] = n.

Let a and b belong to some extension of F and let b be algebraic
over F. Prove that [F(a, b):F(a)] = [F(a, b):F].

Let f(x) and g(x) be irreducible polynomials over a field F and let
a and b belong to some extension E of F. If a is a zero of f(x) and
b is a zero of g(x), show that f(x) is irreducible over F(b) if and
only if g(x) is irreducible over F(a).

Let B be a zero of f(x) = x° + 2x + 4 (see Example 8 in Chapter 17).
Show that none of \/2, \36, \4@ belongs to Q(f3).

Prove that Q(\/2, %) = Q(%).

Let @ and b be rational numbers. Show that Q(Va, Vb) =
O(Va+Vb).

Let F, K and L be fields with /' < K < L. If L is a finite extension of
Fand[L:F] = [L: K], prove that F = K.

Let F be a field and K a splitting field for some nonconstant poly-
nomial over F. Show that K is a finite extension of F.

Prove that C is not the splitting field of any polynomial in Q[x].

Prove that \/2 is not an element of o(m).

Let @ = cosZ + isin® and B = cos®” + isin?Z. Prove that 3
isnotin Q(«).

Suppose that a is algebraic over a field F. Show thataand 1 + a™'

have the same degree over F.

R. L. Roth, “On Extensions of Q by Square Roots,” American Mathemati-
cal Monthly 78 (1971): 392-393.

In this paper, it is proved that if p,, p,, . . ., p, are distinct primes, then

[OVpi N o - ... Vp,):0] = 2",
Paul B. Yale, “Automorphisms of the Complex Numbers,” Mathematics
Magazine 39 (1966): 135-141.

This award-winning expository paper is devoted to various results on
automorphisms of the complex numbers.



Irving Kaplansky

He got to the top of the heap
by being a first-rate doer and
expositor of algebra.

PAUL R. HALMOS, | Have a
Photographic Memory

IRVING KAPLANSKY was born on March 22,
1917, in Toronto, Canada, a few years after
his parents emigrated from Poland. Al-
though his parents thought he would pursue
a career in music, Kaplansky knew early on
that mathematics was what he wanted to do.
As an undergraduate at the University of
Toronto, Kaplansky was a member of the
winning team in the first William Lowell
Putnam competition, a mathematical contest
for United States and Canadian college stu-
dents. Kaplansky received a B.A. degree from
Toronto in 1938 and an M.A. in 1939. In
1939, he entered Harvard University to earn
his doctorate as the first recipient of a Putnam
Fellowship. After receiving his Ph.D. from
Harvard in 1941, Kaplansky stayed on as
Benjamin Peirce instructor until 1944. After
one year at Columbia University, he went to
the University of Chicago, where he remained
until his retirement in 1984. He then became
the director of the Mathematical Sciences
Research Institute at the University of Cali-
fornia, Berkeley.

Kaplansky’s interests were broad, includ-
ing areas such as ring theory, group theory,
field theory, Galois theory, ergodic theory,
algebras, metric spaces, number theory, sta-
tistics, and probability.

Among the many honors Kaplansky
received are election to both the National
Academy of Sciences and the American
Academy of Arts and Sciences, election to
the presidency of the American Mathemati-
cal Society, and the 1989 Steele Prize for
cumulative influence from the American
Mathematical Society. The Steele Prize cita-
tion says, in part, “. . . he has made striking
changes in mathematics and has inspired
generations of younger mathematicians.”
Kaplansky died on June 25, 2006 at the age
of 89.

For more information about Kaplansky,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Finite Fields

This theory [of finite fields] is of considerable interest in its own right and it
provides a particularly beautiful example of how the general theory of the
preceding chapters fits together to provide a rather detailed description of
all finite fields.

RICHARD A. DEAN, Elements of Abstract Algebra

Classification of Finite Fields

In this, our final chapter on field theory, we take up one of the most
beautiful and important areas of abstract algebra—finite fields. Finite
fields were first introduced by Galois in 1830 in his proof of the unsolv-
ability of the general quintic equation. When Cayley invented matrices a
few decades later, it was natural to investigate groups of matrices over
finite fields. To this day, matrix groups over finite fields are among the
most important classes of groups. In the past 50 years, there have been
important applications of finite fields in computer science, coding the-
ory, information theory, and cryptography. But, besides the many uses of
finite fields in pure and applied mathematics, there is yet another good
reason for studying them. They are just plain fun!

The most striking fact about finite fields is the restricted nature of
their order and structure. We have already seen that every finite field
has prime-power order (Exercise 47 in Chapter 13). A converse of sorts
is also true.

B Theorem 22.1 Classification of Finite Fields

382

For each prime p and each positive integer n, there is, up to
isomorphism, a unique finite field of order p".

PROOF Consider the splitting field E of f(x) = ¥ — x over Z,. We
will show that |El = p”. Since f(x) splits in E, we know that f(x) has ex-
actly p" zeros in E, counting multiplicity. Moreover, by Theorem 20.5,
every zero of f(x) has multiplicity 1. Thus, f(x) has p” distinct zeros in E.
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On the other hand, the set of zeros of f(x) in E is closed under addition,
subtraction, multiplication, and division by nonzero elements (see
Exercise 35), so that the set of zeros of f(x) is itself a field extension of
Zp in which f(x) splits. Thus, the set of zeros of f(x) is E and, therefore,

|El = p".

To show that there is a unique field for each prime-power, suppose
that K is any field of order p". Then K has a subfield isomorphic to Zp
(generated by 1), and, because the nonzero elements of K form a multi-
plicative group of order p" — 1, every element of K is a zero of f(x) =
X" — x (see Exercise 25). So, K must be a splitting field for f(x) over Zp.
By the corollary to Theorem 20.4, there is only one such field up to
isomorphism. |

The existence portion of Theorem 22.1 appeared in the works of
Galois and Gauss in the first third of the 19th century. Rigorous proofs
were given by Dedekind in 1857 and by Jordan in 1870 in his classic
book on group theory. The uniqueness portion of the theorem was
proved by E. H. Moore in an 1893 paper concerning finite groups. The
mathematics historian E. T. Bell once said that this paper by Moore
marked the beginning of abstract algebra in America.

Because there is only one field for each prime-power p”, we may un-
ambiguously denote it by GF(p"), in honor of Galois, and call it the
Galois field of order p".

Structure of Finite Fields

The next theorem tells us the additive and multiplicative group struc-
ture of a field of order p”.

B Theorem 22.2 Structure of Finite Fields

As a group under addition, GF(p") is isomorphic to
ZP@ZPEB o0c EBZP.

n factors

As a group under multiplication, the set of nonzero elements of
GEF(p") is isomorphic to Zp.._1 (and is, therefore, cyclic).

PROOF Since GF(p") has characteristic p (Theorem 13.3), every
nonzero element of GF(p") has additive order p. Then by the Funda-
mental Theorem of Finite Abelian Groups, GF(p") under addition is
isomorphic to a direct product of n copies of Z,
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To see that the multiplicative group GF(p")* of nonzero elements of
GF(p") is cyclic, we first note that by the Fundamental Theorem of
Abelian Groups (Theorem 11.1), GF(p")* is isomorphic to a direct
product of the form Z, © Z, @ - - - @ Z, . If the orders of these com-
ponents are pairwise relatively prime then it follows from Corollary 1
of Theorem 8.2 that GF(p")* is cyclic. Hence we may assume that
there is an integer d > 1 that divides the orders of two of the compo-
nents. From the Fundamental Theorem of Cyclic Groups (Theorem
4.3) we know that each of these components has a subgroup of order d.
This means that GF(p™)* has two distinct subgroups of order d, call
them H and K. But then every element of H and K is a zero of x¥ — 1,
which contradicts the fact that a polynomial of degree d over a field can

have at most d zeros (Corollary 3 of Theorem 16.2). |
Since Zp &) Zp D---D Zp is a vector space over Zp with {(1, 0,
...,0,00,1,0,...,0),...,(0,0,..., 1)} as a basis, we have the

following useful and aesthetically appealing formula.

1 Corollary 1

[GF(p"):GF()] = n

1 Corollary 2 GF(p") Contains an Element of Degree n

Let a be a generator of the group of nonzero elements of GF( p")
under multiplication. Then a is algebraic over GF( p) of degree n.

PROOF Observe that [GF( p)(a):GF(p)] = [GF(p"):GF(p)] = n. |

B EXAMPLE 1 Let’s examine the field GF(16) in detail. Since x* +
x + 1 is irreducible over Z,, we know that

GF(16) = {ax* + bx* + ex +d + (x* + x + 1) la, b, c,d € Z,}.
Thus, we may think of GF(16) as the set
F={ax*+bx*+ cx+dlab,c,dEZ},

where addition is done as in Z,[x], but multiplication is done modulo
x* 4+ x + 1. For example,

W@+ +x+ D3 +x)=x+ 2%
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since the remainder upon dividing
P+t x+t DE+x)=x0+x+x2+x

by x* + x + 1in Z,[x] is x’ + x*. An easier way to perform the same
calculation is to observe that in this context x* + x + 11is 0, so

X*=—-x—1=x+1,
X =xr+ x,

and

x0 =3+ 2%

Thus,
M+ + 2 +x=F+ )+ @ +x)+x2+tx=x+x%1

Another way to simplify the multiplication process is to make use of
the fact that the nonzero elements of GF(16) form a cyclic group of
order 15. To take advantage of this, we must first find a generator of this
group. Since any element F* must have a multiplicative order that di-
vides 15, all we need to do is find an element « in F* such that &® # 1
and o’ # 1. Obviously, x has these properties. So, we may think of
GF(16) as the set {0, 1, x, x%, . . ., x'*}, where x> = 1. This makes mul-
tiplication in F trivial, but, unfortunately, it makes addition more diffi-
cult. For example, x'° - x7 = x!7 = x2, but what is x!° + x7? So, we face
a dilemma. If we write the elements of F* in the additive form ax® +
bx> + cx + d, then addition is easy and multiplication is hard. On the
other hand, if we write the elements of F* in the multiplicative form x’,
then multiplication is easy and addition is hard. Can we have the best of
both? Yes, we can. All we need to do is use the relation x* = x + 1 to
make a two-way conversion table, as in Table 22.1.

So, we see from Table 22.1 that

X0+ =+x+1) +F+x+1)
=x3+x2=x°
and
P+ + D+ +x+1)=x8x"2

=xB =x0=x2+x+ 1. ]

Don’t be misled by the preceding example into believing that the
element x is always a generator for the cyclic multiplicative group
of nonzero elements. It is not. (See Exercise 17.) Although any two
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Table 22.1 Conversion Table for Addition and Multiplication in GF(16)

Multiplicative Additive Form to
Form to Multiplicative

Additive Form Form

1 1 1 1
X x X x
X2 x2 x+1 x*
3 3 2 2
x* x+1 X2+ x X
x5 X2+ x 2+1 X8
x° x4 a2 2+x+1 x!0
X! XP+x+1 x3 X3
X8 2+1 X3+ a2 X0
X0 X+ x X3+ x X
x10 X+x+1 X +1 x4
x! B4+ X+ x2+x x!
xt2 B2+ x+1 2+ +1 x13
Xt B+a?+1 2+x+1 x’
x4 X +1 X+ +x+1 x12

irreducible polynomials of the same degree over Zp[x] yield isomorphic
fields, some are better than others for computational purposes.

B EXAMPLE 2 Consider f(x) = x* + x* + 1 over Z,. We will show how
to write f(x) as the product of linear factors. Let F = Z,[x]/{ f(x)) and let a
be a zero of f(x) in F. Then IFl = 8 and |F*| = 7. So, by Corollary 2 to
Theorem 7.1, we know that lal = 7. Thus, by Theorem 20.3,

F=1{0,1,a,d a, a* &, a®}
={0,1,a,a+ 1,a*a*+a+1,a*+ 1,a*> + a}.

We know that a is one zero of f(x), and we can test the other elements
of F to see if they are zeros. We can simplify the calculations by using
the fact that @®> + 4> + 1 = 0 to make a conversion table for the two
forms of writing the elements of F. Because char F' = 2, we know that
a’ = a* + 1. Then,

ad=ad+a=@+)+a=a"+a+1,
d=ad+a+a=@+H)+a*+a=a+1,
=g+ q,

T=1.

Now let’s see whether a? is a zero of f(x).

f@=@?+@*+1=a"+a*+1
=@+a)+@+at+)+1=0.
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So, yes, it is. Next we try a°.

f@)=@P+@P+1=a+a"+1
=a*+@+a)+1l=a+1+0.

Now a*.

fl@h =@y + @y +1=a2+d*+1
=a+a+l=@+1)+a+1=0.

So, a* is our remaining zero. Thus, f(x) = (x — a)(x — a®)(x — a*) =
(x + a)(x + a®)(x + a*), since char F = 2. |

Subfields of a Finite Field

Theorem 22.1 gives us a complete description of all finite fields. The
following theorem gives us a complete description of all the subfields
of a finite field. Notice the close analogy between this theorem and
Theorem 4.3, which describes all the subgroups of a finite cyclic group.

B Theorem 22.3 Subfields of a Finite Field

For each divisor m of n, GF(p") has a unique subfield of order p™.
Moreover, these are the only subfields of GF(p™).

PROOF To show the existence portion of the theorem, suppose that
m divides n. Then, since

pn_ 1 :(pm_ 1)(pn*m_|_pn72m+ ...+pm+ 1),

we see that p™ — 1 divides p"* — 1. For simplicity, write p"* — 1 =
(p" — Dr. Let K = {x € GF(p")Ix*" = x}. We leave it as an easy exer-
cise for the reader to show that K is a subfield of GF(p"). (Exercise 23).
Since the polynomial x?" — x has at most p™ zeros in GF(p"), we have
IKI < p™. Let {a) = GF(p")*. Then la’l = p” — 1 and since (a")p" ' =1,
it follows that a’ € K. So, K is a subfield of GF(p") of order p™.

The uniqueness portion of the theorem follows from the observation
that if GF(p") had two distinct subfields of order p™, then the polyno-
mial x?" — x would have more than p™ zeros in GF(p"). This contra-
dicts Corollary 3 of Theorem 16.2.
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Finally, suppose that F is a subfield of GF(p"). Then F is isomorphic
to GF(p™) for some m and, by Theorem 21.5,

n = [GF(p"):GF(p)]
= [GF(p"):GF(p™][GF(p™):GF(p)]
= [GF(p"):GF(p™)]m.

Thus, m divides n. |

Theorems 22.2 and 22.3, together with Theorem 4.3, make the task
of finding the subfields of a finite field a simple exercise in arithmetic.

B EXAMPLE 3 Let F be the field of order 16 given in Example 1. Then
there are exactly three subfields of F, and their orders are 2, 4, and 16.
Obviously, the subfield of order 2 is {0, 1} and the subfield of order 16
is F itself. To find the subfield of order 4, we merely observe that the
three nonzero elements of this subfield must be the cyclic subgroup of
F* = (x) of order 3. So the subfield of order 4 is

{0,1,x°,x19Y =1{0, 1, x> + x, x> + x + 1}. |

B EXAMPLE 4 If F is a field of order 3° = 729 and « is a generator of
F*, then the subfields of F are

1. GF(3) = {0} U («?**) = {0, 1,2}

2. GF(9) = {0} U («’")

3. GF(27) = {0} U (a*®)

4. GF(729) = {0} U (w). |

B EXAMPLE 5 The subfield lattice of GF(2%%) is

/GF(224)
Az'z)

GF(2%) /

GF(2%)
GF(2% /
/ GF(2%)
GF(2%)

GF(2) ]
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No pressure, no diamonds.

P =

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

MARY CASE

Find [GF(729):GF(9)] and [GF(64):GF(8)].

If m divides n, show that [GF(p™):GF(p™)] = n/m.

Draw the lattice of subfields of GF(64).

Let a be a zero of x> + x* + 1 in some extension of Z,. Find the
multiplicative inverse of @ + 1 in Z,[a].

Let a be a zero of f(x) = x> + 2x + 1 in some extension of Z;.
Find the other zero of f(x) in Z,[a].

. Let a be a zero of f(x) = x’ + x + 1 in some extension of Z,.

Find the other zeros of f(x) in Z,[«].

. Let K be a finite extension field of a finite field . Show that there

is an element ¢ in K such that K = F(a).
How many elements of the cyclic group GF(81)* are generators?

. Let f(x) be a cubic irreducible over Z,. Prove that the splitting field

of f(x) over Z, has order 8.

Prove that the rings Z,[x]/(x* + x + 2) and Z,[x]{x* + 2x + 2) are
isomorphic.

Show that the Frobenius mapping ¢:GF(p") — GF(p"), given by
a — a”, is a ring automorphism of order n (that is, n is the smallest
positive integer such that ¢”" is the identity mapping). (This exer-
cise is referred to in Chapter 32.)

Determine the possible finite fields whose largest proper subfield is
GF(25).

Prove that the degree of any irreducible factor of x® — x over Z, is
1 or3.

Find the smallest field that has exactly 6 subfields.

Show that x is a generator of the cyclic group (Z[x]/x* + 2x + 1))*.
Suppose that f(x) is a fifth-degree polynomial that is irreducible
over Z,. Prove that x is a generator of the cyclic group (Z,[x]/
(o)™

Show that x is not a generator of the cyclic group (Z3[x]/(x3 +
2x + 2))*. Find one such generator.

If f(x) is a cubic irreducible polynomial over Z,, prove that either x
or 2x is a generator for the cyclic group (Z;[x]/ f(x)))*.

Prove the uniqueness portion of Theorem 22.3 using a group-
theoretic argument.
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20.

21.

22,

23.
24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

Suppose that o and B belong to GF(81)*, with lal = 5 and 18] =
16. Show that a3 is a generator of GF(81)*.

Construct a field of order 9 and carry out the analysis as in Exam-
ple 1, including the conversion table.

Show that any finite subgroup of the multiplicative group of a field
is cyclic.

Show that the set K in the proof of Theorem 22.3 is a subfield.

If g(x) is irreducible over GF(p) and g(x) divides x?" — x, prove
that deg g(x) divides n.

Use a purely group-theoretic argument to show that if F is a field
of order p”, then every element of F* is a zero of x?" — x. (This ex-
ercise is referred to in the proof of Theorem 22.1.)

Draw the subfield lattices of GF(3'8) and of GF(23°).

How does the subfield lattice of GF(23?) compare with the subfield
lattice of GF(33%)?

If p(x) is a polynomial in Z[x] with no multiple zeros, show that
p(x) divides x?" — x for some n.

Suppose that p is a prime and p # 2. Let a be a nonsquare in
GF(p)—that is, a does not have the form 5? for any b in GF(p).
Show that a is a nonsquare in GF(p") if n is odd and that a is a
square in GF(p") if n is even.

Let f(x) be a cubic irreducible over Zp, where p is a prime. Prove
that the splitting field of f(x) over Z has order p?or p.

Show that every element of GF(p") can be written in the form a”
for some unique a in GF(p").

Suppose that F is a field of order 1024 and F* = («a). List the ele-
ments of each subfield of F.

Suppose that F is a field of order 125 and F* = (a). Show that
a®? = —1.

Show that no finite field is algebraically closed.

Let E be the splitting field of f(x) = x?" — x over Z, Show that the
set of zeros of f(x) in E is closed under addition, subtraction, mul-
tiplication, and division (by nonzero elements). (This exercise is
referred to in the proof of Theorem 22.1.)

Suppose that L and K are subfields of GF(p"). If L has p°® elements
and K has p'’ elements, how many elements does L N K have?
Give an example to show that the mapping a — @” need not be an
automorphism for arbitrary fields of prime characteristic p.

In the field GF(p"), show that for every positive divisor d of n,
x*" — x has an irreducible factor over GF(p) of degree d.
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Computer Exercises

Hardware: the parts of a computer that can be kicked.
JEFF PESIS

Software for the computer exercise in this chapter is available at the
website:

http://www.d.umn.edu/~jgallian

1. This software tests cubic polynomials over Zp for irreducibility. When
a polynomial f(x) is irreducible, the software finds a generator for the
cyclic group of nonzero elements of the field Zp [x]/{ f(x)) and creates
a conversion table for addition and multiplication similar to Table
22.1. Run the program for p = 2 and x* + x + 1. Use the table to
write (x> + x)(x> + x + 1)(x*> + 1) as a power of x. Use the
table to write x'? in additive form.

2. This software tests fourth-degree polynomials over Z, for p = 2
or 3 for irreducibility. When a polynomial f(x) is irreducible, the
software finds a generator for the cyclic group of nonzero ele-
ments of the field Z,[x]/(f(x)) and creates a conversion table
for addition and multiplication similar to Table 22.1 in the text.
Run the program for p = 2 and x* + x + 1. Use the table to write
(x> + x)(x* + x + 1)(x> + 1) as a power of x. Use the table to
write x* in additive form.

Suggested Reading

Judy L. Smith and J. A. Gallian, “Factoring Finite Factor Rings,”
Mathematics Magazine 58 (1985): 93-95.

This paper gives an algorithm for finding the group of units of the ring
Flx1/{g(x)").


http://www.d.umn.edu/~jgallian

L .E. Dickson

One of the books [written by L. E. Dickson]
is his major, three-volume History of the
Theory of Numbers which would be a life’s
work by itself for a more ordinary man.

A. A. ALBERT,
Bulletin of American
Mathematical Society

LEONARD EUGENE DICKSON was born in
Independence, Iowa, on January 22, 1874.
In 1896, he received the first Ph.D. to be
awarded in mathematics at the University of
Chicago. After spending a few years at the
University of California and the University
of Texas, he was appointed to the faculty at
Chicago and remained there until his retire-
ment in 1939.

Dickson was one of the most prolific
mathematicians of the 20th century, writing
267 research papers and 18 books. His prin-
cipal interests were matrix groups, finite
fields, algebra, and number theory.

Dickson had a disdainful attitude toward
applicable mathematics; he would often say,
“Thank God that number theory is unsullied
by any applications.” He also had a sense of
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humor. Dickson would often mention his
honeymoon: “It was a great success,” he
said, “except that I only got two research
papers written.”

Dickson received many honors in his
career. He was the first to be awarded the
prize from the American Association for the
Advancement of Science for the most notable
contribution to the advancement of science,
and the first to receive the Cole Prize in alge-
bra from the American Mathematical Society.
The University of Chicago has research in-
structorships named after him. Dickson died
on January 17, 1954.

For more information about Dickson, visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Geometric

Constructions

At the age of eleven, | began Euclid. . .. This was one of the great events
of my life, as dazzling as first love.
BERTRAND RUSSELL

Historical Discussion
of Geometric Constructions

The ancient Greeks were fond of geometric constructions. They were
especially interested in constructions that could be achieved using only a
straightedge without markings and a compass. They knew, for example,
that any angle can be bisected, and they knew how to construct an equi-
lateral triangle, a square, a regular pentagon, and a regular hexagon. But
they did not know how to trisect every angle or how to construct a regu-
lar seven-sided polygon (heptagon). Another problem that they at-
tempted was the duplication of the cube—that is, given any cube, they
tried to construct a new cube having twice the volume of the given one
using only an unmarked straightedge and a compass. Legend has it that
the ancient Athenians were told by the oracle at Delos that a plague
would end if they constructed a new altar to Apollo in the shape of a cube
with double the volume of the old altar, which was also a cube. Besides
“doubling the cube,” the Greeks also attempted to “square the circle”—to
construct a square with area equal to that of a given circle. They knew
how to solve all these problems using other means, such as a compass
and a straightedge with two marks, or an unmarked straightedge and a
spiral, but they could not achieve any of the constructions with a compass
and an unmarked straightedge alone. These problems vexed mathemati-
cians for over 2000 years. The resolution of these perplexities was made
possible when they were transferred from questions of geometry to ques-
tions of algebra in the 19th century.

The first of the famous problems of antiquity to be solved was that of
the construction of regular polygons. It had been known since Euclid that
regular polygons with a number of sides of the form 2%, 2% - 3, 2k - 5, and
2k -3 -5 could be constructed, and it was believed that no others were
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possible. In 1796, while still a teenager, Gauss proved that the
17-sided regular polygon is constructible. In 1801, Gauss asserted that a
regular polygon of n sides is constructible if and only if » has the form
2%p,p, - * * p,, where the p’s are distinct primes of the form 22+ 1. We
provide a proof of this statement in Theorem 33.5.

Thus, regular polygons with 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, and 20
sides are possible to construct, whereas those with 7, 9, 11, 13, 14,
18, and 19 sides are not. How these constructions can be effected is an-
other matter. One person spent 10 years trying to determine a way to
construct the 65,537-sided polygon.

Gauss’s result on the constructibility of regular n-gons eliminated
another of the famous unsolved problems because the ability to trisect
a 60° angle enables one to construct a regular 9-gon. Thus, there is no
method for trisecting a 60° angle with an unmarked straightedge and a
compass. In 1837, Wantzel proved that it was not possible to double
the cube. The problem of the squaring of a circle resisted all attempts
until 1882, when Ferdinand Lindemann proved that 7 is transcenden-
tal since, as we will show, all constructible numbers are algebraic.

Constructible Numbers

With the field theory we now have, it is an easy matter to solve the following
problem: Given an unmarked straightedge, a compass, and a unit length, what
other lengths can be constructed? To begin, we call a real number « con-
structible if, by means of an unmarked straightedge, a compass, and a line
segment of length 1, we can construct a line segment of length lal in a finite
number of steps. It follows from plane geometry that if & and B (8 # 0) are
constructible numbers, then so are « + 8, @« — B, @ + B, and /. (See the
exercises for hints.) Thus, the set of constructible numbers contains Q and is a
subfield of the real numbers. What we desire is an algebraic characterization
of this field. To derive such a characterization, let F be any subfield of the
reals. Call the subset {(x, y)E R?| x, y € F} of the real plane the plane of F,
call any line joining two points in the plane of F' a line in F, and call any circle
whose center is in the plane of F and whose radius is in F'a circle in F. Then a
line in F has an equation of the form

ax + by +c¢c=0, where a, b, c € F,
and a circle in F has an equation of the form
>+ y*+ax+by+c=0, where a, b, c € F.

In particular, note that to find the point of intersection of a pair of lines
in F or the points of intersection of a line in F and a circle in F, one
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need only solve a linear or quadratic equation in F. We now come to
the crucial question. Starting with points in the plane of some field F,
which points in the real plane can be obtained with an unmarked
straightedge and a compass? Well, there are only three ways to con-
struct points, starting with points in the plane of F.

1. Intersect two lines in F.
2. Intersect a circle in F and a line in F.
3. Intersect two circles in F.

In case 1, we do not obtain any new points, because two lines in F in-
tersect in a point in the plane of F. In case 2, the point of intersection is
the solution to either a linear equation in F or a quadratic equation in
F. So, the point lies in the plane of F or in the plane of F(\Va), where
a € Fand «a is positive. In case 3, no new points are obtained, because,
if the two circles are given by x> + y> + ax + by + ¢ = 0 and
x> +y*+ax+b'y+c =0,then we have (a —a')x + (b — b')y +
(c — ¢") = 0, which is a line in F. So, the points of intersection are in F.
It follows, then, that the only points in the real plane that can be
constructed from the plane of a field F are those whose coordinates
lie in fields of the form F(\a), where a € F and « is positive. Of
course, we can start over with F; = F(Va) and construct points
whose coordinates lie in fields of the form F, = F 1(\/E ), where 8 €
F, and B is positive. Continuing in this fashion, we see that a real
number c is constructible if and only if there is a series of fields Q =
F,CF,C---CF CRsuchthatF, j = Fi(\/&l.), where a, € F,
and ¢ € F. Since [F,:F;] = 1 or 2, we see by Theorem 21.5 that if
c is constructible, then [Q(c):Q] = 2* for some nonnegative integer k.
We now dispatch the problems that plagued the Greeks. Consider dou-
bling the cube of volume 1. The enlarged cube would have an edge of
length \3f2 But [Q(%):Q] = 3, so such a cube cannot be constructed.
Next consider the possibility of trisecting a 60° angle. If it were pos-
sible to trisect an angle of 60°, then cos 20° would be constructible. (See
Figure 23.1.) In particular, [Q(cos 20°):0] = 2* for some k. Now, using
the trigonometric identity cos 360 = 4 cos® 6 — 3 cos 6, with 6 = 20°, we

(cos 20°, sin 20°)

[}

(0,0) (1,0)
Figure 23.1
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see that 1/2 = 4 cos? 20° — 3 cos 20°, so that cos 20° is a zero of
8x3 — 6x — 1. But, since 8x* — 6x — 1 is irreducible over Q (see
Exercise 13), we must also have [Q(cos 20°):Q] = 3. This contradiction
shows that trisecting a 60° angle is impossible.

The remaining problems are relegated to the reader as Exercises 14,
15, and 17.

Angle-Trisectors and Circle-Squarers

Down through the centuries, hundreds of people have claimed to have
achieved one or more of the impossible constructions. In 1775, the Paris
Academy, so overwhelmed with these claims, passed a resolution to no
longer examine these claims or claims of machines purported to exhibit
perpetual motion. Although it has been more than 100 years since the last
of the constructions was shown to be impossible, there continues to be a
steady parade of people who claim to have done one or more of them.
Most of these people have heard that this is impossible but have refused
to believe it. One person insisted that he could trisect any angle with a
straightedge alone [2, p. 158]. Another found his trisection in 1973 after
12,000 hours of work [2, p. 80]. One got his from God [2, p. 73]. In
1971, a person with a Ph.D. in mathematics asserted that he had a valid
trisection method [2, p. 127]. Many people have claimed the hat trick:
trisecting the angle, doubling the cube, and squaring the circle. Two men
who did this in 1961 succeeded in having their accomplishment noted in
the Congressional Record [2, p. 110]. Occasionally, newspapers and
magazines have run stories about “doing the impossible,” often giving
the impression that the construction may be valid. Many angle-trisectors
and circle-squarers have had their work published at their own expense
and distributed to colleges and universities. One had his printed in four
languages! There are two delightful books written by mathematicians
about their encounters with these people. The books are full of wit,
charm, and humor ([1] and [2]).

Only prove to me that it is impossible, and I will set about it this very
evening.

Spoken by a member of the audience after De Morgan gave a
lecture on the impossibility of squaring the circle.

1. If a and b are constructible numbers and a = b > 0, give a geomet-
ric proof that a + b and a — b are constructible.
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. If a and b are constructible, give a geometric proof that ab is con-

structible. (Hint: Consider the following figure. Notice that all seg-
ments in the figure can be made with an unmarked straightedge and a
compass.)

/

[——

1

b

. Prove that if ¢ is a constructible number, then so is V|c|. (Hint:

Consider the following semicircle with diameter 1 + Icl.) (This ex-
ercise is referred to in Chapter 33.)

o
o |4
1 |c|

. If aand b (b # 0) are constructible numbers, give a geometric proof

that a/b is constructible. (Hint: Consider the following figure.)

\

Prove that sin 6 is constructible if and only if cos 0 is constructible.

. Prove that an angle 6 is constructible if and only if sin 6 is con-

structible.

. Prove that cos 26 is constructible if and only if cos 0 is con-

structible.
Prove that 30° is a constructible angle.

. Prove that a 45° angle can be trisected with an unmarked straight-

edge and a compass.
Prove that a 40° angle is not constructible.

Show that the point of intersection of two lines in the plane of a
field F lies in the plane of F.
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12. Show that the points of intersection of a circle in the plane of a field

F and a line in the plane of F are points in the plane of F or in the
plane of F(\Va), where a € F and a is positive. Give an example
of a circle and a line in the plane of O whose points of intersection
are not in the plane of Q.

. Prove that 8x*> — 6x — 1 is irreducible over Q.

Use the fact that 8 cos’(27/7) + 4 cos?(2m/7) — 4 cos(2m/T) — 1 =0
to prove that a regular seven-sided polygon is not constructible with
an unmarked straightedge and a compass.

. Show that a regular 9-gon cannot be constructed with an unmarked

straightedge and a compass.

. Show that if a regular n-gon is constructible, then so is a regular

2n-gon.

. (Squaring the Circle) Show that it is impossible to construct, with

an unmarked straightedge and a compass, a square whose area
equals that of a circle of radius 1. You may use the fact that 7 is
transcendental over Q.

. Use the fact that 4 cos*(27/5) + 2 cos(27/5) — 1 = 0 to prove that

a regular pentagon is constructible.

. Can the cube be “tripled”?

. Can the cube be “quadrupled”?

. Can the circle be “cubed”?

. If a, b, and ¢ are constructible, show that the real roots of ax* +

bx + c are constructible.
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the cube.
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Difficulties strengthen the mind, as labor does the body.

SENECA

True/false questions for Chapters 19-23 are available on the Web at

10.
11.
12.

13.

14.

15.
16.

http://www.d.umn.edu/~jgallian/TF

. Show that x° — 1 has no multiple zeros in any extension of Z,.
. Suppose that p(x) is a quadratic polynomial with rational coeffi-

cients and is irreducible over Q. Show that p(x) has two zeros in

Olx)/p(x)).

. Let F be a finite field of order ¢ and let a be a nonzero element in

F. If n divides ¢ — 1, prove that the equation x" = a has either no
solutions in F or n distinct solutions in F.

. Without using the Primitive Element Theorem, prove that if [K:F]

is prime, then K has a primitive element.

. Let a be a zero of x> + x + 1. Express (54> + 2)/a in the form ¢ +

ba, where ¢ and b are rational.

. Describe the elements of the extension Q(%) over the field Q(\V2).
. If [F(a):F] = 5, find [F(a®):F]. Does your argument apply equally

well if @® is replaced with a® and a*?

. If p(x) € Flx] and deg p(x) = n, show that the splitting field for

p(x) over F has degree at most n!.

. Let a be a nonzero algebraic element over F of degree n. Show that

a~ ' is also algebraic over F of degree n.

Prove that 77> — 1 is algebraic over Q(7?).

If ab is algebraic over F and b # 0, prove that a is algebraic over F(b).
Let E be an algebraic extension of a field F. If R is a ring and E D
R D F, show that R must be a field.

If a is transcendental over F, show that every element of F(a) that
is not in F'is transcendental over F.

What is the order of the splitting fieldof x> + x* + 1 = (x> + x + 1)
(* +x+ 1)overZ)?

Show that a finite extension of a finite field is a simple extension.
Let R be an integral domain that contains a field F' as a subring. If
R is finite-dimensional when viewed as a vector space over F,
prove that R is a field.


http://www.d.umn.edu/~jgallian/TF

400

Fields

17.

18.

19.

20.

21.

22,

Show that it is impossible to find a basis for the vector space of
n X n (n > 1) matrices such that each pair of elements in the basis
commutes under multiplication.

LetP = {ax"+a,_x""'+---+ax+a,leacha,isareal
number}. Is it possible to have a basis for P, such that every ele-
ment of the basis has x as a factor?

Find a basis for the vector space { f € P,lf(0) = 0}. (See Exercise 18
for notation.)

Given that f is a polynomial of degree n in P, show that {f, f’,
f"s ..., f™} is a basis for P,. (f*® denotes the kth derivative of f.)
Suppose that K is a field extension of a field F' of characteristic
p # 0.Let L = {a € Kla?" € F for some nonnegative integer n}.
Prove that L is a subfield of K that contains F.

In which fields does x” — x have a multiple zero?
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Sylow Theorems

Generally these three results are implied by the expression “Sylow’s
Theorem.” All of them are of fundamental importance. In fact, if the
theorems of group theory were arranged in order of their importance
Sylow’s Theorem might reasonably occupy the second place—coming next
to Lagrange’s Theorem in such an arrangement.
G. A. MILLER, Theory and Application
of Finite Groups

Conjugacy Classes

In this chapter, we derive several important arithmetic relationships
between a group and certain of its subgroups. Recall from Chapter 7
that Lagrange’s Theorem was proved by showing that cosets of a sub-
group partition the group. Another fruitful method of partitioning the
elements of a group is by way of conjugacy classes.

Definition Conjugacy Class of a

Let a and b be elements of a group G. We say that a and b are
conjugate in G (and call b a conjugate of a) if xax~! = b for some x
in G. The conjugacy class of a is the set cl(a) = {xax~! | x € G}.

We leave it to the reader (Exercise 1) to prove that conjugacy is an
equivalence relation on G, and that the conjugacy class of a is the equiv-
alence class of @ under conjugacy. Thus, we may partition any group into
disjoint conjugacy classes. Let’s look at one example. In D, we have

CI(H) - {ROHRO_ 1’ RQOHR9O_ 1’ R 1 SOHRISO_ 1’ R27OHR270_ 1’

HHH™', VHV-', DHD™', D'HD'~'} = {H, V}.
Similarly, one may verify that

cl(Ry) = {R,},
cl(Ryg) = {Ryp, Ry}
cl(Ryg) = {Ryg})

cl(V) = {V, H} = cl(H),

(D) = {D, D'} = cl(D").

= cl(R,,,),

403
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Theorem 24.1 gives an arithmetic relationship between the size of
the conjugacy class of a and the size of C(a), the centralizer of a.

I Theorem 24.1 The Number of Conjugates of a

Let G be a finite group and let a be an element of G. Then,
Icl(@)l = 1G:C(a)!.

PROOF Consider the function T that sends the coset xC(a) to the
conjugate xax~! of a. A routine calculation shows that T is well de-
fined, is one-to-one, and maps the set of left cosets onto the conjugacy
class of a. Thus, the number of conjugates of a is the index of the cen-
tralizer of a. |

1 Corollary 1 |cl(a)| Divides |G|

In a finite group, Icl(a)! divides 1G|.

The Class Equation
Since the conjugacy classes partition a group, the following important
counting principle is a corollary to Theorem 24.1.

1 Corollary 2 The Class Equation

For any finite group G,
IGl = 2 1G:C(a)!,

where the sum runs over one element a from each conjugacy class of G.

In finite group theory, counting principles such as this corollary are
powerful tools.” Theorem 24.2 is the single most important fact about
finite groups of prime-power order (a group of order p”", where p is a
prime, is called a p-group).

T“Never underestimate a theorem that counts something.” John Fraleigh, A First
Course in Abstract Algebra.
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I Theorem 24.2 p-Groups Have Nontrivial Centers

Let G be a nontrivial finite group whose order is a power of a prime p.
Then Z(G) has more than one element.

PROOF First observe that cl(a) = {a} if and only if a € Z(G) (see
Exercise 4). Thus, by culling out these elements, we may write the
class equation in the form

IGl = 1Z(G)! + 21G:C(a),

where the sum runs over representatives of all conjugacy classes with
more than one element (this set may be empty). But 1G:C(a)l =
IGI/IC(a)l, so each term in 21G:C(a)! has the form p* with k = 1. Hence,

IGl — 21G:C(a)l = 1Z(G)|,

where each term on the left is divisible by p. It follows, then, that p also
divides 1Z(G)l, and hence |Z(G)| # 1. |

1 Corollary Groups of Order p? Are Abelian

If |G| = p? where p is prime, then G is Abelian.

PROOF By Theorem 24.2 and Lagrange’s Theorem, |Z(G)l = p or p.
If IZ(G)| = p?, then G = Z(G) and G is Abelian. If |Z(G)| = p, then
|G/Z(G)! = p, so that G/Z(G) is cyclic. But, then, by Theorem 9.3, G is
Abelian. |

The Probability That Two
Elements Commute

Before proceeding to the main goal of this chapter, we pause for an in-
teresting application of Theorem 24.1 and the class equation. (Our dis-
cussion is based on [1] and [2].) Suppose we select two elements
at random (with replacement) from a finite group. What is the proba-
bility that these two elements commute? Well, suppose that G is a fi-
nite group of order n. Then the probability Pr(G) that two elements
selected at random from G commute is |K|/n?, where K = {(x, y) €
G © G | xy = yx}. Now notice that for each x € G we have (x, y) € K
if and only if y € C(x). Thus,

K| = > [ C)|.

XEG



406 Special Topics

Also, it follows from Theorem 24.1 that if x and y are in the same
conjugacy class, then IC(x)| = IC(y)| (see Exercise 53). If, for exam-

ple, cl(a) = {a,, a,, ..., a,}, then

ICa)! + 1Ca)l + - - - + 1C@a)l = 11C(a)l
= 1G:C(a)! 1C(@) = IG| = n.

So, by choosing one representative from each conjugacy class, say, x,,
X,y ..., X , We have
2 m

Kl = D | Cx)| =D |GCx)|Cx)| = mn.
XEG i=1
Thus, the answer to our question is mn/n* = m/n, where m is the num-
ber of conjugacy classes in G and 7 is the number of elements of G.

Obviously, when G is non-Abelian, Pr(G) is less than 1. But how much
less than 1? Clearly, the more conjugacy classes there are, the larger Pr(G)
is. Consequently, Pr(G) is large when the sizes of the conjugacy classes
are small. Noting that Icl(a)| = 1 if and only if a € Z(G), we obtain the
maximum number of conjugacy classes when 1Z(G)l is as large as possi-
ble and all other conjugacy classes have exactly two elements in each.
Since G is non-Abelian, it follows from Theorem 9.3 that |G/Z(G)| = 4
and, therefore, |Z(G)| = 1GI/4. Thus, in the extreme case, we would have
IZ(G)! = |G/4, and the remaining (3/4)IGI elements would be distributed
in conjugacy classes with two elements each. So, in a non-Abelian group,
the number of conjugacy classes is no more than 1Gl/4 + (1/2)(3/4)IG],
and Pr(G) is less than or equal to 5/8. The dihedral group D, is an exam-
ple of a group that has probability equal to 5/8.

The Sylow Theorems

Now to the Sylow theorems. Recall that the converse of Lagrange’s
Theorem is false; that is, if G is a group of order m and n divides m,
G need not have a subgroup of order n. Our next theorem is a partial
converse of Lagrange’s Theorem. It, as well as Theorem 24.2, was first
proved by the Norwegian mathematician Ludwig Sylow (1832-1918).
Sylow’s Theorem and Lagrange’s Theorem are the two most important
results in finite group theory. The first gives a sufficient condition for
the existence of subgroups, and the second gives a necessary condition.

I Theorem 24.3 Existence of Subgroups of Prime-Power Order
(Sylow’s First Theorem, 1872)

Let G be a finite group and let p be a prime. If p* divides |G|, then G
has at least one subgroup of order p*.
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PROOF We proceed by induction on |GI. If IG| = 1, Theorem 24.3 is
trivially true. Now assume that the statement is true for all groups of
order less than |GI. If G has a proper subgroup H such that p* divides
|H|, then, by our inductive assumption, H has a subgroup of order p*
and we are done. Thus, we may henceforth assume that p* does not
divide the order of any proper subgroup of G. Next, consider the class
equation for G in the form

IGl = 1Z(G)| + 21G:C(a)l,

where we sum over a representative of each conjugacy class cl(a), where
a & Z(G). Since pX divides |G| = |G:C(a)| |C(a)! and p* does not divide
IC(a)l, we know that p must divide 1G:C(a)l for all a & Z(G). It then fol-
lows from the class equation that p divides |Z(G)l. The Fundamental
Theorem of Finite Abelian Groups (Theorem 11.1), or Theorem 9.5, then
guarantees that Z(G) contains an element of order p, say x. Since x is in
the center of G, (x) is a normal subgroup of G, and we may form the fac-
tor group G/{(x). Now observe that p*~! divides |G/{x)|. Thus, by the
induction hypothesis, G/{x) has a subgroup of order p*~! and, by Exer-
cise 49 in Chapter 10, this subgroup has the form H/{(x), where H is a
subgroup of G. Finally, note that |H/(x)| = p*~! and I{x)| = p imply that
|H| = p*, and this completes the proof. |

Let’s be sure we understand exactly what Sylow’s First Theorem
means. Say we have a group G of order 23 - 32 - 5% - 7. Then Sylow’s
First Theorem says that G must have at least one subgroup of each
of the following orders: 2, 4, 8, 3, 9, 5, 25, 125, 625, and 7. On the
other hand, Sylow’s First Theorem tells us nothing about the possible
existence of subgroups of order 6, 10, 15, 30, or any other divisor of
|G| that has two or more distinct prime factors. Because certain sub-
groups guaranteed by Sylow’s First Theorem play a central role in the
theory of finite groups, they are given a special name.

Definition Sylow p-Subgroup

Let G be a finite group and let p be a prime divisor of IGI. If p* divides
|G| and p**! does not divide |G, then any subgroup of G of order p*

is called a Sylow p-subgroup of G.

So, returning to our group G of order 2° - 32 - 5* - 7, we call any sub-
group of order 8 a Sylow 2-subgroup of G, any subgroup of or-
der 625 a Sylow 5-subgroup of G, and so on. Notice that a Sylow
p-subgroup of G is a subgroup whose order is the largest power of
p consistent with Lagrange’s Theorem.
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Since any subgroup of order p is cyclic, we have the following gen-
eralization of Theorem 9.5, first proved by Cauchy in 1845. His proof
ran nine pages!

Corollary Cauchy’s Theorem

Let G be a finite group and let p be a prime that divides the order
of G. Then G has an element of order p.

Sylow’s First Theorem is so fundamental to finite group theory that
many different proofs of it have been published over the years [our proof
is essentially the one given by Georg Frobenius (1849-1917) in 1895].
Likewise, there are scores of generalizations of Sylow’s Theorem.

Observe that the corollary to the Fundamental Theorem of Finite
Abelian Groups and Sylow’s First Theorem show that the converse of
Lagrange’s Theorem is true for all finite Abelian groups and all finite
groups of prime-power order.

There are two more Sylow theorems that are extremely valuable
tools in finite group theory. But first we introduce a new term.

Definition Conjugate Subgroups
Let H and K be subgroups of a group G. We say that H and K are
conjugate in G if there is an element g in G such that H = gKg~.

Recall from Chapter 7 that if G is a finite group of permutations on a
set Sand i € S, then orb (i) = {$(i) | ¢ € G} and lorb(i)! divides IGI.

I Theorem 24.4 Sylow’s Second Theorem

If H is a subgroup of a finite group G and |H| is a power of a prime p,
then H is contained in some Sylow p-subgroup of G.

PROOF Let K be a Sylow p-subgroup of G and let C = {K|, K, ..., K }
with K = K, be the set of all conjugates of K in G. Since conjugation is an
automorphism, each element of C is a Sylow p-subgroup of G. Let S,
denote the group of all permutations of C. For each g € G, define
qbg:C — Cby qbg(Ki) = gK.g!. It is easy to show that each qbg €S,

Now define a mapping 7:G — S by T(g) = d)g. Since q'>gh(Ki) =
(gWK (gh)™! = ghKh™Hg™' = g, (K)g™' = ¢,(¢,(K)) =
(gbgth)(Ki), we have qbgh = qbgd)h, and therefore 7" is a homomorphism
from G to S,.
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Next consider 7(H), the image of H under 7. Since |H| is a power
of p, sois IT(H)! (see property 6 of Theorem 10.2). Thus, by the Orbit-
Stabilizer Theorem (Theorem 7.3), for each i, IorbT(H)(Kl.)l divides
IT(H)I, so that IorbT(H)(Kl.)I is a power of p. Now we ask: Under what
condition does IorbT(H)(Kl.)l = 1?7 Well, IorbT(H)(Kl.)l = 1 means that
¢ (K) = gKg~' = K, forall g € H; that is, lorb,, (K)I = 1 if and
only if H = N(K,). But the only elements of N(K)) that have orders that
are powers of p are those of K. (see Exercise 9). Thus, IorbT(H)(Ki)l =1
if and only if H = K.

So, to complete the proof, all we need to do is show that for some i,
IorbT(H)(Kl.)l = 1. Analogous to Theorem 24.1, we have |Cl = |G:N(K)|
(see Exercise 21). And since |G:K| = |G:N(K)IIN(K):K| is not divisible
by p, neither is |C|. Because the orbits partition C, ICI is the sum of
powers of p. If no orbit has size 1, then p divides each summand and,
therefore, p divides |Cl, which is a contradiction. Thus, there is an orbit
of size 1, and the proof is complete. |

1 Theorem 24.5 Sylow’s Third Theorem

Let p be a prime and let G be a group of order p*m, where p does not
divide m. Then the number n of Sylow p-subgroups of G is equal to

1 modulo p and divides m. Furthermore, any two Sylow p-subgroups
of G are conjugate.

PROOF Let K be any Sylow p-subgroup of G and let C = {K|,
K,, ..., K } with K = K, be the set of all conjugates of K in G. We
first prove that n mod p = 1.

Let S, and T be as in the proof of Theorem 24.4. This time
we consider 7(K), the image of K under 7. As before, we have
IorbT(K)(Kl.)l is a power of p for each i and IorbT( K)(Kl.)l = 1 if and only
if K = K,. Thus, IorbT(K)(Kl)l = 1 and IorbT(K)(Kl.)I is a power of p
greater than 1 for all i # 1. Since the orbits partition C, it follows that,
modulo p,n = ICl = 1.

Next we show that every Sylow p-subgroup of G belongs to C. To
do this, suppose that H is a Sylow p-subgroup of G that is not in C. Let
S.and T be as in the proof of Theorem 24.4, and this time consider
T(H). As in the previous paragraph, ICl is the sum of the orbits’ sizes
under the action of T(H). However, no orbit has size 1, since H is not
in C. Thus, ICl is a sum of terms each divisible by p, so that, modulo p,
n = |Cl = 0. This contradiction proves that H belongs to C, and that
n is the number of Sylow p-subgroups of G.

Finally, that n divides |G| follows directly from the fact that n =
|G:N(K)I (see Exercise 21). |
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It is convenient to let n_denote the number of Sylow p-subgroups of
a group. Observe that the first portion of Sylow’s Third Theorem is a
counting principle.” As an important consequence of Sylow’s Third
Theorem, we have the following corollary.

I Corollary A Unique Sylow p-Subgroup Is Normal

A Sylow p-subgroup of a finite group G is a normal subgroup of G if
and only if it is the only Sylow p-subgroup of G.

We illustrate Sylow’s Third Theorem with two examples.

B EXAMPLE 1 Consider the Sylow 2-subgroups of §,. They are
{(1), (12)}, {(1), (23)}, and {(1), (13)}. According to Sylow’s Third
Theorem, we should be able to obtain the latter two of these from the
first by conjugation. Indeed,

(DD, (12)}A3) 7" = {(1), (23)},
@)D, (12)}23)7" = {(D), (13)}. i

B EXAMPLE 2 Consider the Sylow 3-subgroups of A,. They are {«,,
as, a9}, {a, ap, a,}, {e, a,, a),}, and {a,, ag, a,)}. (See the table on
page 107.) Then,

afay, as, a9}a2_1 = la;, a5 @)},
asfa;, as, 0‘9}0‘371 = la;, ag @)},
afa, o, a}a, ' = {a, a a;}.

Thus, the number of Sylow 3-subgroups is 1 modulo 3, and the four
Sylow 3-subgroups are conjugate. |

Figure 24.1 shows the subgroup lattices for S, and A,. We have con-
nected the Sylow p-groups with dashed circles to indicate that they be-
long to one orbit under conjugation. Notice that the three subgroups of
order 2 in A, are contained in a Sylow 2-group, as required by Sylow’s
Second Theorem. As it happens, these three subgroups also belong to
one orbit under conjugation, but this is not a consequence of Sylow’s
Third Theorem.

In contrast to the two preceding examples, observe that the
dihedral group of order 12 has seven subgroups of order 2, but that
conjugating {R, R 4,} does not yield any of the other six. (Why?)

T“Whenever you can, count.” Sir Francis Galton (1822-1911), The World of
Mathematics.
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A,=<(123)> <1

Figure 24.1 Lattices of subgroups for S3 and A4.

Applications of Sylow Theorems

A few numerical examples will make the Sylow theorems come to life.
Say G is a group of order 40. What do the Sylow theorems tell us
about G? A great deal! Since 1 is the only divisor of 40 that is congru-
ent to 1 modulo 5, we know that G has exactly one subgroup of order 5,
and therefore it is normal. Similarly, G has either one or five subgroups
of order 8. If there is only one subgroup of order 8, it is normal. If there
are five subgroups of order 8, none is normal and all five can be ob-
tained by starting with any particular one, say H, and computing xHx !
for various x’s. Finally, if we let K denote the normal subgroup of
order 5 and let H denote any subgroup of order 8, then G = HK. (See
Exercise 7, Supplementary Exercises for Chapters 5-8.) If H happens
to be normal, we can say even more: G = H X K.

What about a group G of order 30? It must have either one or six
subgroups of order 5 and one or ten subgroups of order 3. However, G
cannot have both six subgroups of order 5 and 10 subgroups of order 3
(for then G would have more than 30 elements). Thus, G has one sub-
group of order 3 and one of order 5, and at least one of these is normal
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in G. It follows, then, that the product of a subgroup of order 3 and one
of order 5 is a group of order 15 that is both cyclic (Exercise 25) and
normal (Exercise 7 in Chapter 9) in G. [This, in turn, implies that both
the subgroup of order 3 and the subgroup of order 5 are normal in G
(Exercise 57 in Chapter 9).] So, if we let y be a generator of the cyclic
subgroup of order 15 and let x be an element of order 2 (the existence
of which is guaranteed by Cauchy’s Theorem), we see that

G={xy10=i=1,0=j=14}).

Note that in these two examples we were able to deduce all of this in-
formation from knowing only the order of the group—so many conclu-
sions from one assumption! This is the beauty of finite group theory.

In Chapter 7 we saw that the only group (up to isomorphism) of
prime order p is Z,.Asa further illustration of the power of the Sylow
theorems, we next give a sufficient condition that guarantees that a
group of order pg, where p and g are primes, must be Z,,

I Theorem 24.6 Cyclic Groups of Order pq

If G is a group of order pq, where p and q are primes, p < q,
and p does not divide q — 1, then G is cyclic. In particular, G is
isomorphic to Z o

PROOF Let H be a Sylow p-subgroup of G and let K be a Sylow
g-subgroup of G. Sylow’s Third Theorem states that the number of Sylow
p-subgroups of G is of the form 1 + kp and divides pg. So 1 + kp is equal
to 1, p, g, or pq. From this and the fact that p 4 ¢ — 1, it follows that k = 0,
and therefore H is the only Sylow p-subgroup of G.

Similarly, there is only one Sylow g-subgroup of G. Thus, by the
corollary to Theorem 24.5, H and K are normal subgroups of G. Let
H = (x) and K = (y). To show that G is cyclic, it suffices to show that x
and y commute, for then |xyl = Ixllyl = pg. But observe that, since H
and K are normal, we have

xyx lyTh = (o y e Ry =K
and
xyx ly Tl =x(yx 'y ") € xH = H.
Thus, xyx 'y"! € KN H = {e}, and hence xy = yx. |

Theorem 24.6 demonstrates the power of the Sylow theorems in
classifying the finite groups whose orders have small numbers of prime
factors. Results along the lines of Theorem 24.6 exist for groups of or-
ders p?q, p>q*, p?, and p*, where p and g are prime.
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Order 1) 2| 3| 4| 5| 6 7| 8| 9|10 |11 |12| 13|14 |15 1617 [18 [19| 20

Number 1 1| 20 1 2 L[ 5| 22| 1| 5] 1| 2] 1|14 1|51 5

Order 21| 22| 23| 24]25(26(27|28|29|30|31|32|33|34 (35| 36(37 (38 39| 40

Number 20 20 1|15 20 2 5| 4| 1| 4| 15U 1| 2| 1| 14 1|2 2] 14

Order 41142 43| 44| 45|46 |47 |48|49|50 51|52 |53|54 |55 56|57 [58 |59 | 60

Number 1| 6| 1| 4| 2| 2| 1|52 2| 5| 1| S| 1|15 2| 13| 2| 2| 1] 13

Order 61|62]|63]64|65[66|67|68[69|70|71|72|73|74(75| 76|77 (78 |79 | 80

Number 1| 2| 4267 1| 4] 1| 5| 1| 4| 1|50 1| 2| 3| 4] 1| 6] 1|52
Order 81| 82] 83| 84|85(86[87|88|89|90|91(92|93[94 (95| 96(97 (98 |99 |100
Number 15| 2 1| 15| 1| 2| 1|12 1|(10| 1| 4| 2| 2| 1|230| 1| 5| 2| 16

Figure 24.2 The number of groups of a given order up to 100.

For your amusement, Figure 24.2 lists the number of nonisomorphic
groups with orders at most 100. Note in particular the large number of
groups of order 64. Also observe that, generally speaking, it is not the size
of the group that gives rise to a large number of groups of that size but the
number of prime factors involved. In all, there are 1047 nonisomorphic
groups with 100 or fewer elements. Contrast this with the fact reported in
1989 that there are 2328 groups of order 128 and 56,092 of order 256 [3].
The number of groups of any order up to 1000, except 512, is given at
http://people.csse.uwa.edu.au/gordon/remote/cubcay/. Estimates put the
number of groups of order 512 at more than one million.

As a final application of the Sylow theorems, you might enjoy seeing
a determination of the groups of order 99, 66, and 255. In fact, our ar-
guments serve as a good review of much of our work in group theory.

I EXAMPLE 3 Determination of the Groups of Order 99

Suppose that G is a group of order 99. Let H be a Sylow 3-subgroup
of G and let K be a Sylow 11-subgroup of G. Since 1 is the only posi-
tive divisor of 99 that is equal to 1 modulo 11, we know from Sylow’s
Third Theorem and its corollary that K is normal in G. Similarly,
H is normal in G. It follows, by the argument used in the proof of
Theorem 24.6, that elements from H and K commute, and therefore
G = H X K. Since both H and K are Abelian, G is also Abelian. Thus,
G is isomorphic to Zy, or Z, © Z,,. |

I EXAMPLE 4 Determination of the Groups of Order 66

Suppose that G is a group of order 66. Let H be a Sylow 3-subgroup of
G and let K be a Sylow 11-subgroup of G. Since 1 is the only positive
divisor of 66 that is equal to 1 modulo 11, we know that K is normal
in G. Thus, HK is a subgroup of G of order 33 (Exercise 55 in Chapter 9
and Exercise 7, Supplementary Exercises for Chapters 5-8). Since any
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group of order 33 is cyclic (Theorem 24.6), we may write HK = (x).
Next, let y € G and lyl = 2. Since (x) has index 2 in G, we know it is
normal. So yxy~! = x’ for some i from 1 to 32. Then, yx = x'y and,
since every member of G is of the form x*y/, the structure of G is com-
pletely determined by the value of i. We claim that there are only four
possibilities for i. To prove this, observe that |x'| = x| (Exercise 5, Sup-
plementary Exercises for Chapters 1-4). Thus, i and 33 are relatively
prime. But also, since y has order 2,

x =y Oy hy =y ey = priy = gy = () = %"

So x"~! = ¢ and therefore 33 divides i — 1. From this it follows that
11 divides i = 1, and therefore i =0 £ 1,i =11 *1,i =22 £ 1, or
i = 33 = 1. Putting this together with the other information we have
about i, we see that i = 1, 10, 23, or 32. This proves that there are at
most four groups of order 66.

To prove that there are exactly four such groups, we simply observe
that Z ., Dy, D,, © Z,, and D; @ Z,, each has order 66 and that no two
are isomorphic. For example, D, © Z, has 11 elements of order 2,
whereas D, © Z,| has only three elements of order 2. (See Exercises
25-28 of the Supplementary Exercises for Chapters 5-8.) |

1 EXAMPLE 5 The Only Group of Order 255 is z,,

Let G be a group of order 255 = 3 - 5 - 17, and let H be a Sylow 17-sub-
group of G. By Sylow’s Third Theorem, H is the only Sylow 17-subgroup
of G, so N(H) = G. By Example 15 in Chapter 10, IN(H)/C(H)! divides
[Aut(H)l = |Aut(Z,,)!. By Theorem 6.5, |IAut(Z,,)| = IU(17)I = 16. Since
IN(H)/C(H)! must divide 255 and 16, we have IN(H)/C(H)| = 1. Thus,
C(H) = G. This means that every element of G commutes with every ele-
ment of H, and, therefore, H C Z(G). Thus, 17 divides |1Z(G)!, which in
turn divides 255. So 1Z(G)! is equal to 17, 51, 85, or 255 and IG/Z(G)! is
equal to 15, 5, 3, or 1. But the only groups of order 15, 5, 3, or 1 are the
cyclic ones, so we know that G/Z(G) is cyclic. Now the “G/Z theorem”
(Theorem 9.3) shows that G is Abelian, and the Fundamental Theorem of
Finite Abelian Groups tells us that G is cyclic. |

| have always grown from my problems and challenges, from the things that
don’t work out. That’s when I've really learned.
CAROL BURNETT

1. Show that conjugacy is an equivalence relation on a group.

2. Calculate all conjugacy classes for the quaternions (see Exercise 4,
Supplementary Exercises for Chapters 1-4).
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. Show that the function 7" defined in the proof of Theorem 24.1 is

well defined, one-to-one, and maps the set of left cosets onto the
conjugacy class of a.

. Show that cl(a) = {a} if and only if a € Z(G).
. If IGI = 36 and G is non-Abelian, prove that G has more than one

Sylow 2-subgroup or more than one Sylow 3-subgroup.

. Exhibit a Sylow 2-subgroup of S,. Describe an isomorphism from

this group to D,,.

. Suppose that G is a group of order 48. Show that the intersection

of any two distinct Sylow 2-subgroups of G has order 8.

. Find all the Sylow 3-subgroups of §,.
. Let K be a Sylow p-subgroup of a finite group G. Prove that if x €

N(K) and the order of x is a power of p, then x € K. (This exercise
is referred to in this chapter.)

If a group of order 5* - 7 - 11 has more than one Sylow 5-subgroup,
exactly how many does it have?

Suppose that G is a group and |G| = p"m, where p is prime and
p > m. Prove that a Sylow p-subgroup of G must be normal in G.

Let H be a Sylow p-subgroup of G. Prove that H is the only Sylow
p-subgroup of G contained in N(H).

Suppose that G is a group of order 168. If G has more than one
Sylow 7-subgroup, exactly how many does it have?

Show that every group of order 56 has a proper nontrivial normal
subgroup.

What is the smallest composite (that is, nonprime and greater than 1)
integer n such that there is a unique group of order n?

Let G be a noncyclic group of order 21. How many Sylow 3-
subgroups does G have?

Prove that a noncyclic group of order 21 must have 14 elements of
order 3.

How many Sylow 5-subgroups of S are there? Exhibit two.
How many Sylow 3-subgroups of S are there? Exhibit five.
Prove that a group of order 175 is Abelian.

Let H be a subgroup of a group G. Prove that the number of conju-
gates of Hin G is |G:N(H)!. Hint: Mimic the proof of Theorem 24.1.
(This exercise is referred to in this chapter and in Chapter 25.)
Generalize the argument given in Example 3 to obtain a theorem
about groups of order p>q, where p and ¢ are distinct primes.
What is the smallest possible odd integer that can be the order of a
non-Abelian group?
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24,
25.

26.
27.
28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Prove that a group of order 375 has a subgroup of order 15.

Without using Theorem 24.6, prove that a group of order 15 is
cyclic. (This exercise is referred to in the discussion about groups
of order 30.)

Prove that a group of order 105 contains a subgroup of order 35.
Prove that a group of order 595 has a normal Sylow 17-subgroup.
Let G be a group of order 60. Show that G has exactly four ele-
ments of order 5 or exactly 24 elements of order 5. Which of these
cases holds for A.?

Show that the center of a group of order 60 cannot have order 4.
Suppose that G is a group of order 60 and G has a normal sub-
group N of order 2. Show that

a. G has normal subgroups of orders 6, 10, and 30.

b. G has subgroups of orders 12 and 20.

¢. G has a cyclic subgroup of order 30.

Let G be a group of order 60. If the Sylow 3-subgroup is normal,
show that the Sylow 5-subgroup is normal.

Show that if G is a group of order 168 that has a normal subgroup
of order 4, then G has a normal subgroup of order 28.

Suppose that p is prime and |G| = p". Show that G has normal sub-
groups of order p* for all k between 1 and 7 (inclusive).

Suppose that G is a group of order p”, where p is prime, and G has
exactly one subgroup for each divisor of p”. Show that G is cyclic.
Suppose that p is prime and |G| = p". If H is a proper subgroup of G,
prove that N(H) > H. (This exercise is referred to in Chapter 25.)
Suppose that G is a finite group and that all its Sylow subgroups are
normal. Show that G is a direct product of its Sylow subgroups.
Let G be a finite group and let H be a normal Sylow p-subgroup
of G. Show that a(H) = H for all automorphisms « of G.

If H is a normal subgroup of a finite group G and |H| = pk
for some prime p, show that H is contained in every Sylow
p-subgroup of G.

Let H and K denote a Sylow 3-subgroup and a Sylow 5-subgroup
of a group, respectively. Suppose that |[Hl = 3 and |IKI = 5. If 3 di-
vides IN(K)!, show that 5 divides IN(H)I.

Let G be a group of order p?>q?, where p and ¢ are distinct primes,
g+ p*>— 1,and p + ¢* — 1. Prove that G is Abelian. List three pairs
of primes that satisfy these conditions.
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Let H be a normal subgroup of a group G. Show that H is the union
of the conjugacy classes of the elements of H. Is this true when H
is not normal in G?

Let p be prime. If the order of every element of a finite group G is
a power of p, prove that |Gl is a power of p. (Such a group is called
a p-group.)

For each prime p, prove that all Sylow p-subgroups of a finite
group are isomorphic.

Suppose that K is a normal subgroup of a finite group G and §
is a Sylow p-subgroup of G. Prove that K N S is a Sylow p-
subgroup of K.

If G is a group of odd order and x € G, show that x~! is not in cl(x).
Determine the groups of order 45.

Show that there are at most three nonisomorphic groups of order 21.
Prove that if H is a normal subgroup of index p? where p is prime,
then G’ C H (see Exercise 3 in the Supplementary Exercises for
Chapters 5-8 for a description of G”).

Show that Z, is the only group that has exactly two conjugacy
classes.

If H is a finite subgroup of a group G and x € G, prove that
IN(H)| = |[N(xHx™")|.

Let G be a group with |G| =595 =57 - 17. Show that the
Sylow 5-subgroup of G is normal in G and is contained in Z(G).
What is the probability that a randomly selected element from D,
commutes with V?

Prove that if x and y are in the same conjugacy class of a group,
then |C(x)| = IC(y)l. (This exercise is referred to in the discussion
on the probability that two elements from a group commute.)

Let G be a finite group and let a € G. Express the probability that
a randomly selected element from G commutes with a in terms of
orders of subgroups of G.

Find Pr(D,), Pr(S,), and Pr(A,).

Prove that Pr(G & H) = Pr(G) - Pr(H).

Let R be a finite noncommutative ring. Show that the probability
that two randomly chosen elements from R commute is at most 3.
[Hint: Mimic the group case and use the fact that the additive
group R/C(R) is not cyclic.]
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Computer Exercise

1. Use the website http://people.csse.uwa.edu.au/gordon/remote/
cubcay/ to look up the number of groups of order 4p, where p is an
odd prime up to 37. Make a conjecture about the exact number of
such groups.
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are relatively prime. The article can be downloaded at http://www
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W. H. Gustafson, “What Is the Probability That Two Group Elements
Commute?” The American Mathematical Monthly 80 (1973): 1031-1034.
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Ludwig Sylow

Sylow’s Theorem is 100 years old. In the
course of a century this remarkable theo-
rem has been the basis for the construc-
tion of numerous theories.

L. A. SHEMETKOV

LupwiG SyLow (pronounced “SEE-loe”)
was born on December 12, 1832, in Chris-
tiania (now Oslo), Norway. While a student
at Christiania University, Sylow won a gold
medal for competitive problem solving. In
1855, he became a high school teacher; de-
spite the long hours required by his teaching
duties, Sylow found time to study the papers
of Abel. During the school year 1862—1863,
Sylow received a temporary appointment at
Christiania University and gave lectures
on Galois theory and permutation groups.
Among his students that year was the great
mathematician Sophus Lie (pronounced
“Lee”), after whom Lie algebras and Lie
groups are named. From 1873 to 1881,
Sylow, with some help from Lie, prepared a
new edition of Abel’s works. In 1902, Sylow
and Elling Holst published Abel’s corre-
spondence.

Sylow’s great discovery, Sylow’s Theo-
rem, came in 1872. Upon learning of

Sylow’s result, C. Jordan called it “one of
the essential points in the theory of permuta-
tions.” The result took on greater importance
when the theory of abstract groups flowered
in the late 19th century and early 20th cen-
tury.

In 1869, Sylow was offered a professor-
ship at Christiania University but turned it
down. Upon Sylow’s retirement from high
school teaching at age 65, Lie mounted a
successful campaign to establish a chair for
Sylow at Christiania University. Sylow held
this position until his death on September 7,
1918.

To find more information about Sylow,
visit:

http://www-groups.dcs.st-and
.ac.uk/~history
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Finite Simple Groups

It is a widely held opinion that the problem of classifying finite simple
groups is close to a complete solution. This will certainly be one of the great
achievements of mathematics of this century.

NATHAN JACOBSON

Historical Background

420

We now come to the El Dorado of finite group theory—the simple
groups. Simple group theory is a vast and difficult subject; we call it
the El Dorado of group theory because of the enormous effort put forth
by hundreds of mathematicians over many years to discover and
classify all finite simple groups. Let’s begin our discussion with the
definition of a simple group and some historical background.

Definition Simple Group
A group is simple if its only normal subgroups are the identity
subgroup and the group itself.

The notion of a simple group was introduced by Galois about 180
years ago. The simplicity of A, the group of even permutations on five
symbols, played a crucial role in his proof that there is not a solution by
radicals of the general fifth-degree polynomial (that is, there is no
“quintic formula”). But what makes simple groups important in the
theory of groups? They are important because they play a role in group
theory somewhat analogous to that of primes in number theory or the
elements in chemistry; that is, they serve as the building blocks for all
groups. These building blocks may be determined in the following way.
Given a finite group G, choose a proper normal subgroup G, of G = G,
of largest order. Then the factor group G /G, is simple, and we next
choose a proper normal subgroup G, of G, of largest order. Then G,/G,
is also simple, and we continue in this fashion until we arrive at G, =
{e}. The simple groups G,/G,, G,/G,, ..., G, _,/G, are called the com-
position factors of G. More than 100 years ago, Jordan and Holder
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proved that these factors are independent of the choices of the normal
subgroups made in the process described. In a certain sense, a group can
be reconstructed from its composition factors, and many of the proper-
ties of a group are determined by the nature of its composition factors.
This and the fact that many questions about finite groups can be reduced
(by induction) to questions about simple groups make clear the impor-
tance of determining all finite simple groups.

Just which groups are the simple ones? The Abelian simple groups
are precisely Z , where n = 1 or n is prime. This follows directly from the
corollary in Chapter 11. In contrast, it is extremely difficult to describe the
non-Abelian simple groups. The best we can do here is to give a few
examples and mention a few words about their discovery. It was Galois in
1831 who first observed that A is simple for all n = 5. The next
discoveries were made by Jordan in 1870, when he found four infinite
families of simple matrix groups over the field Z , where p is prime. One
such family is the factor group SL(n, Zp)/Z(SL(n, Zp)), except whenn = 2
and p = 2 or p = 3. Between the years 1892 and 1905, the American
mathematician Leonard Dickson (see Chapter 22 for a biography) gener-
alized Jordan’s results to arbitrary finite fields and discovered several new
infinite families of simple groups. About the same time, it was shown by
G. A. Miller and F. N. Cole that a family of five groups first described by
E. Mathieu in 1861 were in fact simple groups. Since these five groups
were constructed by ad hoc methods that did not yield infinitely many
possibilities, like A or the matrix groups over finite fields, they were
called “sporadic.”

The next important discoveries came in the 1950s. In that decade,
many new infinite families of simple groups were found, and the initial
steps down the long and winding road that led to the complete classifi-
cation of all finite simple groups were taken. The first step was Richard
Brauer’s observation that the centralizer of an element of order 2 was an
important tool for studying simple groups. A few years later, John
Thompson, in his Ph.D. dissertation, introduced the crucial idea of
studying the normalizers of various subgroups of prime-power order.

In the early 1960s came the momentous Feit-Thompson Theorem,
which says that a non-Abelian simple group must have even order. This
property was first conjectured around 1900 by one of the pioneers of
modern group-theoretic methods, the Englishman William Burnside
(see Chapter 29 for a biography). The proof of the Feit-Thompson
Theorem filled an entire issue of a journal [1], 255 pages in all (see
Figure 25.1). This result provided the impetus to classify the finite sim-
ple groups—that is, a program to discover all finite simple groups and
prove that there are no more to be found. Throughout the 1960s, the
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Pacific
Journal of

Mathematics

Oh, what are the orders of all simple

groups?

I speak of the honest ones, not of the loops.

It seems that old Burnside their orders has
guessed

Except for the cyclic ones, even the rest.

CHORUS: Finding all groups that are sim-
ple is no simple task.

Groups made up with permutes will
produce some more:

For A is simple, if n exceeds 4.

Then, there was Sir Matthew who came into
view

Exhibiting groups of an order quite new.

Still others have come on to study this thing.

Of Artin and Chevalley now we shall sing.

With matrices finite they made quite a list

The question is: Could there be others
they’ve missed?

Suzuki and Ree then maintained it’s the
case

GROUPS OF ODD ORDER

JOUN G THOMPSON  (Universty of Chicago

SOLVABILITY
OF

WALTER FEIT iComell University)

That these methods had not reached the end
of the chase.

They wrote down some matrices, just four by
four.

That made up a simple group. Why not make
more?

And then came the opus of Thompson and
Feit

Which shed on the problem remarkable light.
A group, when the order won’t factor by two,
Is cyclic or solvable. That’s what is true.

Suzuki and Ree had caused eyebrows to raise,

But the theoreticians they just couldn’t faze.

Their groups were not new: if you added a
twist,

You could get them from old ones with a
flick of the wrist.

Still, some hardy souls felt a thorn in their
side.

Figure 25.1



For the five groups of Mathieu all reason
defied;

Not A , not twisted, and not Chevalley,

They called them sporadic and filed them
away.

Are Mathieu groups creatures of heaven or
hell?

Zvonimir Janko determined to tell.

He found out that nobody wanted to know:

The masters had missed1 7 5 5 6 0.

The floodgates were opened! New groups
were the rage!
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(And twelve or more sprouted, to greet the
new age.)

By Janko and Conway and Fischer and Held

McLaughlin, Suzuki, and Higman, and Sims.

No doubt you noted the last lines don’t
rhyme.

Well, that is, quite simply, a sign of the time.

There’s chaos, not order, among simple
groups;

And maybe we’d better go back to the loops.

methods introduced in the Feit-Thompson proof were generalized and
improved with great success by many mathematicians. Moreover, be-
tween 1966 and 1975, 19 new sporadic simple groups were discovered.
Despite many spectacular achievements, research in simple group the-
ory in the 1960s was haphazard, and the decade ended with many peo-
ple believing that the classification would never be completed. (The
pessimists feared that the sporadic simple groups would foil all at-
tempts. The anonymously written “song” in Figure 25.1 captures the
spirit of the times.) Others, more optimistic, were predicting that it
would be accomplished in the 1990s.

The 1970s began with Thompson receiving the Fields Medal for his
fundamental contributions to simple group theory. This honor is among
the highest forms of recognition that a mathematician can receive
(more information about the Fields Medal is given near the end of this
chapter). Within a few years, three major events took place that ulti-
mately led to the classification. First, Thompson published what is re-
garded as the single most important paper in simple group theory—the
N-group paper. Here, Thompson introduced many fundamental tech-
niques and supplied a model for the classification of a broad family of
simple groups. Second, Daniel Gorenstein produced an elaborate out-
line for the classification, which he delivered in a series of lectures at
the University of Chicago in 1972. Here a program for the overall
proof was laid out. The army of researchers now had a battle plan and
a commander-in-chief. But this army still needed more and better
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weapons. Thus came the third critical development: the involvement of
Michael Aschbacher. In a dazzling series of papers, Aschbacher com-
bined his own insight with the methods of Thompson, which had been
generalized throughout the 1960s, and a geometric approach pioneered
by Bernd Fischer to achieve one brilliant result after another in rapid
succession. In fact, so much progress was made by Aschbacher
and others that by 1976, it was clear to nearly everyone involved that
enough techniques had been developed to complete the classification.
Only details remained.

The 1980s were ushered in with Aschbacher following in the foot-
steps of Feit and Thompson by winning the American Mathematical
Society’s Cole Prize in algebra (see the last section of this chapter).

A week later, Robert L. Griess made the spectacular announcement
that he had constructed the “Monster.”" The Monster is the largest of the
sporadic simple groups. In fact, it has vastly more elements than there
are atoms on the earth! Its order is

808,017,424,794,512,875,886,459,904,961,710,757,005,754,
368,000,000,000

(hence, the name). This is approximately 8 X 1033. The Monster is a
group of rotations in 196,883 dimensions. Thus, each element can be
expressed as a 196,883 X 196,883 matrix.

At the annual meeting of the American Mathematical Society in 1981,
Gorenstein announced that the “Twenty-five Years’ War” to classify all the
finite simple groups was over. Group theorists at long last had a list of all
finite simple groups and a proof that the list was complete. The proof was
spread out over hundreds of papers—both published and unpublished—
and ran more than 10,000 pages in length. Because of the proof’s extreme
length and complexity, and the fact that some key parts of it had not been
published, there was some concern in the mathematics community that the
classification was not a certainty. By the end of the decade, group theorists
had concluded that there was indeed a gap in the unpublished work that
would be difficult to rectify. In the mid-1990s, Aschbacher and Stephen
Smith began work on this problem. In 2004, at the annual meeting of the
American Mathematical Society, Aschbacher announced that he and Smith
had completed the classification. Their paper is about 1200 pages in
length. Aschbacher concluded his remarks by saying that he would not bet
his house that the proof is now error-free. Several people who played a
central role in the classification are working on a “second generation”
proof that will be much shorter and more comprehensible.

"The name was coined by John H. Conway.
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Nonsimplicity Tests

In view of the fact that simple groups are the building blocks for all
groups, it is surprising how scarce the non-Abelian simple groups are.
For example, A is the only one whose order is less than 168; there are
only five non-Abelian simple groups of order less than 1000 and only
56 of order less than 1,000,000. In this section, we give a few theorems
that are useful in proving that a particular integer is not the order of a
non-Abelian simple group. Our first such result is an easy arithmetic
test that comes from combining Sylow’s Third Theorem and the fact
that groups of prime-power order have nontrivial centers.

I Theorem 25.1 Sylow Test for Nonsimplicity

Let n be a positive integer that is not prime, and let p be a prime
divisor of n. If 1 is the only divisor of n that is equal to 1 modulo p,
then there does not exist a simple group of order n.

PROOF If n is a prime-power, then a group of order n has a nontrivial
center and, therefore, is not simple. If n is not a prime-power, then
every Sylow subgroup is proper, and, by Sylow’s Third Theorem, we
know that the number of Sylow p-subgroups of a group of order n is
equal to 1 modulo p and divides n. Since 1 is the only such number, the
Sylow p-subgroup is unique, and therefore, by the corollary to Sylow’s
Third Theorem, it is normal. |

How good is this test? Well, applying this criterion to all the non-
prime integers between 1 and 200 would leave only the following inte-
gers as possible orders of finite non-Abelian simple groups: 12, 24, 30,
36, 48, 56, 60, 72, 80, 90, 96, 105, 108, 112, 120, 132, 144, 150, 160,
168, 180, and 192. (In fact, computer experiments have revealed that
for large intervals, say, 500 or more, this test eliminates more than 90%
of the nonprime integers as possible orders of simple groups. See [2]
for more on this.)

Our next test rules out 30, 90, and 150.

§ Theorem 25.2 2 - Odd Test

An integer of the form 2 - n, where n is an odd number greater than 1,
is not the order of a simple group.

PROOF Let G be a group of order 2n, where n is odd and greater
than 1. Recall from the proof of Cayley’s Theorem (Theorem 6.1)
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that the mapping ¢ — T, is an isomorphism from G to a permutation
group on the elements of G [where Tg(x) = gx for all x in G]. Since
|G| = 2n, Cauchy’s Theorem guarantees that there is an element g in
G of order 2. Then, when the permutation 7, is written in disjoint
cycle form, each cycle must have length 1 or 2; otherwise, Igl # 2.
But Tg can contain no 1-cycles, because the 1-cycle (x) would mean x =
Tg(x) = gx, so g = e. Thus, in cycle form, 7, consists of exactly n
transpositions, where n is odd. Therefore, ];, 1s an odd permutation.
This means that the set of even permutations in the image of G is a
normal subgroup of index 2. (See Exercise 19 in Chapter 5 and Exercise 7
in Chapter 9.) Hence, G is not simple. |

The next theorem is a broad generalization of Cayley’s Theorem.
We will make heavy use of its two corollaries.

I Theorem 25.3 Generalized Cayley Theorem

Let G be a group and let H be a subgroup of G. Let S be the group
of all permutations of the left cosets of H in G. Then there is a
homomorphism from G into S whose kernel lies in H and contains
every normal subgroup of G that is contained in H.

PROOF For each g € G, define a permutation T, of the left cosets
of H by Tg(xH) = gxH. As in the proof of Cayley’s Theorem, it is easy to
verify that the mapping of a:g — T, is a homomorphism from G into S.

Now, if g € Ker «, then T, is the identity map, so H = Tg(H) = gH,
and, therefore, g belongs to H. Thus, Ker « C H. On the other hand, if
K is normal in G and K C H, then for any k € K and any x in G, there
is an element k' in K such that kx = xk’. Thus,

T,(xH) = kxH = xk'H = xH

and, therefore, 7, is the identity permutation. This means that k € Ker a.
We have proved, then, that every normal subgroup of G contained in H
is also contained in Ker . |

As a consequence of Theorem 25.3, we obtain the following very
powerful arithmetic test for nonsimplicity.

I Corollary 1 Index Theorem

If G is a finite group and H is a proper subgroup of G such that |G|
does not divide |G:H|!, then H contains a nontrivial normal subgroup
of G. In particular, G is not simple.
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PROOF Let a be the homomorphism given in Theorem 25.3. Then
Ker « is a normal subgroup of G contained in H, and G/Ker « is
isomorphic to a subgroup of S. Thus, |G/Ker al = |1Gl/IKer a!l divides
ISI = |G:HI!. Since |G| does not divide |G:H|!, the order of Ker o must
be greater than 1. ]

1 Corollary 2 Embedding Theorem

If a finite non-Abelian simple group G has a subgroup of index n,
then G is isomorphic to a subgroup of A,.

PROOF Let H be the subgroup of index n, and let S, be the group
of all permutations of the n left cosets of H in G. By the Generalized
Cayley Theorem, there is a nontrivial homomorphism from G into S .
Since G is simple and the kernel of a homomorphism is a normal sub-
group of G, we see that the mapping from G into S, is one-to-one, so
that G is isomorphic to some subgroup of § . Recall from Exercise 19
in Chapter 5 that any subgroup of S consists of even permutations only
or half even and half odd. If G were isomorphic to a subgroup of the
latter type, the even permutations would be a normal subgroup of in-
dex 2 (see Exercise 7 in Chapter 9), which would contradict the fact
that G is simple. Thus, G is isomorphic to a subgroup of A . |

Using the Index Theorem with the largest Sylow subgroup for H
reduces our list of possible orders of non-Abelian simple groups still
further. For example, let G be any group of order 80 = 16 - 5. We may
choose H to be a subgroup of order 16. Since 80 is not a divisor of 5!,
there is no simple group of order 80. The same argument applies to 12,
24, 36, 48, 96, 108, 160, and 192, leaving only 56, 60, 72, 105, 112,
120, 132, 144, 168, and 180 as possible orders of non-Abelian simple
groups up to 200. Let’s consider these orders. Quite often we may use
a counting argument to eliminate an integer. Consider 56. By Sylow’s
Theorem, we know that a simple group of order 56 = 8 - 7 would con-
tain eight Sylow 7-subgroups and seven Sylow 2-subgroups. Now, any
two Sylow p-subgroups that have order p must intersect in only the
identity. So the union of the eight Sylow 7-subgroups yields 48 ele-
ments of order 7, and the union of any two Sylow 2-subgroups gives at
least 8 + 8 — 4 = 12 new elements. But there are only 56 elements in
all. This contradiction shows that there is not a simple group of order 56.
An analogous argument also eliminates the integers 105 and 132.

So, our list of possible orders of non-Abelian simple groups up to
200 is down to 60, 72, 112, 120, 144, 168, and 180. Of these, 60 and
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168 do correspond to simple groups. The others can be eliminated with
a bit of razzle-dazzle.

The easiest case to handle is 112 = 2% - 7. Suppose there were a sim-
ple group G of order 112. A Sylow 2-subgroup of G must have index 7.
So, by the Embedding Theorem, G is isomorphic to a subgroup of A,.
But 112 does not divide |A,l, which is a contradiction.

Another easy case is 72 = 2 - 32, Recall from Exercise 21 in Chap-
ter 24 that the number of Sylow p-subgroups of G is n,= IG: N(H)I,
where H is any Sylow p-subgroup of G. Now for a simple group G of
order 72, Sylow’s Third Theorem gives that n,/8 and n, mod 3 = 1. So
ny = 4. Since |G| = 72 does not divide |G: N(H)I! = 4! = 24, the Index
Theorem gives that G is not simple.

Next consider the possibility of a simple group G of order 144 = 9 - 16.
By the Sylow theorems, we know that n, = 4 or n; = 16 and n, = 3. The
Index Theorem rules out the case where n, = 4, so we know that there are
16 Sylow 3-subgroups. Now, if every pair of Sylow 3-subgroups had only
the identity in common, the 16 - 8 + 1 = 129 elements from these sub-
groups plus at least 16 more elements from two of the Sylow 2-subgroups
results in more than 144 elements. So, let H and H' be a pair of Sylow
3-subgroups whose intersection has order 3. Then H N H' is a subgroup
of both H and H' and, by the corollary to Theorem 24.2 (or by Exercise 35
in Chapter 24), we see that N(H N H') must contain both H and H' and,
therefore, the set HH'. (HH' need not be a subgroup.) Thus,

H[[H'| 9-9
HNH| 3

IN(HN H')l = |HH'| = 217.

Now, we have three arithmetic conditions on k = IN(H N H')I. We
know that 9 divides k; k divides 144; and k = 27. Clearly, then, k = 36,
and so |G:N(H N H')l = 4. The Index Theorem now gives us the de-
sired contradiction.

Finally, suppose that G is a non-Abelian simple group of order 180 =
22 - 32+ 5. Then ny = 6 or ny = 36 and n, = 10. First, assume that
ng = 36. Then G has 36 - 4 = 144 elements of order 5. Now, if each pair
of the Sylow 3-subgroups intersects in only the identity, then there are 80
more elements in the group, which is a contradiction. So, we may as-
sume that there are two Sylow 3-subgroups L, and L} whose intersection
has order 3. Then, as was the case for order 144, we have

9-9

IN(Ly O Ly| = IL,Ly) = == = 27,

Thus,
IN(L, N L)1 =9 - k,



25 | Finite Simple Groups 429

where & = 3 and k divides 20. Clearly, then,
IN(L, N L)l = 36
and therefore
IG:N(L; N LI = 5.

The Index Theorem now gives us another contradiction. Hence, we
may assume that ng = 6. In this case, we let H be the normalizer of a
Sylow 5-subgroup of G. By Sylow’s Third Theorem, we have 6 =
|G:HI, so that |HI = 30. In Chapter 24, we proved that every group of
order 30 has an element of order 15. On the other hand, since ng = 6,
G has a subgroup of index 6 and the Embedding Theorem tells us that
G is isomorphic to a subgroup of A,. But A, has no element of order 15.
(See Exercise 7 in Chapter 5.)

Unfortunately, the argument for 120 is fairly long and complicated.
However, no new techniques are required to do it. We leave this as an
exercise (Exercise 17). Some hints are given in the answer section.

The Simplicity of A,

Once 120 has been disposed of, we will have shown that the only inte-
gers between 1 and 200 that can be the orders of non-Abelian simple
groups are 60 and 168. For completeness, we will now prove that A,
which has order 60, is a simple group. A similar argument can be used
to show that the factor group SL(2, Z,)/Z(SL(2, Z,)) is a simple group
of order 168. [This group is denoted by PSL(2, Z,).]

If A5 had a nontrivial proper normal subgroup H, then |HI is equal to
2,3,4,5,6, 10, 12, 15, 20, or 30. By Exercise 43 in Chapter 5, A has
24 elements of order 5, 20 elements of order 3, and no elements of or-
der 15. Now, if |H| is equal to 3, 6, 12, or 15, then IA/H| is relatively
prime to 3, and by Exercise 59 in Chapter 9, H would have to contain
all 20 elements of order 3. If |H| is equal to 5, 10, or 20, then |A/H]|
is relatively prime to 5, and, therefore, H would have to contain the
24 elements of order 5. If |IH| = 30, then IA%/H| is relatively prime to
both 3 and 5, and so H would have to contain all the elements of orders
3 and 5. Finally, if I[H| = 2 or |H| = 4, then IA/H| = 30 or IA/H| = 15.
But we know from our results in Chapter 24 that any group of order 30
or 15 has an element of order 15. However, since A, contains no such
element, neither does A/H. This proves that A, is simple.

The simplicity of A; was known to Galois in 1830, although the first
formal proof was done by Jordan in 1870. A few years later, Felix
Klein showed that the group of rotations of a regular icosahedron is
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simple and, therefore, isomorphic to A (see Exercise 27). Since then it
has frequently been called the icosahedral group. Klein was the first to
prove that there is a simple group of order 168.

The problem of determining which integers in a certain interval are
possible orders for finite simple groups goes back to 1892, when
Holder went up to 200. His arguments for the integers 144 and 180
alone used up 10 pages. By 1975, this investigation had been pushed
to well beyond 1,000,000. See [3] for a detailed account of this en-
deavor. Of course, now that all finite simple groups have been classi-
fied, this problem is merely a historical curiosity.

The Fields Medal

Among the highest awards for mathematical achievement is the Fields
Medal. Two to four such awards are bestowed at the opening session of
the International Congress of Mathematicians, held once every four
years. Although the Fields Medal is considered by many mathemati-
cians to be the equivalent of the Nobel Prize, there are great differences
between these awards. Besides the huge disparity in publicity and mon-
etary value associated with the two honors, the Fields Medal is re-
stricted to those under 40 years of age.” This tradition stems from John
Charles Fields’s stipulation, in his will establishing the medal, that the
awards should be “an encouragement for further achievement.” This re-
striction precluded Andrew Wiles from winning the Fields Medal for his
proof of Fermat’s Last Theorem.

More details about the Fields Medal can be found at www
.wikipedia.com.

The Cole Prize

Approximately every five years, beginning in 1928, the American
Mathematical Society awards one or two Cole Prizes for research in
algebra and one or two Cole Prizes for research in algebraic number
theory. The prize was founded in honor of Frank Nelson Cole on the
occasion of his retirement as secretary of the American Mathematical
Society. In view of the fact that Cole was one of the first people inter-
ested in simple groups, it is interesting to note that no fewer than six

f“Take the sum of human achievement in action, in science, in art, in literature—
subtract the work of the men above forty, and while we should miss great treasures,
even priceless treasures, we would practically be where we are today. . . . The effec-
tive, moving, vitalizing work of the world is done between the ages of twenty-five and
forty.” Sir William Osler (1849-1919), Life of Sir William Osler, vol. 1, chap. 24 (The
Fixed Period).


www.wikipedia.com
www.wikipedia.com
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recipients of the prize—Dickson, Chevalley, Brauer, Feit, Thompson,
and Aschbacher—have made fundamental contributions to simple
group theory at some time in their careers.

If you don’t learn from your mistakes, there’s no sense making them.

A A N

[y
S

[
[

12.

13.

14.

15.
16.
17.

18.

19.

20.

HERBERT V. PROCHNOW

Prove that there is no simple group of order 210 =2-3 -5 - 7.
Prove that there is no simple group of order 280 = 2% -5 - 7.
Prove that there is no simple group of order 216 = 23 - 33.
Prove that there is no simple group of order 300 = 2% - 3 - 52,
Prove that there is no simple group of order 525 = 3 - 52 - 7.
Prove that there is no simple group of order 540 = 2% - 33 - 5,
Prove that there is no simple group of order 528 = 24 -3 - 11.
Prove that there is no simple group of order 315 = 3% -5 - 7.
Prove that there is no simple group of order 396 = 2% - 32 - 11.

Prove that there is no simple group of order n, where 201 =
n = 235.

. Without using the Generalized Cayley Theorem or its corollaries,

prove that there is no simple group of order 112.

Without using the “2 - odd” test, prove that there is no simple
group of order 210.

You may have noticed that all the “hard integers” are even. Choose
three odd integers between 200 and 1000. Show that none of these
is the order of a simple group unless it is prime.

Show that there is no simple group of order pgr, where p, ¢, and r
are primes (p, g, and r need not be distinct).

Show that A does not contain a subgroup of order 30, 20, or 15.
Show that S, does not contain a subgroup of order 40 or 30.

Prove that there is no simple group of order 120 = 23 - 3 - 5. (This
exercise is referred to in this chapter.)

Prove that if G is a finite group and H is a proper normal subgroup
of largest order, then G/H is simple.

Suppose that H is a subgroup of a finite group G and that |HI and
(IG:H| — 1)! are relatively prime. Prove that H is normal in G. What
does this tell you about a subgroup of index 2 in a finite group?
Suppose that p is the smallest prime that divides |GI. Show that
any subgroup of index p in G is normal in G.
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21.

22,

23.

24.
25.

26.

217.

28.
29,

30.

31.

Prove that the only nontrivial proper normal subgroup of S is As.
(This exercise is referred to in Chapter 32.)

Prove that a simple group of order 60 has a subgroup of order 6
and a subgroup of order 10.

Show that PSL(2, Z,) = SL(2, Z,)/Z(SL(2, Z,)), which has order
168, is a simple group. (This exercise is referred to in this chapter.)
Show that the permutations (12) and (12345) generate S..

Suppose that a subgroup H of S, contains a 5-cycle and a 2-cycle.
Show that H = S.. (This exercise is referred to in Chapter 32.)

Suppose that G is a finite simple group and contains subgroups H
and K such that |G:H| and |G:K| are prime. Show that |HI = |K].

Show that (up to isomorphism) A, is the only simple group of
order 60. (This exercise is referred to in this chapter.)

Prove that a simple group cannot have a subgroup of index 4.
Prove that there is no simple group of order p’q, where p and g are
odd primes and g > p.

If a simple group G has a subgroup K that is a normal subgroup of
two distinct maximal subgroups, prove that K = {e}.

Show that a finite group of even order that has a cyclic Sylow 2-
subgroup is not simple.

They have computers, and they may have other weapons of mass destruction.

JANET RENO

Software for the computer exercises in this chapter is available at the
website:

1.

http://www.d.umn.edu/~jgallian

This software uses a counter M to keep track of how many integers
Theorem 25.1 eliminates in any given interval. Run the program
for the following intervals: 1-100; 501-600; 5001-5100;
10,001-10,100. How does M seem to behave as the sizes of the inte-
gers grow?

This software uses a counter M to keep track of how many integers
the Index Theorem eliminates in any given interval of integers.
Run the program for the same intervals as in Exercise 1. How does
M seem to behave as the sizes of the integers grow?


http://www.d.umn.edu/~jgallian
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Michael Aschbacher

Fresh out of graduate school, he
[Aschbacher] had just entered the field,
and from that moment he became the
driving force behind my program. In rapid
succession he proved one astonishing
theorem after another. Although there
were many other major contributors to
this final assault, Aschbacher alone was
responsible for shrinking my projected
30-year timetable to a mere 10 years.

DANIEL GORENSTEIN, Scientific American

MICHAEL ASCHBACHER was born on April 8,
1944, in Little Rock, Arkansas. Shortly after
his birth, his family moved to Illinois, where
his father was a professor of accounting
and his mother was a high school English
teacher. When he was nine years old, his fam-
ily moved to East Lansing, Michigan; six
years later, they moved to Los Angeles.

After high school, Aschbacher enrolled at
the California Institute of Technology. In ad-
dition to his schoolwork, he passed the first
four actuary exams and was employed for a
few years as an actuary, full-time in the sum-
mers and part-time during the academic year.
Two of the Caltech mathematicians who in-
fluenced him were Marshall Hall and Donald
Knuth. In his senior year, Aschbacher took
abstract algebra but showed little interest
in the course. Accordingly, he received a
grade of C.

In 1966, Aschbacher went to the Univer-
sity of Wisconsin for a Ph.D. degree. He
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completed his dissertation in 1969, and, after
spending one year as an assistant professor
at the University of Illinois, he returned to
Caltech and quickly moved up to the rank of
professor.

Aschbacher’s dissertation work in the
area of combinatorial geometries had led
him to consider certain group-theoretic
questions. Gradually, he turned his attention
more and more to purely group-theoretic
problems, particularly those bearing on the
classification of finite simple groups. The
1980 Cole Prize Selection Committee said
of one of his papers, “[It] lifted the subject
to a new plateau and brought the classifica-
tion within reach.” Aschbacher has been
elected to the National Academy of Sci-
ences, the American Academy of Sciences,
and the vice presidency of the American
Mathematical Society.



Daniel Gorenstein

Gorenstein was one of the most influential
mathematicians of the last few decades.

MICHAEL ASCHBACHER,
Notices of the American Mathematical
Society 39 (1992): 1190

DANIEL GORENSTEIN was born in Boston
on January 1, 1923. Upon graduating from
Harvard in 1943 during World War II,
Gorenstein was offered an instructorship at
Harvard to teach mathematics to army person-
nel. After the war ended, he began graduate
work at Harvard. He received his Ph.D. de-
gree in 1951, working in algebraic geometry
under Oscar Zariski. It was in his dissertation
that he introduced the class of rings that is
now named after him. In 1951, Gorenstein
took a position at Clark University in
Worcester, Massachusetts, where he stayed
until moving to Northeastern University in
1964. From 1969 until his death on August
26, 1992, he was at Rutgers University.

In 1957, Gorenstein switched from al-
gebraic geometry to finite groups, learning the
basic material from I. N. Herstein while col-
laborating with him over the next few years. A
milestone in Gorenstein’s development as a
group theorist came during 1960-1961, when
he was invited to participate in a “Group
Theory Year” at the University of Chicago.

It was there that Gorenstein, assimilating the
revolutionary techniques then being developed
by John Thompson, began his fundamental
work that contributed to the classification of
finite simple groups.

Through his pioneering research papers,
his dynamic lectures, his numerous personal
contacts, and his influential book on finite
groups, Gorenstein became the leader in the
25-year effort, by hundreds of mathemati-
cians, that led to the classification of the fi-
nite simple groups.

Among the honors received by Gorenstein
are the Steele Prize from the American
Mathematical Society and election to mem-
bership in the National Academy of Sciences
and the American Academy of Arts and
Sciences.

To find more information about Goren-
stein, visit:

http://www-groups.dcs.st-and
.ac.uk/~history/
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John Thompson

There seemed to be no limit to his power.
DANIEL GORENSTEIN

JouN G. THOMPSON was born on October 13,
1932, in Ottawa, Kansas. In 1951, he entered
Yale University as a divinity student but
switched to mathematics in his sophomore
year. In 1955, he began graduate school at the
University of Chicago and obtained his Ph.D.
degree four years later. After one year on the
faculty at Harvard, Thompson returned to
Chicago. He remained there until 1968, when
he moved to Cambridge University in
England. In 1993, Thompson accepted an ap-
pointment at the University of Florida.
Thompson’s brilliance was evident early.
In his dissertation, he verified a 50-year-old
conjecture about finite groups possessing a
certain kind of automorphism. (An article
about his achievement appeared in The New
York Times.) The novel methods Thompson
used in his dissertation foreshadowed the
revolutionary ideas he would later introduce
in the Feit-Thompson paper and the classifi-
cation of minimal simple groups (simple
groups that contain no proper non-Abelian
simple subgroups). The assimilation and ex-
tension of Thompson’s methods by others
throughout the 1960s and 1970s ultimately
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led to the classification of finite simple
groups.

In the late 1970s, Thompson made sig-
nificant contributions to coding theory, the
theory of finite projective planes, and the
theory of modular functions. His recent
work on Galois groups is considered the
most important in the field in the last half of
the 20th century.

Among Thompson’s many honors are the
Cole Prize in algebra and the Fields Medal.
He was elected to the National Academy of
Sciences in 1967, the Royal Society of
London in 1979, and the American Academy
of Arts and Sciences in 1998. In 2000,
President Clinton presented Thompson the
National Medal of Science. In 2008 he was a
co-winner of the $1,000,000 Abel Prize
given by the Norwegian Academy of Science
and Letters.

To find more information about Thompson,
visit:

http://www-groups.dcs.st-and
.ac.uk/~history/
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Generators

and Relations

One cannot escape the feeling that these mathematical formulae have an
independent existence and an intelligence of their own, that they are
wiser than we are, wiser even than their discoverers, that we get more
out of them than we originally put into them.

HENRICH HERTZ

Motivation

In this chapter, we present a convenient way to define a group with cer-
tain prescribed properties. Simply put, we begin with a set of elements
that we want to generate the group, and a set of equations (called rela-
tions) that specify the conditions that these generators are to satisfy.
Among all such possible groups, we will select one that is as large as
possible. This will uniquely determine the group up to isomorphism.

To provide motivation for the theory involved, we begin with a concrete
example. Consider D,, the group of symmetries of a square. Recall that
R = Ry, and H, a reflection across a horizontal axis, generate the group.
Observe that R and H are related in the following ways:

R*=H? = (RH)* =R, (the identity). (D

Other relations between R and H, such as HR = R3H and RHR = H,
also exist, but they can be derived from those given in Equation (1). For
example, (RH)* = R yields HR = R"'H"!, and R* = H? = R, yields
R '=R}and H ! = H. So, HR = R*H. In fact, every relation between
R and H can be derived from those given in Equation (1).

Thus, D, is a group that is generated by a pair of elements a and b
subject to the relations a* = b> = (ab)* = e and such that all other rela-
tions between a and b can be derived from these relations. This last
stipulation is necessary because the subgroup {R, R ¢, H, V} of D, is
generated by the two elements a = R4, and b = H that satisty the rela-
tions a* = b> = (ab)*> = e. However, the “extra” relation a> = e satisfied by
this subgroup cannot be derived from the original ones (since R, *# R). It
is natural to ask whether this description of D, applies to some other group
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as well. The answer is no. Any other group generated by two elements «
and S satisfying only the relations o* = 8% = (a8)* = e, and those that can
be derived from these relations, is isomorphic to D,.

Similarly, one can show that the group Z, @ Z, is generated by two el-
ements a and b such that a* = b?> = ¢ and ab = ba, and any other rela-
tion between a and b can be derived from these relations. The purpose of
this chapter is to show that this procedure can be reversed; that is, we
can begin with any set of generators and relations among the generators
and construct a group that is uniquely described by these generators and
relations, subject to the stipulation that all other relations among the
generators can be derived from the original ones.

Definitions and Notation

We begin with some definitions and notation. For any set S = {a, b, c, . . .}
of distinct symbols, we create anew setS~! = {a~!,b7!,¢7!,.. .} byre-
placing each x in S by x~!. Define the set W(S) to be the collection of all
formal finite strings of the form x x, - - - x,, where eachx, € S U §7".
The elements of W(S) are called words from S. We also permit the string
with no elements to be in W(S). This word is called the empty word and
is denoted by e.

We may define a binary operation on the set W(S) by juxtaposition;
that is, if x,x, - - - x, and y,y, - - - y, belong to W(S), then so does x,x,

© Xy, 'y, Observe that this operation is associative and the
empty word is the identity. Also, notice that a word such as aa™! is not
the identity, because we are treating the elements of W(S) as formal
symbols with no implied meaning.

At this stage we have everything we need to make a group out of
W(S) except inverses. Here a difficulty arises, since it seems reasonable
that the inverse of the word ab, say, should be b~ 'a™!. But abb™'a™ ! is
not the empty word! You may recall that we faced a similar obstacle
long ago when we carried out the construction of the field of quotients
of an integral domain. There we had formal symbols of the form a/b
and we wanted the inverse of a/b to be b/a. But their product, ab/(ba),
was a formal symbol that was not the same as the formal symbol 1/1,
the identity. So, we proceed here as we did there—by way of equiva-
lence classes.

Definition Equivalence Classes of Words

For any pair of elements u and v of W(S), we say that u is related to v if v
can be obtained from u by a finite sequence of insertions or deletions of
words of the form xx~! or x 'x, where x € S.
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We leave it as an exercise to show that this relation is an equivalence
relation on W(S). (See Exercise 1.)

B EXAMPLE 1 Let S = {a, b, c}. Then acc™'b is equivalent to ab;
aab~'bbaccc™! is equivalent to aabac; the word a 'aabb™'a™! is
equivalent to the empty word; and the word ca™'b is equivalent to
cc”lcaa'a"'bbca'ac'b~!. Note, however, that cac™'b is not equiv-
alent to ab. |

Free Group

I Theorem 26.1 Equivalence Classes Form a Group

Let S be a set of distinct symbols. For any word u in W(S), let u
denote the set of all words in W(S) equivalent to u (that is, u is the
equivalence class containing u). Then the set of all equivalence
classes of elements of W(S) is a group under the operation
u-v=uv.

PROOF This proof is left to the reader. |

The group defined in Theorem 26.1 is called a free group on S.
Theorem 26.2 shows why free groups are important.

I Theorem 26.2 The Universal Mapping Property

Every group is a homomorphic image of a free group.

PROOF Let G be a group and let S be a set of generators for G. (Such
a set exists, because we may take S to be G itself.) Now let F be the free
group on S. Unfortunately, since our notation for any word in W(S) also
denotes an element of G, we have created a notational problem for our-
selves. So, to distinguish between these two cases, we will denote the

word x,x, - - - x in W(S) by (x,x, - - - x,) and the product x,x, - - - x, in
Gby (xx, - - - x,) ;. As before, x\x,- - - x, denotes the equivalence class
in F containing the word (xx, - - - x ). in W(S). Notice that x,x,- - - x,
and (x,x, - - - x ) are entirely different elements, since the operations

on F and G are different.
Now consider the mapping from F into G given by

(l’)(Xle‘ o xn) = (xl-xz T xn)G'
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[All we are doing is taking a product in F and viewing it as a product in
G. For example, if G is the cyclic group of order 4 generated by a, then

¢$(aaaaa) = (aaaaa); = a.]

Clearly, ¢ is well defined, for inserting or deleting expressions of the
form xx~ ! or x~x in elements of W(S) corresponds to inserting or delet-
ing the identity in G. To check that ¢ is operation-preserving, observe
that

DXy x,) V2 V) = Py XYY Vi)
= XYYy Y,
= (0 X )Yy Y,)e
Finally, ¢ is onto G because S generates G. |

The following corollary is an immediate consequence of Theorem 26.2
and the First Isomorphism Theorem for Groups.

I Corollary Universal Factor Group Property

Every group is isomorphic to a factor group of a free group.

Generators and Relations

We have now laid the foundation for defining a group by way of gener-
ators and relations. Before giving the definition, we will illustrate the
basic idea with an example.

B EXAMPLE 2 Let F be the free group on the set {a, b} and let N be
the smallest normal subgroup of F containing the set {a*, b?, (ab)*}. We
will show that F/N is isomorphic to D,. We begin by observing that the
mapping ¢ from F onto D,, which takes a to Ry, and b to H (horizontal
reflection), defines a homomorphism whose kernel contains N. Thus,
F/Ker ¢ is isomorphic to D,. On the other hand, we claim that the set

K = {N, aN, a*N, a®N, bN, abN, a’bN, a’bN}

of left cosets of N is F/N itself. To see this, notice that every member
of F/N can be generated by starting with N and successively multiply-
ing on the left by various combinations of a’s and b’s. So, it suffices
to show that K is closed under multiplication on the left by a and b. It
is trivial that K is closed under left multiplication by a. For b, we will
do only one of the eight cases. The others can be done in a similar
fashion. Consider b(aN). Since b?, abab, a* € N and Nb = bN, we
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have baN = baNb* = babNb = a~'(abab)Nb = a”'Nb = a”'a*Nb =
a’Nb = a’bN. Upon completion of the other cases (Exercise 3), we
know that F/N has at most eight elements. At the same time, we know
that F/Ker ¢ has exactly eight elements. Since F/Ker ¢ is a factor
group of F/N [indeed, F/Ker ¢ = (F/N)/(Ker ¢/N)], it follows that F/N
also has eight elements and F/N = F/Ker ¢ =~ D,,. |

Definition Generators and Relations

Let G be a group generated by some subset A = {a,, a,, ..., a } and let
F be the free group on A. Let W = {w, w,, ..., w} be a subset of F and
let N be the smallest normal subgroup of F containing W. We say that G
is given by the generators a, a,, . . .,a and the relations w, = w, = - - - =
w, = e if there is an isomorphism from F/N onto G that carries a;N to a,.

The notation for this situation is

G=A(a,ay....,alw =w,="-=w=e).

172 2

As a matter of convenience, we have restricted the number of gen-
erators and relations in our definition to be finite. This restriction is
not necessary, however. Also, it is often more convenient to write a
relation in implicit form. For example, the relation a'b%ab = e is
often written as ab = b*a. In practice, one does not bother writing
down the normal subgroup N that contains the relations. Instead, one
just manipulates the generators and treats anything in N as the iden-
tity, as our notation suggests. Rather than saying that G is given by

<a1,a ..,an|W1:W :...=Wt:e>’

2> 2

many authors prefer to say that G has the presentation
a,a, ...,alw =w,=--+=w =e).

Notice that a free group is “free” of relations; that is, the equivalence
class containing the empty word is the only relation. We mention in
passing the fact that a subgroup of a free group is also a free group.
Free groups are of fundamental importance in a branch of algebra
known as combinatorial group theory.

B EXAMPLE 3 The discussion in Example 2 can now be summed up
by writing

D, =(a,bla*=b*>= (ab)* = e). |

I EXAMPLE 4 The group of integers is the free group on one letter; that
is, Z = (al ). (This is the only nontrivial Abelian group that is free.) |
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The next theorem formalizes the argument used in Example 2 to
prove that the group defined there has eight elements.

I Theorem 26.3 (Dyck, 1882)

Let
G={a,ay....,alw=w,=--=w=e¢e)
and let
G={a,a,....,alw =w,=--=w=
Wt+1_'”_wt+k_e>‘

Then G is a homomorphic image of G.

PROOF See Exercise 5. |

In words, Theorem 26.3 says that if you start with generators and rela-
tions for a group G and create a group G by imposing additional
relations, then G is a homomorphic image of G.

I Corollary Largest Group Satisfying Defining Relations

If K is a group satisfying the defining relations of a finite group G
and |K| = |G|, then K is isomorphic to G.

PROOF See Exercise 5. |

I EXAMPLE 5 QUATERNIONS Consider the group G = {(a, b | a*> =
b* = (ab)*). What does G look like? Formally, of course, G is isomor-
phic to F/N, where F is free on {a, b} and N is the smallest normal sub-
group of F containing b~ 2a? and (ab) %a*. Now, let H = (b) and S =
{H, aH}. Then, just as in Example 2, it follows that S is closed under
multiplication by a and b from the left. So, as in Example 2, we have
G = H U aH. Thus, we can determine the elements of G once we know
exactly how many elements there are in H. (Here again, the three rela-
tions come in.) To do this, first observe that b*> = (ab)> = abab implies
b = aba. Then a*> = b* = (aba)(aba) = aba*ba = ab*a and therefore
b* = e. Hence, H has at most four elements, and therefore G has at most
eight—namely, e, b, b%, b*, a, ab, ab?, and ab’. It is conceivable, how-
ever, that not all of these eight elements are distinct. For example, Z, D Z,
satisfies the defining relations and has only four elements. Perhaps it is
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the largest group satisfying the relations. How can we show that the eight
elements listed above are distinct? Well, consider the group G generated

by the matrices
01 0 i
A= and = )
[—1 0} b L- 0]

where i = V/~1. Direct calculations show that in? the elements e, B, B?,
B3, A, AB, AB2, and AB? are distinct and that G satisfies the relations
A? = B> = (AB)>. So, it follows from the corollary to Dyck’s Theorem
that G is isomorphic to G and therefore G has order 8. |

The next example illustrates why, in Examples 2 and 5, it is neces-
sary to show that the eight elements listed for the group are distinct.

§ EXAMPLE 6 Let
G={a,blad=b"=e,a'ba=>b"").
Once again, we let H = (b) and observe that G = H U aH U a’H. Thus,
G=1{ab10=i=20=j=8},

and therefore G has at most 27 elements. But this time we will not be
able to find some concrete group of order 27 satisfying the same rela-
tions that G does, for notice that b~! = a~'ba implies

b=(a'ba)y ' =a b a.
Hence,

b =ebe = a3ba’ = a *(a 'ba)a* = a *b" >
=aa'"b 'aya=a 'ba=b"".

So, the original three relations imply the additional relation b> = e. But
b* = e = b° further implies b = e. It follows, then, that G has at most
three distinct elements—namely, e, a, and a”. But Z, satisfies the defin-
ing relations witha = 1 and b = 0. So, |Gl = 3. |

We hope Example 6 convinces you of the fact that, once a list of the
elements of the group given by a set of generators and relations has
been obtained, one must further verify that this list has no duplications.
Typically, this is accomplished by exhibiting a specific group that satis-
fies the given set of generators and relations and that has the same size
as the list. Obviously, experience plays a role here.

Here is a fun example adapted from [1].
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I EXAMPLE7 Let G be the group with the 26 letters of the alphabet as
generators. For relations we take strings A = B, where A and B are
words in some fixed reference, say [2], and have the same pronuncia-
tion but different meanings (such words are called homophones). For
example, buy = by = bye, hour = our, lead = led, whole = hole. From
these strings and cancellation, we obtainu =e=h=a=w =0 @ is
the identity string). With these examples in mind, we ask, What is the
group given by these generators and relations? Surprisingly, the answer
is the infinite cyclic group generated by v. To verify this, one must show
that every letter except v is equivalent to® and that there are no two ho-
mophones that contain a different number of v’s. The former can easily
be done with common words. For example, from inn = in, plumb =
plum, and knot = not, we see that n = b = k = (. From too = to
we have o = (). That there are no two homophones in [2] that have a
different number of v’s can be verified by simply checking all cases. In
contrast, the reference Handbook of Homophones by W. C. Town-
send (available at the website http://members.peak.org/~jeremy/
dictionaryclassic/chapters/homophones.php) lists felt/veldt as homo-
phones. Of course, including these makes the group trivial. |

Classification of Groups
of Order up to 15

The next theorem illustrates the utility of the ideas presented in this
chapter.

I Theorem 26.4 Classification of Groups of Order 8 (Cayley, 1859)

Up to isomorphism, there are only five groups of order 8: Z,, Z, © Z,,
Z,9Z,®Z, D, and the quaternions.

PROOF The Fundamental Theorem of Finite Abelian Groups takes
care of the Abelian cases. Now, let G be a non-Abelian group of order
8. Also, let G, = {a, b | a* = b* = (ab)* = e)and let G, = (a, b | a* =
b* = (ab)*). We know from the preceding examples that G, is isomor-
phic to D, and G, is isomorphic to the quaternions. Thus, it suffices to
show that G must satisfy the defining relations for G, or G,. It follows
from Exercise 35 in Chapter 2 and Lagrange’s Theorem that G has an
element of order 4; call it a. Then, if b is any element of G not in {a), we
know that

G = {a) U {(a)b = {e, a, a* a’, b, ab, a’b, a*b}.


http://members.peak.org/~jeremy/dictionaryclassic/chapters/homophones.php
http://members.peak.org/~jeremy/dictionaryclassic/chapters/homophones.php
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Consider the element b? of G. Which of the eight elements of G can it
be? Not b, ab, a*b, or a’b, by cancellation. Not a, for b> commutes with
b and a does not. Not @3, for the same reason. Thus, b* = ¢ or b* = a2
Suppose b> = e. Since (a) is a normal subgroup of G, we know that
bab~!' € {a). From this and the fact that |bab~'l = lal, we then conclude
that bab™' = a or bab™! = a~!. The first relation would mean that G is
Abelian, so we know that bab™! = a~!. But then, since b* = e, we have
(ab)?* = e, and therefore G satisfies the defining relations for G,

Finally, if > = a? holds instead of b*> = e, we can use bab™! = a™!
to conclude that (ab)> = a(bab™")b* = aa~'b* = b?, and therefore G sat-
isfies the defining relations for G,. |

The classification of the groups of order 8, together with our results
on groups of order p?, 2p, and pq from Chapter 24, allow us to classify
the groups of order up to 15, with the exception of those of order 12. We
already know four groups of order 12—namely, Z ,, Z. © Z,, D, and A,.
An argument along the lines of Theorem 26.4 can be given to show that
there is only one more group of order 12. This group, called the dicyclic
group of order 12 and denoted by Q,, has presentation {a, b | a® = e,
a® = b% b~ 'ab = a~'). Table 26.1 lists the groups of order at most 15.
We use Q, to denote the quaternions (see Example 5 in this chapter).

Table 26.1 Classification of Groups of Order Up to 15

Order Abelian Groups Non-Abelian Groups
1 Z,
2 z,
3 Z,
4 2,2,9Z,
5 Z,
6 Z, D,
7 Z,
8 2.2,92,2,D2,DZ, D, 0,
9 2, 2,9 Z,
10 Z, D,
11 Z,
12 2, 2,9%, Dy, A, Q,
13 Z,
14 Z, D,
15 VA

[
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Characterization of Dihedral Groups

As another nice application of generators and relations, we will now
give a characterization of the dihedral groups that has been known for
more than 100 years. For n = 3, we have used D, to denote the group of
symmetries of a regular n-gon. Imitating Example 2, one can show that
D, ={a, b|a" = b* = (ab)* = e) (see Exercise 9). By analogy, these
generators and relations serve to define D, and D, also. (These are also
called dihedral groups.) Finally, we define the infinite dihedral group
D_as{a,b|a*=b*>= e). The elements of D_ can be listed as e, a, b, ab,
ba, (ab)a, (ba)b, (ab)?, (ba)?, (ab)*a, (ba)*b, (ab)’, (ba)’, . . . .

I Theorem 26.5 Characterization of Dihedral Groups

Any group generated by a pair of elements of order 2 is dihedral.

PROOF Let G be a group generated by a pair of distinct elements of
order 2, say, a and b. We consider the order of ab. If labl = %, then G is
infinite and satisfies the relations of D_. We will show that G is isomor-
phic to D_. By Dyck’s Theorem, G is isomorphic to some factor group
of D_, say, D, /H. Now, suppose i € H and i # e. Since every element
of D_, has one of the forms (ab)/, (ba)', (ab)'a, or (ba)'b, by symmetry,
we may assume that 4 = (ab)' or h = (ab)'a. If h = (ab), we will show
that D, /H satisfies the relations for D, given in Exercise 9. Since (ab)'is
in H, we have

H = (ab)H = (abH)',
so that (abH)™! = (abH)'"!. But
(ab)"'H =b"'a 'H = baH,
and it follows that
aHabHaH = a*HbHaH = eHbaH = baH = (abH) '
Thus,
D_/H = (aH, bH) = {(aH, abH)

(see Exercise 7), and D_/H satisfies the defining relations for D, (use
Exercise 9 with x = aH and y = abH). In particular, G is finite—an
impossibility.

If h = (ab)'a, then

H = (ab)aH = (ab)'HaH,
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and therefore
(abH)' = (ab)H = (aH)™' = a 'H = aH.
It follows that
(aH, bH) = {aH, abH) C {abH).
However,
(abH)* = (aH)?* = a*H = H,

so that D_/H is again finite. This contradiction forces H = {e} and G to
be isomorphic to D_.

Finally, suppose that labl = n. Since G = {(a, b) = (a, ab), we can
show that G is isomorphic to D, by proving that b(ab)b = (ab)~", which
is the same as ba = (ab)~! (see Exercise 9). But (ab)™' = b~ la™ ! = ba,
since a and b have order 2. |

Realizing the Dihedral Groups
with Mirrors

A geometric realization of D_ can be obtained by placing two mirrors
facing each other in a parallel position, as shown in Figure 26.1. If we
let a and b denote reflections in mirrors A and B, respectively, then ab,
viewed as the composition of a and b, represents a translation through
twice the distance between the two mirrors to the left, and ba is the
translation through the same distance to the right.

A B
: 7 \ 1 1

1 1
aba | ab al e biba  bab | baba

JF A9F \IF 4F

Figure 26.1 The group D_—reflections in parallel mirrors

The finite dihedral groups can also be realized with a pair of mirrors.
For example, if we place a pair of mirrors facing each other at a 45°
angle, we obtain the group D,. Notice that in Figure 26.2, the effect of
reflecting an object in mirror A, then mirror B, is a rotation of twice the
angle between the two mirrors (that is, 90°).
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ba b R

bab LT-1 '-TJ

H F
7 <E
baba = abab n—( 1 a

aba ab

Figure 26.2 The group D,—reflections in mirrors at a 45° angle

In Figure 26.3, we see a portion of the pattern produced by reflections
in a pair of mirrors set at a 1° angle. The corresponding group is D . In
general, reflections in a pair of mirrors set at the angle 180°/n correspond
to the group D,. As n becomes larger and larger, the mirrors approach a
parallel position. In the limiting case, we have the group D, .

Figure 26.3 The group D,g4,—reflections in mirrors at a 1° angle

We conclude this chapter by commenting on the advantages and dis-
advantages of using generators and relations to define groups. The prin-
cipal advantage is that in many situations—particularly in knot theory,
algebraic topology, and geometry—groups defined by way of genera-
tors and relations arise in a natural way. Within group theory itself; it is
often convenient to construct examples and counterexamples with gen-
erators and relations. Among the disadvantages of defining a group by
generators and relations is the fact that it is often difficult to decide
whether or not the group is finite, or even whether or not a particular
element is the identity. Furthermore, the same group can be defined with
entirely different sets of generators and relations, and, given two groups
defined by generators and relations, it is often extremely difficult to
decide whether or not these two groups are isomorphic. Nowadays,
these questions are frequently tackled with the aid of a computer.
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It don’t come easy.

10.

11.
12.

13.

14.

Title of a Song by RINGO STARR, May 1971

. Let S be a set of distinct symbols. Show that the relation defined

on W(S) in this chapter is an equivalence relation.

. Let n be an even integer. Prove that D /Z(D, ) is isomorphic to D ,.
. Verify that the set K in Example 2 is closed under multiplication

on the left by b.

. Show that {a, b | a® = b> = e, ba = a’b) is isomorphic to Z,.
. Prove Theorem 26.3 and its corollary.
. Let G be the group { =1, *i, *£j, £k} with multiplication defined

as in Exercise 52 in Chapter 9. Show that G is isomorphic to {(a, b |
a’> = b> = (ab)?). (Hence, the name “quaternions.”)

. In any group, show that {a, b) = (a, ab). (This exercise is referred

to in the proof of Theorem 26.5.)

. Leta = (12)(34) and B = (24). Show that the group generated by

a and B is isomorphic to D,.

. Prove that G = (x, y | x> = y" = ¢, xyx = y~!) is isomorphic to D .

(This exercise is referred to in the proof of Theorem 26.5.)

What is the minimum number of generators needed for Z, ® Z, ©

Z,? Find a set of generators and relations for this group.

Suppose that x> = y> = ¢ and yz = zxy. Show that xy = yx.

Let G = {(a, b | a*> = b* = e, ab = b’a).

a. Express a*b’abab’® in the form bia’ where 0 = i < 1 and
0=j=3.

b. Express b’abab’a in the form bia/ where0 =i < 1and 0 =j = 3.

Let G ={a, b | a®> = b*> = (ab)?).

a. Express b’abab? in the form bia/.

b. Express babab’a in the form bia’,

Let G be the group defined by the following table. Show that G is
isomorphic to D,
1 2 3 4 5 6 <o 2n
1 1 2 3 4 5 6 - 2n
2 2 1 2n 2n—1 2n—2 2n-3 3
3 3 4 5 6 7 8 2
4 4 3 2 1 2n 2n — 1 5
5 5 6 7 8 9 10 4
6 6 5 4 3 2 1 7
2n 2n 2n—1 2n—-2 2n—-3 2n—4 2n—-5 --: 1
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15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.
26.

27.

28.

29.

30.

Let G = (x,y | x3 = y? = e, yxyx® = e). Show that |G| = 16. As-
suming that |G| = 16, find the center of G and the order of xy.
Confirm the classification given in Table 26.1 of all groups of
orders 1 to 11.

Let G be defined by some set of generators and relations. Show
that every factor group of G satisfies the relations defining G.

Let G = (s, t | sts = tst). Show that the permutations (23) and (13)
satisfy the defining relations of G. Explain why this proves that G

is non-Abelian.

InD, = (x,y x> =y'2 = ¢, xyx =y '), prove that the subgroup

H = (x, y*) (which is isomorphic to D,) is not a normal subgroup.
Let G = (x,y | x*" = e, x" = y?, y " lxy = x~!). Show that Z(G) =
{e, x"}. Assuming that |G| = 4n, show that G/Z(G) is isomorphic
to D,. (The group G is called the dicyclic group of order 4n.)

Let G ={a, b | a® = b’ = e, b-'ab = a*). How many elements
does G have? To what familiar group is G isomorphic?

Let G = (x,y | x* = y* = ¢, xyxy~! = ¢). Show that |G| = 16. As-
suming that |G| = 16, find the center of G and show that G/{y?) is
isomorphic to D,.

Determine the orders of the elements of D,.
1 ab

Let G=4|0 1 ¢ ||a,b,c € Z,,. Prove that G is isomorphic
001

toD,.

LetG={a, b,c,d | ab = c¢,bc = d, cd = a, da = b). Determine |Gl.

Let G = {a, bla* = e, b*> = e,aba = bab). To what familiar
group is G isomorphic?
Let G = {a, bla®> = e, b> = e,aba b = e). To what familiar
group is G isomorphic?
Given an example of a non-Abelian group that has exactly three
elements of finite order.

Referring to Example 7 in this chapter, show as many letters as you
can that are equivalent to (J.

Suppose that a group of order 8§ has exactly five elements of order 2.
Identify the group.
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Lee Neuwirth, “The Theory of Knots,” Scientific American 240 (1979):
110-124.

This article shows how a group can be associated with a knotted string.
Mathematically, a knot is just a one-dimensional curve situated in
three-dimensional space. The theory of knots—a branch of topology—
seeks to classify and analyze the different ways of embedding such a
curve. Around the beginning of the 20th century, Henri Poincaré ob-
served that important geometric characteristics of knots could be de-
scribed in terms of group generators and relations—the so-called knot
group. Among other knots, Neuwirth describes the construction of the
knot group for the trefoil knot pictured. One set of generators and rela-
tions for this group is {x, y, z | xy = yz, zx = yz).

The trefoil knot

David Peifer, “An Introduction to Combinatorial Group Theory and the
Word Problem,” Mathematics Magazine 70 (1997): 3-10.
This article discusses some fundamental ideas and problems regarding
groups given by presentations.



Marshall Hall, Jr.

Professor Hall was a mathematician in the
broadest sense of the word but with a
predilection for group theory, geometry
and combinatorics.

HANS ZASSENHAUS, Notices of
the American Mathematical Society

MARSHALL HALL, JR., was born on September
17, 1910, in St. Louis, Missouri. He demon-
strated interest in mathematics at the age of
11 when he constructed a seven-place table of
logarithms for the positive integers up to
1000. He completed a B.A. degree in 1932 at
Yale. After spending a year at Cambridge
University, where he worked with Philip
Hall, Harold Davenport, and G. H. Hardy, he
returned to Yale for his Ph.D. degree. At the
outbreak of World War I, he joined Naval
Intelligence and had significant success in de-
ciphering both the Japanese codes and the
German Enigma messages. These successes
helped to turn the tide of the war. After the
war, Hall had faculty appointments at the
Ohio State University, Caltech, and Emory
University. He died on July 4, 1990.

Hall’s highly regarded books on group
theory and combinatorial theory are classics.
His mathematical legacy includes more than

452

120 research papers on group theory, coding
theory, and design theory. His 1943 paper on
projective planes ranks among the most cited
papers in mathematics. Several fundamental
concepts as well as a sporadic simple group
are identified with Hall’s name. One of Hall’s
most celebrated results is his solution to the
“Burnside Problem” for exponent 6—that is,
a finitely generated group in which the order
of every element divides 6 must be finite.
Hall influenced both John Thompson and
Michael Aschbacher, two of finite group the-
ory’s greatest contributors. It was Hall who
suggested Thompson’s Ph.D. dissertation
problem. Hall’s Ph.D. students at Caltech in-
cluded Donald Knuth and Robert McEliece.

To find more information about Hall,
visit:

http://www-groups.dcs.st-and
.ac.uk/~history/



Symmetry Groups

I’'m not good at math, but | do know that the universe is formed with
mathematical principles whether | understand them or not, and I am
going to let that guide me.

BOB DYLAN, Chronicles, Volume One

Isometries

In the early chapters of this book, we briefly discussed symmetry
groups. In this chapter and the next, we examine this fundamentally
important concept in some detail. It is convenient to begin such a dis-
cussion with the definition of an isometry (from the Greek isometros,
meaning “equal measure”) in R”.

Definition Isometry
An isometry of n-dimensional space R" is a function from R"” onto R"
that preserves distance.

In other words, a function 7 from R” onto R” is an isometry if, for
every pair of points p and ¢ in R”, the distance from 7(p) to T(g) is the
same as the distance from p to g. With this definition, we may now
make precise the definition of the symmetry group of an n-dimen-
sional figure.

Definition Symmetry Group of a Figure in R"

Let F be a set of points in R". The symmetry group of F in R" is the set
of all isometries of R" that carry F onto itself. The group operation is
function composition.

It is important to realize that the symmetry group of an object de-
pends not only on the object, but also on the space in which we view it.
For example, the symmetry group of a line segment in R! has order 2,
the symmetry group of a line segment considered as a set of points in
R? has order 4, and the symmetry group of a line segment viewed as a
set of points in R3 has infinite order (see Exercise 9).

453
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Although we have formulated our definitions for all finite dimen-
sions, our chief interest will be the two-dimensional case. It has been
known since 1831 that every isometry of R? is one of four types:
rotation, reflection, translation, and glide-reflection (see [1, p. 46]).
Rotation about a point in a plane needs no explanation. A reflection
across a line L is that transformation that leaves every point of L fixed
and takes every point Q, not on L, to the point Q' so that L is the per-
pendicular bisector of the line segment from Q to Q" (see Figure 27.1).
The line L is called the axis of reflection. In an xy-coordinate plane, the
transformation (x, y) — (x, —y) is a reflection across the x-axis,
whereas (x, y) — (y, x) is a reflection across the line y = x. Some au-
thors call an axis of reflective symmetry L a mirror because L acts like
a two-sided mirror; that is, the image of a point Q in a mirror placed on
the line L is, in fact, the image of Q under the reflection across the line
L. Reflections are called opposite isometries because they reverse ori-
entation. For example, the reflected image of a clockwise spiral is a
counterclockwise spiral. Similarly, the reflected image of a right hand
is a left hand. (See Figure 27.1.)

I
I
I
1
I
/
I
I
1
I
I

. i !

. Axis of reflection Axis of reflection

Figure 27.1 Reflected images

A translation is simply a function that carries all points the same dis-
tance in the same direction. For example, if p and ¢ are points in a plane
and T is a translation, then the two directed line segments joining p to
T(p) and g to T(g) have the same length and direction. A glide-reflection
is the product of a translation and a reflection across the line containing
the translation line segment. This line is called the glide-axis. In
Figure 27.2, the arrow gives the direction and length of the translation,
and is contained in the axis of reflection. A glide-reflection is also an op-
posite isometry. Successive footprints in wet sand are related by a
glide-reflection.

Pe o T(p)

Figure 27.2 Glide-reflection
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Classification of Finite Plane
Symmetry Groups

Our first goal in this chapter is to classify all finite plane symmetry
groups. As we have seen in earlier chapters, the dihedral group D, is
the plane symmetry group of a regular n-gon. (For convenience, call
D, the plane symmetry group of a nonsquare rectangle and D, the
plane symmetry group of the letter “V.” In particular, D, =~ Z, ®© Z, and
D, = Z,.) The cyclic groups Z are easily seen to be plane symmetry
groups also. Figure 27.3 is an illustration of an organism whose plane
symmetry group consists of four rotations and is isomorphic to Z,. The
surprising fact is that the cyclic groups and dihedral groups are
the only finite plane symmetry groups. The famous mathematician
Hermann Weyl attributes the following theorem to Leonardo da Vinci
(1452-1519).

Figure 27.3 Aurelia Insulinda, an organism
whose plane symmetry group is Z,

I Theorem 27.1 Finite Symmetry Groups in the Plane

The only finite plane symmetry groups are Z, and D,.

PROOF Let G be a finite plane symmetry group of some figure. We
first observe that G cannot contain a translation or a glide-reflection,
because in either case G would be infinite. Now observing that the
composition of two reflections preserves orientation, we know that
such a composition is a translation or rotation. When the two reflections
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have parallel axes of reflection, there is no fixed point (see Exercise 10
in the Supplementary Exercises for Chapters 1-4) so the composition
is a translation. Thus, every two reflections in G have reflection axes
that intersect in some point. Suppose that fand f’ are two distinct re-
flections in G. Then because ff” preserves orientation, we know that ff’
is a rotation. We use the fact from geometry [2; 366] that a finite group
of rotations must have a common center, say P. This means that their
axes of reflection must intersect at point P. So, we have shown that all
the elements of G have the common fixed point P.

For convenience, let us denote a rotation about P of o degrees
by R . Now, among all rotations in G, let B be the smallest positive
angle of rotation. (Such an angle exists, since G is finite and R, be-
longs to G.) We claim that every rotation in G is some power of R,
To see this, suppose that R is in G. We may assume 0° < o = 360°.
Then, B = o and there is some integer ¢ such that 18 = o <
(t + 1)B. But, then RUﬂB = RU(RB)*’ isinGand 0 =0 — 18 < B.
Since (8 represents the smallest positive angle of rotation among the
elements of G, we must have o — 18 = 0, and therefore, R = (RB)’.
This verifies the claim.

For convenience, let us say that [R,| = n. Now, if G has no reflec-
tions, we have proved that G = <RB> ~ Z . If G has at least one reflec-
tion, say f, then

R FRGP. .. fR)"™

are also reflections. Furthermore, this is the entire set of reflections of G.
For if g is any reflection in G, then fg is a rotation, and so fg = (R B)k for
some k. Thus, g = f~ I(RB)" = f(RB)k. So

G={Ry Ry (R ..., (R ffRy (R, ... IR},

and G is generated by the pair of reflections f and JR,. Hence, by our
characterization of the dihedral groups (Theorem 26.5), G is the dihe-
dral group D, . |

Classification of Finite Groups
of Rotations in R3

One might think that the set of all possible finite symmetry groups in
three dimensions would be much more diverse than is the case for two
dimensions. Surprisingly, this is not the case. For example, moving to
three dimensions introduces only three new groups of rotations. This
observation was first made by the physicist and mineralogist Auguste
Bravais in 1849, in his study of possible structures of crystals.
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I Theorem 27.2 Finite Groups of Rotations in R3

Up to isomorphism, the finite groups of rotations in R3 are Z,D,
A, S, and A,

Theorem 27.2, together with the Orbit-Stabilizer Theorem (Theo-
rem 7.3), makes easy work of determining the group of rotations of an
object in R

B EXAMPLE 1 We determine the group G of rotations of the solid in
Figure 27.4, which is composed of six congruent squares and eight con-
gruent equilateral triangles. We begin by singling out any one of the
squares. Obviously, there are four rotations that map this square to itself,
and the designated square can be rotated to the location of any of the
other five. So, by the Orbit-Stabilizer Theorem (Theorem 7.3), the rota-
tion group has order 4 - 6 = 24. By Theorem 27.2, G is one of Z,,, D

24> P12
and §,. But each of the first two groups has exactly two elements of
order 4, whereas G has more than two. So, G is isomorphic to S, |

~___ >

)

Figure 27.4

The group of rotations of a tetrahedron (the fetrahedral group) is iso-
morphic to A,; the group of rotations of a cube or an octahedron (the
octahedral group) is isomorphic to §,; the group of rotations of a do-
decahedron or an icosahedron (the icosahedral group) is isomorphic to
As. (Coxeter [1, pp. 271-273] specifies which portions of the polyhedra
are being permuted in each case.) These five solids are illustrated in
Figure 27.5.
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TETRAHEDRON
Fire

OCTAHEDRON
Air

DODECAHEDRON ICOSAHEDRON
The Universe Water

Figure 27.5 The five regular solids as depicted by Johannes Kepler
in Harmonices Mundi, Book 11 (1619)

Perhaps the most valuable result of all education is the ability to make
yourself do the thing you have to do, when it ought to be done, whether you
like it or not.

THOMAS HENRY HUXLEY, Technical Education

1. Show that an isometry of R" is one-to-one.

2. Show that the translations of R” form a group.

3. Exhibit a plane figure whose plane symmetry group is Zi.
4

. Show that the group of rotations in R? of a 3-prism (that is, a prism
with equilateral ends, as in the following figure) is isomorphic to D,.

A\

5. What is the order of the (entire) symmetry group in R? of a 3-prism?

6. What is the order of the symmetry group in R? of a 4-prism (a box
with square ends that is not a cube)?

7. What is the order of the symmetry group in R? of an n-prism?



10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.
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. Show that the symmetry group in R? of a box of dimensions 2" X

3" X 4" is isomorphic to Z, ® Z, D Z,.

. Describe the symmetry group of a line segment viewed as

a. asubset of R!,

b. a subset of R?,

c. asubset of R®.

(This exercise is referred to in this chapter.)

(From the “Ask Marilyn” column in Parade Magazine, December 11,
1994.) The letters of the alphabet can be sorted into the following
categories:

1. FGILNPQRSZ

2. BCDEK

3. AMTUVWY

4. HIOX

What defines the categories?

Exactly how many elements of order 4 does the group in Example 1
have?

Why is inversion [that is, ¢ (x, y) = (—x, —y)] not listed as one of
the four kinds of isometries in R*?

Explain why inversion through a point in R? cannot be realized by
a rotation in R?,

Reflection in a line L in R? is the isometry that takes each point Q
to the point Q" with the property that L is a perpendicular bisector
of the line segment joining Q and Q'. Describe a rotation that has
this same effect.

In R?, a rotation fixes a point; in R?, a rotation fixes a line. In R,
what does a rotation fix? Generalize these observations to R".
Show that an isometry of a plane preserves angles.

Show that an isometry of a plane is completely determined by the
image of three noncollinear points.

Suppose that an isometry of a plane leaves three noncollinear
points fixed. Which isometry is it?

Suppose that an isometry of a plane fixes exactly one point. What
type of isometry must it be?

Suppose that A and B are rotations of 180° about the points a and b,
respectively. What is A followed by B? How is the composite mo-
tion related to the points a and b?
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Frieze Groups

and Crystallographic
Groups

Symmetry, considered as a law of regular composition of structural objects,
is similar to harmony. More precisely, symmetry is one of its components,
while the other component is dissymmetry. In our opinion the whole
esthetics of scientific and artistic creativity lies in the ability to feel this

where others fail to perceive it.
A. V. SHUBNIKOV AND V. A. KOPTSIK,
Symmetry in Science and Art

The Frieze Groups

In this chapter, we discuss an interesting collection of infinite symme-
try groups that arise from periodic designs in a plane. There are two
types of such groups. The discrete frieze groups are the plane symmetry
groups of patterns whose subgroups of translations are isomorphic
to Z. These kinds of designs are the ones used for decorative strips and
for patterns on jewelry, as illustrated in Figure 28.1. In mathematics,
familiar examples include the graphs of y = sinx, y = tan x, y = Isin xI,
and |yl = sin x. After we analyze the discrete frieze groups, we exam-
ine the discrete symmetry groups of plane patterns whose subgroups of
translations are isomorphic to Z & Z.

In previous chapters, it was our custom to view two isomorphic
groups as the same group, since we could not distinguish between them
algebraically. In the case of the frieze groups, we will soon see that, al-
though some of them are isomorphic as groups (that is, algebraically
the same), geometrically they are quite different. To emphasize this
difference, we will treat them separately. In each of the following
cases, the given pattern extends infinitely far in both directions.
A proof that there are exactly seven types of frieze patterns is given in
the appendix to [6].
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\:w:w*r

A -
t‘, '(-J e

Figure 28.1 Frieze patterns

The symmetry group of pattern I (Figure 28.2) consists of transla-
tions only. Letting x denote a translation to the right of one unit (that
is, the distance between two consecutive R’s), we may write the sym-
metry group of pattern I as

F,={x"Ine€Z}.

R R R R

Figure 28.2 Pattern|
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The group for pattern II (Figure 28.3), like that of pattern I, is infi-
nitely cyclic. Letting x denote a glide-reflection, we may write the
symmetry group of pattern II as

F,={x"IneZ}.

R R R R
B B B

Figure 28.3 Pattern I

Notice that the translation subgroup of pattern II is just (x?).

The symmetry group for pattern III (Figure 28.4) is generated by a
translation x and a reflection y across the dashed vertical line. (There
are infinitely many axes of reflective symmetry, including those mid-
way between consecutive pairs of opposite-facing R’s. Any one will
do.) The entire group (the operation is function composition) is

F,= {(xy"In€eZ m=0or1}.

AR AR AR AR AR

Figure 28.4 Pattern lll

Note that the two elements xy and y have order 2, they generate F,,
and their product (xy)y = x has infinite order. Thus, by Theorem 26.5,
F, is the infinite dihedral group. A geometric fact about pattern IIT
worth mentioning is that the distance between consecutive pairs of ver-
tical reflection axes is half the length of the smallest translation vector.

In pattern IV (Figure 28.5), the symmetry group F, is generated by a
translation x and a rotation y of 180° about a point p midway between
consecutive R’s (such a rotation is often called a half-turn). This group,
like F,, is also infinite dihedral. (Another rotation point lies between a
top and bottom R. As in pattern III, the distance between consecutive
points of rotational symmetry is half the length of the smallest transla-
tion vector.) Therefore,

F,={xy"In€Z m=0orm=1}.
R R R R
A d4 7 | d

Figure 28.5 Pattern IV
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SR SR SR
AB B 7 B

Figure 28.6 PatternV

The symmetry group F for pattern V (Figure 28.6) is yet another
infinite dihedral group generated by a glide-reflection x and a rotation y
of 180° about the point p. Notice that pattern V has vertical reflection
symmetry xy. The rotation points are midway between the vertical reflec-
tion axes. Thus

Fo={xy"In€Z m=0o0orm=1}.

The symmetry group F| for pattern VI (Figure 28.7) is generated by
a translation x and a horizontal reflection y. The group is

Fo={xY"In€Z m=0orm=1}.

Note that, since x and y commute, F is not infinite dihedral. In fact, F
is isomorphic to Z @ Z,. Pattern VI is invariant under a glide-reflection
also, but in this case the glide-reflection is called trivial, since the axis
of the glide-reflection is also an axis of reflection. (Conversely, a glide-
reflection is nontrivial if its glide-axis is not an axis of reflective sym-
metry for the pattern.)

R R R R
B B B B

Figure 28.7 Pattern VI

The symmetry group F, of pattern VII (Figure 28.8) is generated by
a translation x, a horizontal reflection y, and a vertical reflection z. It is
isomorphic to the direct product of the infinite dihedral group and Z,.
The product of y and z is a 180° rotation. Therefore,

F,={x"y"z*In€Z m=0orm=1k=0ork=1}.
SR SR SR SR
UK UK AK AK

Figure 28.8 Pattern VIl

The preceding discussion is summarized in Figure 28.9. Figure 28.10
provides an identification algorithm for the frieze patterns.

In describing the seven frieze groups, we have not explicitly said
how multiplication is done algebraically. However, each group element
corresponds to some isometry, so multiplication is the same as function
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Group
isomorphism
Pattern Generators class
x! e X x?
1 R R R R x= translation 4
x? e X
i R R R . .
B B x = glide-reflection V4
x! x
xlyx! ye Xy x
I SR AR SR .
x = translation Do
y = vertical reflection
x! e X
R R R
v A 1 ~ ~ x = translation Do
y v 2y y = rotation of 180°
xlye xy x*
v SIR SIR ) )
d B x = glide-reflection Deo
yx y = rotation of 180°
x! e X
Nt R R R .
” ” ” x = translation zZ® Z,
, y = horizontal reflection
Xy y Xy
x ! ze xzx
vii AR AR AR x = translation Do ® Z,
a8 K a8 y = horizontal reflection

-1 -1
X yzx'y yzy Xyz Xy z = vertical reflection

Figure 28.9 The seven frieze patterns and their groups of symmetries

composition. Thus, we can always use the geometry to determine the
product of any particular string of elements.

For example, we know that every element of F, can be written in the
form x"y™z*. So, just for fun, let’s determine the appropriate values for
n, m, and k for the element g = x~'yzxz. We may do this simply by
looking at the effect that g has on pattern VII. For convenience, we will
pick out a particular R in the pattern and trace the action of g one step at
a time. To distinguish this R, we enclose it in a shaded box. Also, we
draw the axis of the vertical reflection z as a dashed line segment. See
Figure 28.11.

Now, comparing the starting position of the shaded R with its final
position, we see that x~'yzxz = x~?y. Exercise 7 suggests how one may
arrive at the same result through purely algebraic manipulation.



Is there a vertical reflection?

yes

Is there a horizontal reflection?

no

Is there a horizontal reflection
or glide-reflection?

yes no yes no
Is there a Is there a Is there a
viI half-turn? horizontal half-turn?
9R qIR IR reflection?
¥E 4B UK
no l no no
111 I 1
AR AR AR R R R R
K K
yes yes yes
v VI v
AR _ R R R R _ R
dK dK K K K k! k!

Figure 28.10 Recognition chart for frieze patterns.
Adapted from [6, p. 83].
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SR IR , SR SR

qK I | ¥E qK
i :

AR SR | SR SR

K b () SN § 21 dK

SR IR @ SR SR
IK I | 4B IK

SIR SIR SR SIR

qK qK UK qK
-
SIR AR 1 AR SIR
B d | ¥K qdB
AR AR AR | 4R
A A I | ¥E
Figure 28.11

The Crystallographic Groups

The seven frieze groups catalog all symmetry groups that leave a
design invariant under all multiples of just one translation. However,
there are 17 additional kinds of discrete plane symmetry groups that
arise from infinitely repeating designs in a plane. These groups are the
symmetry groups of plane patterns whose subgroups of translations are
isomorphic to Z € Z. Consequently, the patterns are invariant under
linear combinations of two linearly independent translations. These
17 groups were first studied by 19th-century crystallographers and are
often called the plane crystallographic groups. Another term occasion-
ally used for these groups is wallpaper groups.

Our approach to the crystallographic groups will be geometric. It
is adapted from the excellent article by Schattschneider [5] and the
monograph by Crowe [1]. Our goal is to enable the reader to determine
which of the 17 plane symmetry groups corresponds to a given peri-
odic pattern. We begin with some examples.
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Figure 28.12 Study of Regular Division of the Plane with Fish and Birds, 1938.
Escher drawing with symmetry group p1. The arrows are translation vectors.

The simplest of the 17 crystallographic groups contains translations
only. In Figure 28.12, we present an illustration of a representative
pattern for this group (imagine the pattern repeated to fill the entire
plane). The crystallographic notation for it is p1. (This notation is ex-
plained in [5].)

The symmetry group of the pattern in Figure 28.13 contains transla-
tions and glide-reflections. This group has no (nonzero) rotational or
reflective symmetry. The crystallographic notation for it is pg.

Figure 28.14 has translational symmetry and threefold rotational
symmetry (that is, the figure can be rotated 120° about certain points
and be brought into coincidence with itself). The notation for this
group is p3.

Representative patterns for all 17 plane crystallographic groups,
together with their notations, are given in Figures 28.15 and 28.16.
Figure 28.17 uses a triangle motif to illustrate the 17 classes of sym-
metry patterns.
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Figure 28.13 Escher-like
tessellation by . L. Teeters,
with symmetry group pg
(disregarding shading). The
solid arrow is a translation
vector. The dashed arrows are
glide-reflection vectors.

Figure 28.14
Study of Regular
Division of the
Plane with
Human Figures,
1938. Escher
drawing with
symmetry p3
(disregarding
shading). The
inserted arrows
are translation
vectors.
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Figure 28.15 The plane symmetry groups

All designs in Figures 28.15 and 28.16 except pm, p3, and pg are
found in [2]. The designs for p3 and pg are based on elements of
Chinese lattice designs found in [2]; the design for pm is based on a
weaving pattern from the Sandwich Islands, found in [3].
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Figure 28.16 The plane symmetry groups
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Figure 28.17 The 17 plane periodic patterns formed using a triangle motif
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Identification of Plane
Periodic Patterns

To decide which of the 17 classes any particular plane periodic pattern
belongs to, we may use the flowchart presented in Figure 28.18. This is
done by determining the rotational symmetry and whether or not the
pattern has reflection symmetry or nontrivial glide-reflection symmetry.
These three pieces of information will narrow the list of candidates to at
most two. The final test, if necessary, is to determine the locations of the
centers of rotation.

For example, consider the two patterns in Figure 28.19 generated in a
hockey-stick motif. Both patterns have a smallest positive rotational sym-
metry of 120°; both have reflectional and nontrivial glide-reflectional
symmetry. Now, according to Figure 28.18, these patterns must be of
type p3m1 or p31m. But notice that the pattern on the left has all its three-
fold centers of rotation on the reflection axis, whereas in the pattern on
the right the points where the three blades meet are not on a reflection
axis. Thus, the left pattern is p3m1, and the right pattern is p31m.

Table 28.1 (reproduced from [5, p. 443]) can also be used to deter-
mine the type of periodic pattern and contains two other features that
are often useful. A lattice of points of a pattern is a set of images of any
particular point acted on by the translation group of the pattern. A lat-
tice unit of a pattern whose translation subgroup is generated by u and
v is a parallelogram formed by a point of the pattern and its image
under u, v, and u + v. The possible lattices for periodic patterns in a
plane, together with lattice units, are shown in Figure 28.20. A generat-
ing region (or fundamental region) of a periodic pattern is the smallest
portion of the lattice unit whose images under the full symmetry group of
the pattern cover the plane. Examples of generating regions for the
patterns represented in Figures 28.12, 28.13, and 28.14 are given in
Figure 28.21. In Figure 28.21, the portion of the lattice unit with vertical
bars is the generating region. The only symmetry pattern in which the lat-
tice unit and the generating region coincide is the p1 pattern illustrated in
Figure 28.12. Table 28.1 tells what proportion of the lattice unit consti-
tutes the generating region of each plane periodic pattern.

Notice that Table 28.1 reveals that the only possible n-fold rotational
symmetries occur when n = 1, 2, 3, 4, and 6. This fact is commonly
called the crystallographic restriction. The first proof of this was given
by an Englishman, W. Barlow. The information in Table 28.1 can also
be used in reverse to create patterns with a specific symmetry group.
The patterns in Figure 28.19 were made in this way.
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smallest angle
of rotation?

yes
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Figure 28.18 lIdentification flowchart for symmetries of plane periodic patterns
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p3ml p3lm

Figure 28.19 Patterns generated in a hockey-stick motif
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(Equilateral triangles)

Figure 28.20 Possible lattices for plane periodic patterns

In sharp contrast to the situation for finite symmetry groups, the transi-
tion from two-dimensional crystallographic groups to three-dimensional
crystallographic groups introduces a great many more possibilities, since
the motif is repeated indefinitely by three independent translations. Indeed,
there are 230 three-dimensional crystallographic groups (often called space
groups). These were independently determined by Fedorov, Schonflies, and
Barlow in the 1890s. David Hilbert, one of the leading mathematicians of
the 20th century, focused attention on the crystallographic groups in his
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Table 28.1 Identification Chart for Plane Periodic Patterns?

Highest Nontrivial Helpful
Order of Glide- Generating  Distinguishing

Type Lattice Rotation  Reflections Reflections Region Properties

pl Parallelogram 1 No No 1 unit

p2 Parallelogram 2 No No % unit

pm Rectangular 1 Yes No % unit

P8 Rectangular 1 No Yes 1 unit

cm Rhombic 1 Yes Yes 1 unit

pmm Rectangular 2 Yes No 1 unit

pmg Rectangular 2 Yes Yes funit  Parallel reflection
axes

pgg Rectangular 2 No Yes i unit

cmm Rhombic 2 Yes Yes funit  Perpendicular
reflection axes

p4 Square 4 No No 1 unit

pam Square 4 Yes Yes tunit  Fourfold centers
on reflection
axes

pag Square 4 Yes Yes funit  Fourfold centers
not on
reflection axes

p3 Hexagonal 3 No No 1 unit

p3ml Hexagonal 3 Yes Yes tunit Al threefold
centers on
reflection axes

p3lm Hexagonal 3 Yes Yes Lunit  Not all threefold
centers on
reflection axes

p6 Hexagonal 6 No No + unit

pom Hexagonal 6 Yes Yes 1'7 unit

2A rotation through an angle of 360°/n is said to have order n. A glide-reflection is nontrivial if its glide-axis is not
an axis of reflective symmetry for the pattern.

famous lecture in 1900 at the International Congress of Mathematicians in
Paris. One of 23 problems he posed was whether or not the number of
crystallographic groups in n dimensions is always finite. This was an-
swered affirmatively by L. Bieberbach in 1910. We mention in passing that
in four dimensions, there are 4783 symmetry groups for infinitely repeat-
ing patterns.

As one might expect, the crystallographic groups are fundamentally
important in the study of crystals. In fact, a crystal is defined as a rigid
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Figure 28.21 A lattice unit and generating region for the patternsin
Figures 28.12, 28.13, and 28.14. Generating regions are shaded with bars.

body in which the component particles are arranged in a pattern that re-
peats in three directions (the repetition is caused by the chemical bond-
ing). A grain of salt and a grain of sugar are two examples of common
crystals. In crystalline materials, the motif units are atoms, ions, ionic
groups, clusters of ions, or molecules.

Perhaps it is fitting to conclude this chapter by recounting two
episodes in the history of science in which an understanding of symme-
try groups was crucial to a great discovery. In 1912, Max von Laue, a
young German physicist, hypothesized that a narrow beam of x-rays di-
rected onto a crystal with a photographic film behind it would be
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deflected (the technical term is “diffracted”) by the unit cell (made up of
atoms or ions) and would show up on the film as spots. (See Figure 1.3.)
Shortly thereafter, two British scientists, Sir William Henry Bragg and
his 22-year-old son William Lawrence Bragg, who was a student, noted
that von Laue’s diffraction spots, together with the known information
about crystallographic space groups, could be used to calculate the shape
of the internal array of atoms. This discovery marked the birth of mod-
ern mineralogy. From the first crystal structures deduced by the Braggs
to the present, x-ray diffraction has been the means by which the internal
structures of crystals are determined. Von Laue was awarded the Nobel
Prize in physics in 1914, and the Braggs were jointly awarded the
Nobel Prize in physics in 1915.

Our second episode took place in the early 1950s, when a handful of
scientists were attempting to learn the structure of the DNA molecule—
the basic genetic material. One of these was a graduate student named
Francis Crick; another was an x-ray crystallographer, Rosalind Franklin.
On one occasion, Crick was shown one of Franklin’s research reports
and an x-ray diffraction photograph of DNA. At this point, we let Horace
Judson [4, pp. 165-166], our source, continue the story.

Crick saw in Franklin’s words and numbers something just as important,
indeed eventually just as visualizable. There was drama, too: Crick’s
insight began with an extraordinary coincidence. Crystallographers distin-
guish 230 different space groups, of which the face-centered monoclinic
cell with its curious properties of symmetry is only one—though in biologi-
cal substances a fairly common one. The principal experimental subject of
Crick’s dissertation, however, was the x-ray diffraction of the crystals of a
protein that was of exactly the same space group as DNA. So Crick saw at
once the symmetry that neither Franklin nor Wilkins had comprehended,
that Perutz, for that matter, hadn’t noticed, that had escaped the theoretical
crystallographer in Wilkins’ lab, Alexander Stokes—namely, that the
molecule of DNA, rotated a half turn, came back to congruence with itself.
The structure was dyadic, one half matching the other half in reverse.

This was a crucial fact. Shortly thereafter, James Watson and Crick
built an accurate model of DNA. In 1962, Watson, Crick, and Maurice
Wilkins received the Nobel Prize in medicine and physiology for their
discovery. The opinion has been expressed that, had Franklin correctly
recognized the symmetry of the DNA molecule, she might have been
the one to unravel the mystery and receive the Nobel Prize [4, p. 172].
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You can see a lot just by looking.

N NN AW N

10.

11.

. In the frieze group F.,, show that zxz = x~ .

YOGI BERRA

. Show that the frieze group F is isomorphic to Z D Z,.

. How many nonisomorphic frieze groups are there?

. In the frieze group F,, write x*yzxz in the form x"y"z*.

. In the frieze group F,, write x 3zxyz in the form x"y"z*.
. In the frieze group F.,, show that yz = zy and xy = yx.

1

. Use the results of Exercises 5 and 6 to do Exercises 3 and 4

through symbol manipulation only (that is, without referring to the
pattern). (This exercise is referred to in this chapter.)

. Prove that in F, the cyclic subgroup generated by x is a normal

subgroup.

. Quote a previous result that tells why the subgroups (x, y) and

(x, z) must be normal in F.

Look up the word frieze in an ordinary dictionary. Explain why the
frieze groups are appropriately named.

Determine which of the seven frieze groups is the symmetry group
of each of the following patterns.
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12.

13.

14.

15.

Determine the frieze group corresponding to each of the following
patterns:

a. y = sin x,

b. y = Isin xl,

c. Iyl = sin x,

d. y=tanx,

€. Yy = CSCX.

Determine the symmetry group of the tessellation of the plane ex-
emplified by the brickwork shown.

Determine the plane symmetry group for each of the patterns in
Figure 28.17.

Determine which of the 17 crystallographic groups is the symme-
try group of each of the following patterns.

1 TR,
SV ARV RSN 2

B"h‘:‘lb s
FA'A ‘f’ ” !
LT == i
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= e A =
)Y %l )l )
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16. In the following figure, there is a point labeled 1. Let « be the
translation of the plane that carries the point labeled 1 to the point
labeled «, and let B be the translation of the plane that carries the
point labeled 1 to the point labeled 3. The image of 1 under the
composition of « and S is labeled «f3. In the corresponding fash-
ion, label the remaining points in the figure in the form o/B’.

17. The patterns made by automobile tire treads in the snow are frieze
patterns. An extensive study of automobile tires revealed that only
five of the seven frieze patterns occur. Speculate on which two pat-
terns do not occur and give a possible reason why they do not.

18. Locate a nontrivial glide-reflection axis of symmetry in the cm pat-
tern in Figure 28.16.

19. Determine which of the frieze groups is the symmetry group of
each of the following patterns.

a.---DDDD- - -
¢c. ~+-LLLL---
d. ---VVVV:..
e. - NNNN---
f.---HHHH:--
g - -LTLT---

20. Locate a nontrivial glide-reflection axis of symmetry in the pattern
third from the left in the bottom row in Figure 28.17.
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Suggested Readings

S. Garfunkel et al., For All Practical Purposes, 7th ed., New York: W. H.
Freeman, 2006.

This book has a well-written, richly illustrated chapter on symmetry in
art and nature.
W. G. Jackson, “Symmetry in Automobile Tires and the Left-Right Prob-
lem,” Journal of Chemical Education 69 (1992): 624-626.
This article uses automobile tires as a tool for introducing and explain-
ing the symmetry terms and concepts important in chemistry.
This is a collection of Escher’s periodic drawings together with a math-
ematical discussion of each one.
D. Schattschneider, Visions of Symmetry, New York: Harry Abrams, 2002.
A loving, lavish, encyclopedic book on the drawings of M. C. Escher.
H. von Baeyer, “Impossible Crystals,” Discover 11(2) (1990): 69-78.

This article tells how the discovery of nonperiodic tilings of the plane led
to the discovery of quasicrystals. The x-ray diffraction patterns of qua-
sicrystals exhibit fivefold symmetry—something that had been thought to
be impossible.



28 | Frieze Groups and Crystallographic Groups 483

Suggested Websites

http://www.mcescher.com/

This is the official website for the artist M. C. Escher. It features many of
his prints and most of his 136 symmetry drawings.

http://britton.disted.camosun.bc.ca/jbsymteslk.htm

This spectacular website on symmetry and tessellations has numerous ac-
tivities and links to many other sites on related topics. It is a wonderful
website for K—12 teachers and students.


http://www.mcescher.com/This
http://www.mcescher.com/This
http://britton.disted.camosun.bc.ca/jbsymteslk.htm

I never got a pass mark in math. The funny
thing is | seem to latch on to mathematical
theories without realizing what is happening.

M. C. ESCHER

M. C. ESCHER was born on June 17, 1898, in
the Netherlands. His artistic work prior to
1937 was dominated by the representation
of visible reality, such as landscapes and
buildings. Gradually, he became less and
less interested in the visible world and be-
came increasingly absorbed in an inventive
approach to space. He studied the abstract
space-filling patterns used in the Moorish
mosaics in the Alhambra in Spain. He also
studied the mathematician George Pdlya’s
paper on the 17 plane crystallographic
groups. Instead of the geometric motifs used
by the Moors and Pdlya, Escher preferred to
use animals, plants, or people in his space-
filling prints.

Escher was fond of incorporating various
mathematical ideas into his works. Among
these are infinity, Mobius bands, stellations,
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deformations, reflections, Platonic solids,
spirals, and the hyperbolic plane.

Although Escher originals are now quite
expensive, it was not until 1951 that he de-
rived a significant portion of his income
from his prints. Today, Escher is widely
known and appreciated as a graphic artist.
His prints have been used to illustrate ideas
in hundreds of scientific works. Despite this
popularity among scientists, however,
Escher has never been held in high esteem
in traditional art circles. Escher died on
March 27, 1972, in Holland.

To find more information about Escher
and his art, visit the official website of M. C.
Escher:

http://www.mcescher.com/
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George Pdlya

Thank you Professor Pélya for all your
beautiful contributions to mathematics, to
science, to education, and to humanity.

A toast from FRANK HARARY on the
occasion of Pélya’s 9oth birthday

GEORGE POLYA was born in Budapest,
Hungary, on December 13, 1887. He received
a teaching certificate from the University of
Budapest in languages before turning to phi-
losophy, mathematics, and physics.

In 1912, he was awarded a Ph.D. in math-
ematics. Horrified by Hitler and World War
II, PSlya came to the United States in 1940.
After two years at Brown University, he went
to Stanford University, where he remained
until his death in 1985 at the age of 97.

In 1924, Pélya published a paper in a crys-
tallography journal in which he classified the
plane symmetry groups and provided a full-
page illustration of the corresponding 17 peri-
odic patterns. B. G. Escher, a geologist, sent a
copy of the paper to his artist brother, M. C.
Escher, who used Pdlya’s black-and-white
geometric patterns as a guide for making his
own interlocking colored patterns featuring
birds, reptiles, and fish.

Pélya contributed to many branches of
mathematics, and his collected papers fill four
large volumes. Pdlya is also famous for his
books on problem solving and for his teach-
ing. One of his books has sold more than
1,000,000 copies. The Society for Industrial
and Applied Mathematics, the London Mathe-
matical Society, and the Mathematical Asso-
ciation of America have prizes named after
Pélya.

Pélya taught courses and lectured around
the country into his 90s. He never learned to
drive a car and took his first plane trip at
age 75. He was married for 67 years and had
no children.

For more information about Pélya, visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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John H. Conway

“He’s definitely world class, yet he has this
kind of childlike enthusiasm.”

RONALD GRAHAM Speaking of John H. Conway

JouN H. CoNwAY ranks among the most
original and versatile contemporary mathe-
maticians. Conway was born in Liverpool,
England, on December 26, 1937, and grew
up in a rough neighborhood. As a youngster,
he was often beaten up by older boys and
did not do well in high school. Nevertheless,
his mathematical ability earned him a schol-
arship to Cambridge University, where he
excelled.

A pattern that uses repeated shapes to
cover a flat surface without gaps or overlaps
is called a tiling. In 1975, Oxford physicist
Roger Penrose invented an important new
way of tiling the plane with two shapes.
Unlike patterns whose symmetry group is
one of the 17 plane crystallographic groups,
Penrose patterns can be neither translated nor
rotated to coincide with themselves. Many of
the remarkable properties of the Penrose pat-
terns were discovered by Conway. In 1993,
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Conway discovered a new prism that can be
used to fill three-dimensional space without
gaps or overlaps.

Conway has made many significant con-
tributions to number theory, group theory,
game theory, knot theory, and combina-
torics. Among his most important discover-
ies are three simple groups, which are now
named after him. (Simple groups are the
basic building blocks of all groups.) Conway
is fascinated by games and puzzles. He in-
vented the game Life and the game Sprouts.
Conway has received numerous prestigious
honors. In 1987 he joined the faculty at
Princeton University, where his title is John
von Neumann Distinguished Professor of
Mathematics.

For more information about Conway,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Symmetry

and Counting

Let us pause to slake our thirst one last time at symmetry’s bubbling spring.
TIMOTHY FERRIS, Coming of Age in the Milky Way

Motivation

Permutation groups naturally arise in many situations involving sym-
metrical designs or arrangements. Consider, for example, the task of
coloring the six vertices of a regular hexagon so that three are black

and three are white. Figure 29.1 shows the g = 20 possibilities.

However, if these designs appeared on one side of hexagonal ceramic
tiles, it would be nonsensical to count the designs shown in Figure
29.1(a) as different, since all six designs shown there can be obtained
from one of them by rotating. (A manufacturer would make only one of
the six.) In this case, we say that the designs in Figure 29.1(a) are
equivalent under the group of rotations of the hexagon. Similarly, the
designs in Figure 29.1(b) are equivalent under the group of rotations, as
are the designs in Figure 29.1(c) and those in Figure 29.1(d). And, since
no design from Figure 29.1(a)—(d) can be obtained from a design in a
different part by rotation, we see that the designs within each part of the
figure are equivalent to each other but nonequivalent to any design in
another figure. However, the designs in Figure 29.1(b) and (c) are equiv-
alent under the dihedral group D, since the designs in Figure 29.1(b)
can be reflected to yield the designs in Figure 29.1(c). For example, for
purposes of arranging three black beads and three white beads to form a
necklace, the designs shown in Figure 29.1(b) and (c) would be consid-
ered equivalent.

In general, we say that two designs (arrangements of beads) A and B
are equivalent under a group G of permutations of the arrangements if
there is an element ¢ in G such that ¢(A) = B. That is, two designs are
equivalent under G if they are in the same orbit of G. It follows, then,
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Figure 29.1

that the number of nonequivalent designs under G is simply the number
of orbits of designs under G. (The set being permuted is the set of all
possible designs or arrangements.)

Notice that the designs in Figure 29.1 divide into four orbits under
the group of rotations but only three orbits under the group Dy, since
the designs in Figure 29.1(b) and (c) form a single orbit under D,. Thus,
we could obtain all 20 tile designs from just four tiles, but we could
obtain all 20 necklaces from just three of them.

Burnside’s Theorem

Although the problems we have just posed are simple enough to
solve by observation, more complicated ones require a more sophis-
ticated approach. Such an approach was provided by Georg Frobenius
in 1887. Frobenius’s theorem did not become widely known until it
appeared in the classic book on group theory by William Burnside
in 1911. By an accident of history, Frobenius’s theorem has come to
be known as “Burnside’s Theorem.” Before stating this theorem, we
recall some notation introduced in Chapter 7 and introduce new
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notation. If G is a group of permutations on a set S and i € S, then

stab(i) = {d € G | ¢Gi) = i} and orby(i) = {P@) |
¢ € G}. For any set X, we use |X| to denote the number of elements in X.

Definition Elements Fixed by ¢

For any group G of permutations on a set S and any ¢ in G, we let
fix(¢) = {i € S | ¢(i) = i}. This set is called the elements fixed by ¢ (or
more simply, “fix of ¢”).

§ Theorem 29.1 (Burnside)

If G is a finite group of permutations on a set S, then the number
of orbits of elements of S under G is

1
@%lﬁx((b) B

PROOF Let n denote the number of pairs (¢, i), withd € G,i € S,
and ¢(i) = i. We begin by counting these pairs in two ways. First, for
each particular ¢ in G, the number of such pairs is exactly Ifix(¢)I. So,

n= > |fix(¢)]. (1)

$EG

Second, for each particular i in S, observe that Istab(i)! is exactly the
number of pairs (¢, i) for which ¢ (i) = i. So,

n = |stabs(i)|. (2)

ies

It follows from Exercise 33 in Chapter 7 that if s and ¢ are in the same
orbit of G, then orb(s) = orb(7), and thus by the Orbit-Stabilizer The-
orem (Theorem 7.3) we have Istab(s)l = |Gl/lorb(s)| = IGl/lorb (1)l =
Istab,(2)l. So, if we choose s € § and sum over orb(s), we have

> |stabg(r)| = |orbs(s)| |stabg(s)| = |G|. A3)

tEorbg(s)

Finally, by summing over all the elements of G, one orbit at a time, it
follows from Equations (1), (2), and (3) that

> [fix(¢)| = D |stab(i)| = |G|- (number of orbits)

$EG iES

and the result follows. |
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Applications

To illustrate how to apply Burnside’s Theorem, let us return to the ceramic
tile and necklace problems. In the case of counting hexagonal tiles with
three black vertices and three white vertices, the objects being permutated
are the 20 possible designs, whereas the group of permutations is the
group of six rotational symmetries of a hexagon. Obviously, the identity
fixes all 20 designs. We see from Figure 29.1 that rotations of 60°, 180°,
or 300° fix none of the 20 designs. Finally, Figure 29.2 shows fix(¢) for
the rotations of 120° and 240°. These data are collected in Table 29.1.

oe ® O
[ ] o o [ ]
Oce ® O

Figure 29.2 Tile designs fixed by 120°
rotation and 240° rotation

Table 29.1
Number of Designs

Element Fixed by Element
Identity 20
Rotation of 60° 0
Rotation of 120° 2
Rotation of 180° 0
Rotation of 240° 2
Rotation of 300° 0

So, applying Burnside’s Theorem, we obtain the number of orbits
under the group of rotations as

1
Q00424042+ 0)=4.

Now let’s use Burnside’s Theorem to count the number of necklace
arrangements consisting of three black beads and three white beads. (For
the purposes of analysis, we may arrange the beads in the shape of a reg-
ular hexagon.) For this problem, two arrangements are equivalent if they
are in the same orbit under Dy. Figure 29.3 shows the arrangements fixed

Qo eeo Qe eo
OV e ®©€.0O0 @€ 0 O\ e
o0 00 o® ®0

Figure 29.3 Bead arrangements fixed
by the reflection across a diagonal
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Table 29.2
Number of Number of
Elements Arrangements
of This Fixed by Type
Type of Element Type of Element
Identity 1 20
Rotation of order 2 (180°) 1 0
Rotation of order 3 (120° or 240°) 2 2
Rotation of order 6 (60° or 300°) 2 0
Reflection across diagonal 3 4
Reflection across side bisector 3 0

by a reflection across a diagonal. Table 29.2 summarizes the information
needed to apply Burnside’s Theorem.
So, there are

1
E(l-2O+1-0+2-2+2-0+3-4+3-0)=3

nonequivalent ways to string three black beads and three white beads
on a necklace.

Now that we have gotten our feet wet on a few easy problems, let’s
try a more difficult one. Suppose that we have the colors red (R), white
(W), and blue (B) that can be used to color the edges of a regular tetra-
hedron (see Figure 5.1). First, observe that there are 3¢ = 729 colorings
without regard to equivalence. How shall we decide when two colorings
of the tetrahedron are nonequivalent? Certainly, if we were to pick up a
tetrahedron colored in a certain manner, rotate it, and put it back down,
we would think of the tetrahedron as being positioned differently rather
than as being colored differently (just as if we picked up a die labeled in
the usual way and rolled it, we would not say that the die is now differ-
ently labeled). So, our permutation group for this problem is just the
group of 12 rotations of the tetrahedron shown in Figure 5.1 and is iso-
morphic to A,. (The group consists of the identity; eight elements of
order 3, each of which fixes one vertex; and three elements of order 2,
each of which fixes no vertex.) Every rotation permutes the 729 color-
ings, and to apply Burnside’s Theorem we must determine the size of
fix(¢p) for each of the 12 rotations of the group.

Clearly, the identity fixes all 729 colorings. Next, consider the ele-
ment (234) of order 3, shown in the bottom row, second from the left in
Figure 5.1. Suppose that a specific coloring is fixed by this element
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Table 29.3 Nine Colorings Fixed by (234)

Edge Colorings
12 R R R A\ A\ W B B B
13 R R R A\ W W B B B
14 R R R A\ W W B B B
23 R W B w R B B R W
34 R W B W R B B R W
24 R w B W R B B R W

(that is, the tetrahedron appears to be colored the same before and after
this rotation). Since (234) carries edge 12 to edge 13, edge 13 to edge
14, and edge 14 to edge 12, these three edges must agree in color (edge
ij is the edge joining vertex i and vertex j). The same argument shows
that the three edges 23, 34, and 42 also must agree in color. So,
Ifix(234)| = 32, since there are three choices for each of these two sets
of three edges. The nine columns in Table 29.3 show the possible color-
ings of the two sets of three edges. The analogous analysis applies to
the other seven elements of order 3.

Now consider the rotation (12)(34) of order 2. (See the second tetra-
hedron in the top row in Figure 5.1.) Since edges 12 and 34 are fixed,
they may be colored in any way and will appear the same after the rota-
tion (12)(34). This yields 3 - 3 choices for those two edges. Since edge
13 is carried to edge 24, these two edges must agree in color. Similarly,
edges 23 and 14 must agree. So, we have three choices for the pair of
edges 13 and 24 and three choices for the pair of edges 23 and 14. This
means that we have 3 - 3 - 3 - 3 ways to color the tetrahedron that will
be equivalent under (12)(34). (Table 29.4 gives the complete list of 81
colorings.) So, Ifix((12)(34))| = 3%, and the other two elements of order
2 yield the same results.

Now that we have analyzed the three types of group elements, we
can apply Burnside’s Theorem. In particular, the number of distinct

Table 29.4 81 Colorings Fixed by (12)(34) (X and Y can be any of R, W, and B)

Edge Colorings
12 X X X X X X X X X
34 Y Y Y Y Y Y Y Y Y
13 R R R W A\ W B B B
24 R R R W W W B B B
23 R W B w R B B R w
14 R w B w R B B R w
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colorings of the edges of a tetrahedron with 3 colors is
1
1 (173 +8-32+3-3% =87

Surely it would be a difficult task to solve this problem without Burn-
side’s Theorem.

Just as surely, you are wondering who besides mathematicians are in-
terested in counting problems such as the ones we have discussed. Well,
chemists are. Indeed, one set of benzene derivatives can be viewed as
six carbon atoms arranged in a hexagon with one of the three radicals
NH,, COOH, or OH attached at each carbon atom. See Figure 29.4 for
one example.

Figure 29.4 A benzene derivative

So Burnside’s Theorem enables a chemist to determine the number of
benzene molecules (see Exercise 4). Another kind of molecule consid-
ered by chemists is visualized as a regular tetrahedron with a carbon
atom at the center and any of the four radicals HOCH, (hydroxymethyl),
C,H; (ethyl), Cl (chlorine), or H (hydrogen) at the four vertices. Again,
the number of such molecules can be easily counted using Burnside’s
Theorem.

Group Action

Our informal approach to counting the number of objects that are con-
sidered nonequivalent can be made formal as follows. If G is a group
and S is a set of objects, we say that G acts on S if there is a homomor-
phism y from G to sym(S), the group of all permutations on S. (The
homomorphism is sometimes called the group action.) For conve-
nience, we denote the image of g under vy as Y, Then two objects x and
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y in S are viewed as equivalent under the action of G if and only if
Y, (x) = y for some g in G. Notice that when vy is one-to-one, the ele-
ments of G may be regarded as permutations on S. On the other hand,
when vy is not one-to-one, the elements of G may still be regarded as
permutations on S, but there are distinct elements g and 4 in G such
that Y, and vy, induce the same permutation on § [that is, yg(x) =v,(X)
for all x in S]. Thus, a group acting on a set is a natural generalization
of the permutation group concept.

As an example of group action, let S be the two diagonals of a square
and let G be D, the group of symmetries of the square. Then v, , v, .
Yp ¥ are the identity; y, . ¥, . ¥, ¥, interchange the two diagonals;
and the mapping g — Y, from D, to sym(S) is a group homomorphism.
As a second example, note that GL(n, F), the group of invertible n X n
matrices with entries from a field F, acts on the set S of n X 1 column
vectors with entries from F by multiplying the vectors on the left by the
matrices. In this case, the mapping g — Y, from GL(n, F) to sym(S) is a
one-to-one homomorphism.

We have used group actions several times in this text without calling
them that. The proof of Cayley’s Theorem ( Theorem 6.1) has a group G
acting on the elements of G; the proofs of Sylow’s Second Theorem and
Third Theorem ( Theorems 24.4 and 24.5) have a group acting on the set
of conjugates of a Sylow p-subgroup; and the proof of the Generalized
Cayley Theorem (Theorem 25.3) has G acting on the left cosets of a
subgroup H.

The greater the difficulty, the more glory in surmounting it.
EPICURUS

1. Determine the number of ways in which the four corners of a
square can be colored with two colors. (It is permissible to use a
single color on all four corners.)

2. Determine the number of different necklaces that can be made us-
ing 13 white beads and three black beads.

3. Determine the number of ways in which the vertices of an equilat-
eral triangle can be colored with five colors so that at least two col-
ors are used.

4. A benzene molecule can be modeled as six carbon atoms arranged
in a regular hexagon in a plane. At each carbon atom, one of three
radicals NH,, COOH, or OH can be attached. How many such
compounds are possible?
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11.

12.

13.

14.

15.
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Suppose that in Exercise 4 we permit only NH, and COOH for the
radicals. How many compounds are possible?

. Determine the number of ways in which the faces of a regular

dodecahedron (regular 12-sided solid) can be colored with three
colors.

. Determine the number of ways in which the edges of a square can

be colored with six colors so that no color is used on more than
one edge.

. Determine the number of ways in which the edges of a square can

be colored with six colors with no restriction placed on the number
of times a color can be used.

. Determine the number of different 11-bead necklaces that can be

made using two colors.

Determine the number of ways in which the faces of a cube can be
colored with three colors.

Suppose a cake is cut into 6 identical pieces. How many ways can
we color the cake with n colors assuming that each piece receives
one color?

How many ways can the five points of a five-pointed crown be
painted if three colors of paint are available?

Let G be a finite group and let sym(G) be the group of all permuta-
tions on G. For each g in G, let d)g denote the element of sym(G) de-
fined by (l)g(x) = gxg~!forall x in G. Show that G acts on itself under
the action g — qbg. Give an example in which the mapping g — d)g is
not one-to-one.

Let G be a finite group, let H be a subgroup of G, and let S be the
set of left cosets of H in G. For each g in G, let Y, denote the ele-
ment of sym(S) defined by yg(xH) = gxH. Show that G acts on §
under the action g —y,.

For a fixed square, let L, be the perpendicular bisector of the top
and bottom of the square and let L, be the perpendicular bisector
of the left and right sides. Show that D, acts on {L,, L,} and deter-
mine the kernel of the mapping g — Y,
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Suggested Readings

Norman Biggs, Discrete Mathematics, Oxford: Clarendon Press, 1989.
Chapter 20 of this book presents a more detailed treatment of the
subject of symmetry and counting.

Doris Schattschneider, “Escher’s Combinational Patterns,” Electronic

Journal of Combinatorics, 4(2) (1997): R17.

This article discusses a combinatorial problem concerning generating
periodic patterns that the artist M. C. Escher posed and solved in an
algorithmic way. The problem can also be solved by using Burnside’s
Theorem. The article can be downloaded free from the website

http://www.combinatorics.org/


http://www.combinatorics.org/

In one of the most abstract domains of
thought, he [Burnside] has systematized
and amplified its range so that, there, his
work stands as a landmark in the widening
expanse of knowledge. Whatever be the
estimate of Burnside made by posterity,
contemporaries salute him as a Master
among the mathematicians of his own
generation.

A. R. FORSYTH

WILLIAM BURNSIDE was born on July 2,
1852, in London. After graduating from
Cambridge University in 1875, Burnside
was appointed lecturer at Cambridge,
where he stayed until 1885. He then ac-
cepted a position at the Royal Naval Col-
lege at Greenwich and spent the rest of his
career in that post.

Burnside wrote more than 150 research
papers in many fields. He is best remem-
bered, however, for his pioneering work in
group theory and his classic book Theory of
Groups, which first appeared in 1897. Be-
cause of Burnside’s emphasis on the abstract
approach, many consider him to be the first
pure group theorist.

One mark of greatness in a mathemati-
cian is the ability to pose important and
challenging problems—problems that open
up new areas of research for future genera-
tions. Here, Burnside excelled. It was he

who first conjectured that a group G of odd
order has a series of normal subgroups,
G=G, =G, =G, ="+ =G, = e},
such that G,/G,, | is Abelian. This extremely
important conjecture was finally proved
more than 50 years later by Feit and Thomp-
son in a 255-page paper (see Chapter 25 for
more on this). In 1994, Efim Zelmanov
received the Fields Medal for his work on a
variation of one of Burnside’s conjectures.

Burnside was elected a Fellow of the
Royal Society and awarded two Royal
medals. He served as president of the Coun-
cil of the London Mathematical Society and
received its De Morgan medal. Burnside
died on August 21, 1927.

To find more information about Burn-
side, visit:

http://www-groups.dcs
.st-and.ac.uk/~history/
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Cayley Diagraphs

of Groups

The important thing in science is not so much to obtain new facts as to
discover new ways of thinking about them.
SIR WILLIAM LAWRENCE, Beyond Reductionism

Motivation

In this chapter, we introduce a graphical representation of a group given
by a set of generators and relations. The idea was originated by Cayley
in 1878. Although this topic is not usually covered in an abstract algebra
book, we include it for five reasons: It provides a method of visualizing
a group; it connects two important branches of modern mathematics—
groups and graphs; it has many applications to computer science; it
gives a review of some of our old friends—cyclic groups, dihedral
groups, direct products, and generators and relations; and, most impor-
tantly, it is fun!

Intuitively, a directed graph (or digraph) is a finite set of points,
called vertices, and a set of arrows, called arcs, connecting some of the
vertices. Although there is a rich and important general theory of di-
rected graphs with many applications, we are interested only in those
that arise from groups.

The Cayley Digraph of a Group

498

Definition Cayley Digraph of a Group

Let G be a finite group and let S be a set of generators for G. We define
a digraph Cay(S:G), called the Cayley digraph of G with generating set
S, as follows.

1. Each element of G is a vertex of Cay(S:G).
2. For x and y in G, there is an arc from x to y if and only if xs = y for
some s € S.

To tell from the digraph which particular generator connects two ver-
tices, Cayley proposed that each generator be assigned a color, and that the
arrow joining x to xs be colored with the color assigned to s. He called the



30 | Cayley Diagraphs of Groups 499

resulting figure the color graph of the group. This terminology is still used
occasionally. Rather than use colors to distinguish the different generators,
we will use solid arrows, dashed arrows, and dotted arrows. In general, if
there is an arc from x to y, there need not be an arc from y to x. An arrow
emanating from x and pointing to y indicates that there is an arc from x to y.
Following are numerous examples of Cayley digraphs. Note that
there are several ways to draw the digraph of a group given by a partic-
ular generating set. However, it is not the appearance of the digraph that
is relevant but the manner in which the vertices are connected. These
connections are uniquely determined by the generating set. Thus, dis-
tances between vertices and angles formed by the arcs have no signifi-
cance. (In the digraphs below, a headless arrow joining two vertices x
and y indicates that there is an arc from x to y and an arc from y to x.
This occurs when the generating set contains both an element and its
inverse. For example, a generator of order 2 is its own inverse.)

I EXAMPLE 1 Z_ = (1).

o<«
3

[
2

\
/
(o<—o<—o <—o<—o<—o<>

Cay ({1}: Zo) Cay ({1}: Z,) |

I EXAMPLE2 Z, & Z, = ((1, 0), (0, 1)).

(0,0)/3 -------- (\(0,1)
(1,0)| @-------- ° (11D
CROIR A s Jan

Cay({(1,0), (0, D}: Z, ® Z,) Cay({(1,0), (0, 1)}: Z, ® Z,) |
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I EXAMPLE3 D, = <R9o’ H).
R90 ___il____
R R
H /.1 ————————— (\ R, o - ,‘90
\\ ‘H R9OH. //
R, H §-——————- @ Ry,
Ry H | ®-=======" * | Ry
o LN
// R270H RlsoH \\
./ \.
Ry H \j _________ L Ry Ry, Ry
Cay({Ry, H}: D) Cay({Ry, H}: D,)
I EXAMPLEZ S, = ((12), (123)).
a2 (123)
M V)
(12) | @-------- e |
13y - .\ (123)
(23) J """" ’\J (132)
Cay({(12), (123)}: S3) Cay({(12), (123)}: 5,)

B EXAMPLE 5 S, = ((12), (13)).

a2) T1m
(1) (12) (132)
CEEEEEE e o— o

......... o o
(13) (123) (23)

Cay({(12), (13)}: S;)



B EXAMPLE 6 A, = ((12)(34), (123)).
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(1234 (123)
(124) (14)(23)
(EDIEN
/// : (123) \\\
(143K ) (132)  p (13)(24)
(12x34) (235)
@3y (142)

Cay({(12)(34), (123)}: A))

B EXAMPLE7 Q, =(a,bla*=e,a* =D’ b 'ab = a’).

ab
\ PN
\ /

a’b
/
RN

ab| e
(U

Cay({a, b}: Q)

B EXAMPLE8 D= (a,b|a*>=b>=¢).

Ta b
ba b e a ab aba
———————— * —0¢--—---—--—-06—@-——--—————

Cay({a, b}: D,)

bab
co—e
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The Cayley digraph provides a quick and easy way to determine the
value of any product of the generators and their inverses. Consider, for
example, the product ab’ab~? from the group given in Example 7. To re-
duce this to one of the eight elements used to label the vertices, we need
only begin at the vertex e and follow the arcs from each vertex to the next
as specified in the given product. Of course, b~ ! means traverse the b arc
in reverse. (Observations such as b3 = b also help.) Tracing the product
through, we obtain b. Similarly, one can verify or discover other relations
among the generators.

Hamiltonian Circuits and Paths

Now that we have these directed graphs, what is it that we care to know
about them? One question about directed graphs that has been the object
of much research was popularized by the Irish mathematician
Sir William Hamilton in 1859, when he invented a puzzle called
“Around the World.” His idea was to label the 20 vertices of a regular
dodecahedron with the names of famous cities. One solves this puzzle
by starting at any particular city (vertex) and traveling “around the
world,” moving along the arcs in such a way that each other city is
visited exactly once before returning to the original starting point. One
solution to this puzzle is given in Figure 30.1, where the vertices are
visited in the order indicated.

Obviously, this idea can be applied to any digraph; that is, one starts
at some vertex and attempts to traverse the digraph by moving along

20
19 ‘ ' 16
12
11 13
18 17

Figure 30.1 Around the World
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arcs in such a way that each vertex is visited exactly once before
returning to the starting vertex. (To go from x to y, there must be an arc
from x to y.) Such a sequence of arcs is called a Hamiltonian circuit in
the digraph. A sequence of arcs that passes through each vertex exactly
once without returning to the starting point is called a Hamiltonian
path. In the rest of this chapter, we concern ourselves with the existence
of Hamiltonian circuits and paths in Cayley digraphs.

Figures 30.2 and 30.3 show a Hamiltonian path for the digraph given
in Example 2 and a Hamiltonian circuit for the digraph given in
Example 7, respectively.

Is there a Hamiltonian circuit in

Cay({(1,0), (0, )}: Z, © Z))?
More generally, let us investigate the existence of Hamiltonian circuits in
Cay({(1,0), (0, D}: Z D Z),

where m and n are relatively prime and both are greater than 1. Visualize
the Cayley digraph as a rectangular grid coordinatized with Z @ Z , as

0,0) @------ > 0 (0, 1)
(1,0) @ <« —————- e (1,1)
(2,0) ® ———--- >e (2,1)

Figure 30.2 Hamiltonian Path in Cay({(1, 0), (o, 1)}: Z3 DZ)
from (o, o) to (2, 1).

b® ® .
\
\ Il
\ /
s /
\ /
\ /
\ ’
N7
\ o/
\
ab @<--%----@ a
7\
7 \
7 \
/ \
/ \
/ \
7 \
/
2 ! \ 2
a’b e e
a’h @=<——————- o’

Figure 30.3 Hamiltonian Circuit in Cay({a, b}: Q4).
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in Figure 30.4. Suppose there is a Hamiltonian circuit in the digraph and
(a, b) is some vertex from which the circuit exits horizontally. (Clearly,
such a vertex exists.) Then the circuit must exit (¢ — 1, b + 1) horizon-
tally also, for otherwise the circuit passes through (a, b + 1) twice—see
Figure 30.5. Repeating this argument again and again, we see that the
circuit exits horizontally from each of the vertices (a, b), (@ — 1, b + 1),
(a—2,b+2),...,which is just the coset (a, b) + {(—1, 1)). But when
m and n are relatively prime, ((—1, 1)) is the entire group. Obviously,
there cannot be a Hamiltonian circuit consisting entirely of horizontal
moves. Let us record what we have just proved.

)
)

\ /
7’ N_/

/ \ / \ ,”\\ //ﬂ\
1 \ 1 + + 1 |
1 Y ' o o o I
LS00 oD 0,2 -
1 | 1 1 I 1
1 1 | 1 1
Lo Lo o L
| ] t T T
—y N oy >
T [ ) [ t ) e o o o
Lo Ay 1 L) L (e
Lo Lo P Lo .
IETN I T e
1 1 S
L - o o o
] 1
Lo Lo L Lo
b . . Lo
I 1 I | I I I I
| ' + T +
g ST SN U
VS (m=1,0) S (m-1, l)l‘ ' (m-1,2) V) (m=1,n-1)

/
\_/

Figure 30.4 Cay({(1,0),(0,1)}:Z, D Z).

(a—1,b+1)

[ ]

I

i

|

|

|

|

(a,b) ¥
o—> 0

Figure 30.5

I Theorem 30.1 A Necessary Condition

Cay({(1,0), (0, )}: Z D Z,) does not have a Hamiltonian circuit
when m and n are relatively prime and greater than 1.

What about when m and n are not relatively prime? In general, the
answer is somewhat complicated, but the following special case is easy
to prove.
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I Theorem 30.2 A Sufficient Condition

Cay({(1,0), (0, )}: Z, © Z,) has a Hamiltonian circuit when n

divides m.

First 3 X 3 block

kth 3 X 3 block
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-2 (0,0) 0, 1) 0,2)
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Figure 30.6 Cay({(1, 0), (0,1)}: Z, @ 23)
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PROOF Say, m = kn. Then we may think of Z @ Z as k blocks of
size n X n. (See Figure 30.6 for an example.) Start at (0, 0) and cover
the vertices of the top block as follows. Use the generator (0, 1) to move
horizontally across the first row to the end. Then use the generator (1, 0)
to move vertically to the point below, and cover the remaining points in
the second row by moving horizontally. Keep this process up until the
point (n — 1, 0)—the lower left-hand corner of the first block—has
been reached. Next, move vertically to the second block and repeat the
process used in the first block. Keep this up until the bottom block is
covered. Complete the circuit by moving vertically back to (0, 0). |

Notice that the circuit given in the proof of Theorem 30.2 is easy to
visualize but somewhat cumbersome to describe in words. A much
more convenient way to describe a Hamiltonian path or circuit is to
specify the starting vertex and the sequence of generators in the order
in which they are to be applied. In Example 5, for instance, we may
start at (1) and alternate the generators (12) and (13) until we return to
(). In Example 3, we may start at R, and successively apply Ry, Ry,
Ry, H, Ry, Ry, Ry, H. When k is a positive integer and a, b, . . ., c is
a sequence of group elements, we use k * (a, b, . . ., c¢) to denote the
concatenation of k copies of the sequence (a, b, . . ., ¢). Thus, 2 * (R,
Ry, Ry, H) and 2 * (3 * Ry, H) both mean Ry, Ry, Ry, H, Ry, Ry
Ry, H. With this notation, we may conveniently denote the Hamilton-
ian circuit given in Theorem 30.2 as

m* ((n—1)*(0, 1), (1, 0)).

We leave it as an exercise (Exercise 11) to show that if x|, x,, ..., x,
is a sequence of generators determining a Hamiltonian circuit starting
at some vertex, then the same sequence determines a Hamiltonian cir-
cuit for any starting vertex.

From Theorem 30.1, we know that there are some Cayley digraphs
of Abelian groups that do not have any Hamiltonian circuits. But Theorem
30.3 shows that each of these Cayley digraphs does have a Hamiltonian
path. There are some Cayley digraphs for non-Abelian groups that do not
even have Hamiltonian paths, but we will not discuss them here.

I Theorem 30.3 Abelian Groups Have Hamiltonian Paths

Let G be a finite Abelian group, and let S be any (nonempty") gener-
ating set for G. Then Cay(S:G) has a Hamiltonian path.

If S is the empty set, it is customary to define (S) as the identity group. We prefer to
ignore this trivial case.
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PROOF We induct on ISI. If ISI = 1, say, S = {a}, then the digraph is
just a circle labeled with e, a, @, . . ., a"~ !, where lal = m. Obviously,
there is a Hamiltonian path for this case. Now assume that IS| > 1.
Choose some s € S. Let T = § — {s}—thatis, T'is S with s removed—
and set H = (s, 5,, ..., s _,) where S = {s,s,,...,5 }and s = s .
(Notice that H may be equal to G.)

Because IT1 < ISI and H is a finite Abelian group, the induction hy-
pothesis guarantees that there is a Hamiltonian path (a,, a,, . . ., a,) in
Cay(T:H). We will show that

(a,ay,...,a,s,a,a S, . ..,0a;, 4

e s Oy .., da

- o S5 Ay - o S5 Ays Uy o o Q)
where a, a,, ..., a, occurs |GI/IH| times and s occurs IGl/IHI — 1
times, is a Hamiltonian path in Cay(S:G).

Because S = T U {s} and T generates H, the coset Hs generates the
factor group G/H. (Since G is Abelian, this group exists.) Hence, the
cosets of H are H, Hs, Hs?, . . ., Hs", where n = |GI/IH| — 1. Starting
from the identity element of G, the path given by (a,, a,, . . ., a,) Vvisits
each element of H exactly once [because (a,, a, ..., @) is a
Hamiltonian path in Cay(7:H)]. The generator s then moves us to some
element of the coset Hs. Starting from there, the path (a, a,, ..., a)
visits each element of Hs exactly once. Then, s moves us to the coset
Hs?, and we visit each element of this coset exactly once. Continuing
this process, we successively move to Hs®, Hs*, . . ., Hs", visiting each
vertex in each of these cosets exactly once. Because each vertex of
Cay(S:G) is in exactly one coset Hs', this implies that we visit each ver-

tex of Cay(S:G) exactly once. Thus we have a Hamiltonian path. |

We next look at Cayley digraphs with three generators.

B EXAMPLE9 Let
D, =(r.flr=f>=e1f=fr?.
Then a Hamiltonian circuit in
Cay({(r, 0), (£, 0), (e, )}: D, ® Z)
is given in Figure 30.7. |
(0 (0 (D) (1) (£2) (e,2) (£3) (e3) (4 (b (£S5 (e)9)

/?\0—>0 —> —> — 0 o—>0—>
L

—> 0

R

°
l
(r,0) @ ° °
l
°

[}
@ «— @ «—©O
o —> 0 —>0
«—— @ <——o
o —> 0 —> 0

° ° e (r,5)
(rzf,O)I<_ I<—£ o ~— ° -~ o I<—i(r2’5)

N T~

Figure 30.7
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Although it is not easy to prove, it is true that
Cay({(r, 0), (£, 0), (e, D}: D, Z,)

has a Hamiltonian circuit for all n and m. (See [3].) Example 10 shows
the circuit for this digraph when m is even.

§ EXAMPLE 10 Let

D ={(rflrm=f*=erf=fr!).
Then a Hamiltonian circuit in

Cay({(r, 0), (. 0), (e, D}: D, D Z,)

with m even is traced in Figure 30.8. The sequence of generators that
traces the circuit is

m* [(n— 1) *(r,0), (f,0), (n — 1) *(r, 0), (e, D]. L
— T
(.0) @ (e,0) ® e (1) o (e )
(f.0)® (r,0)® e— >o (r, 1)
...iterate
(°f,0) @ (.0)® o o 1)

(F-1f,000 ——— @ (ML0) e (M 1) e (1)

Figure 30.8

Some Applications

Cayley graphs are natural models for interconnection networks in com-
puter designs, and Hamiltonicity is an important property in relation to
sorting algorithms on such networks. One particular Cayley graph that
is used to design and analyze interconnection networks of parallel ma-
chines is the symmetric group S with the set of all transpositions as the
generating set. Hamiltonian paths and circuits in Cayley digraphs arise
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in a variety of group theory contexts. A Hamiltonian path in a Cayley
digraph of a group is simply an ordered listing of the group elements
without repetition. The vertices of the digraph are the group elements, and
the arcs of the path are generators of the group. In 1948, R. A. Rankin
used these ideas (although not the terminology) to prove that certain bell-
ringing exercises could not be done by the traditional methods employed
by bell ringers. (See [1, Chap. 22] for the group-theoretic aspects of bell
ringing.) In 1981, Hamiltonian paths in Cayley digraphs were used in an
algorithm for creating computer graphics of Escher-type repeating pat-
terns in the hyperbolic plane [2]. This program can produce repeating
hyperbolic patterns in color from among various infinite classes of sym-
metry groups. The program has now been improved so that the user may
choose from many kinds of color symmetry. The 2003 Mathematics
Awareness Month poster featured one such image (see http://www.
mathaware.org/mam/03/index.html). Two Escher drawings and their
computer-drawn counterparts are given in Figures 30.9-30.12.

In this chapter, we have shown how one may construct a directed
graph from a group. It is also possible to associate a group—called
the automorphism group—with every directed graph. In fact, several
of the 26 sporadic simple groups were first constructed in this way.

Figure 30.9 M. C. Escher’s Circle Limit |


http://www.mathaware.org/mam/03/index.html
http://www.mathaware.org/mam/03/index.html
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Figure 30.10 A computer duplication of the pattern of M. C. Escher’s Circle
Limit | [2]. The program used a Hamiltonian path in a Cayley digraph of the
underlying symmetry group.

3T

B “%R

Figure 30.11 M. C. Escher’s Circle Limit IV
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Figure 30.12 A computer drawing inspired by the pattern of
M. C. Escher’s Circle Limit IV [2]. The program used a Hamiltonian
path in a Cayley digraph of the underlying symmetry group.

A mathematician is a machine for turning coffee into theorems.
PAUL ERDOS

1. Find a Hamiltonian circuit in the digraph given in Example 7 dif-
ferent from the one in Figure 30.3.

2. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, }: 0, D Z)).

3. Find a Hamiltonian circuit in

Cay({(a, 0), (b,0), (e, )}: 0, D Z )
where m 1s even.

4. Write the sequence of generators for each of the circuits found in
Exercises 1, 2, and 3.

5. Use the Cayley digraph in Example 7 to evaluate the product
a*ba”'ba*b .
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6.

10.
11.

12.

13.

14.

15.

Let x and y be two vertices of a Cayley digraph. Explain why two
paths from x to y in the digraph yield a group relation. That is, an
equation of the form a,a, ...a, = bb, ... b, where the a,’s and
bj’s are generators of the Cayley digraph.

. Use the Cayley digraph in Example 7 to verify the relation

aba'b7la b7 = a?bad’.

. Identify the following Cayley digraph of a familiar group.
.\ @
\\. {//
,}4— o
o' e

.LetD, =(r,flr*=e=f% rf = fr!). Verify that

6% [3 % (r,0), (f,0),3%*(r,0), (e, 1]
is a Hamiltonian circuit in
Cay({(r, 0), (. 0), (e, D}: D, D Z).

Draw a picture of Cay({2, 5}: Z,).

If s, s, ..., s, is a sequence of generators that determines a
Hamiltonian circuit beginning at some vertex, explain why the same
sequence determines a Hamiltonian circuit beginning at any point.
(This exercise is referred to in this chapter.)

Show that the Cayley digraph given in Example 7 has a
Hamiltonian path from e to a.

Show that there is no Hamiltonian path in
Cay({(1,0), (0, 1)}: Z,© Z)

from (0, 0) to (2, 0).

Draw Cay({2, 3}: Z). Is there a Hamiltonian circuit in this

digraph?

a. Let G be a group of order n generated by a set S. Show that a se-
quence s, s,, ..., s _, of elements of § is a Hamiltonian path in
Cay(S:G) if and only if, for all i and j with 1 =i =j < n, we
have s.s, | - - - 5; F e.

b. Show that the sequence ss, - - - s, is a Hamiltonian circuit if
and only if 5,5, - - - s, = e, and that whenever 1 =i =j <n, we

haves.s.. ,---s. # e.
ivitl J



16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.
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Let D, = {a, b | a*> = b* = (ab)* = ¢). Draw Cay({a, b}: D,). Why
is it reasonable to say that this digraph is undirected?

Let D, be as in Example 10. Show that 2 * [(n — 1) * r, f]is a
Hamiltonian circuit in Cay({r, f}: D).

Let Qg =(a, bl a® = e, a* = b* b~ 'ab = a~'). Find a Hamiltonian
circuit in Cay({a, b}: Q).

Let Qg be as in Exercise 18. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, D}: Q5 D Zy).
Prove that the Cayley digraph given in Example 6 does not have a
Hamiltonian circuit. Does it have a Hamiltonian path?
Find a Hamiltonian circuit in

Cay({(Ry, 0), (H, 0), (R, 1)}: D, & Z,).

Does this circuit generalize to the case D, ,, @ Z for all n = 3?
Let Qg be as in Exercise 18. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}: O, D Z ) for all even m.
Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}: 0, D Z,).
Find a Hamiltonian circuit in
Cay({(a, 0), (0, 0), (e, 1)}: O, © Z ) for all odd m = 3.
Write the sequence of generators that describes the Hamiltonian

circuit in Example 9.
Let D, be as in Example 10. Find a Hamiltonian circuit in

Cay({(r, 0), (£, 0), (e, D}: D, ® Z).

Does your circuit generalize to the case D, @ Z | for all n = 4?
Prove that Cay({(0, 1), (1, 1)}: Z & Z ) has a Hamiltonian circuit
for all m and n greater than 1.

Suppose that a Hamiltonian circuit exists for Cay({(1, 0), (0, 1)}:
Z © Z ) and that this circuit exits from vertex (a, b) vertically.
Show that the circuit exits from every member of the coset (a, b)
+ ((1, —1)) vertically.

Let D, = (r,f|r* = f> = e, rf = fr™'). Find a Hamiltonian circuit
in Cay({(r, 0), (£, 0), (e, 1)}: D, D Z,).

Let Q, be as in Exercise 18. Find a Hamiltonian circuit in Cay({(a, 0),

(b, 0), (¢, 1)}: Oy B Z,).
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31. In Cay({(1,0), (0, D}: Z, S5 Z,) find a sequence of generators that
visits exactly one vertex twice and all others exactly once and re-
turns to the starting vertex.

32. In Cay({(1, 0), (0, 1)}: Z, @ Z,) find a sequence of generators that
visits exactly two vertices twice and all others exactly once and re-
turns to the starting vertex.

33. Find a Hamiltonian circuit in Cay({(1, 0), (0, 1)}: Z, © Z).

34. (Factor Group Lemma) Let S be a generating set for a group G, let
N be a cyclic normal subgroup of G, and let

S={sN|ls€ES}.
If (a,N, ..., a,N)is a Hamiltonian circuit in Cay(S:G/N) and the
product a, - - - a, generates N, prove that

INI * (a,...,a,)

is a Hamiltonian circuit in Cay(S:G).

35. Afinite group is called Hamiltonian if all of its subgroups are normal.
(One non-Abelian example is Q,.) Show that Theorem 30.3 can be
generalized to include all Hamiltonian groups.
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William Rowan
Hamilton

After Isaac Newton, the greatest mathe-
matician of the English-speaking peoples is
William Rowan Hamilton.

SIR EDMUND WHITTAKER,
Scientific American

WILLIAM ROWAN HAMILTON was born on
August 3, 1805, in Dublin, Ireland. At
three, he was skilled at reading and arith-
metic. At five, he read and translated Latin,
Greek, and Hebrew; at 14, he had mastered
14 languages, including Arabic, Sanskrit,
Hindustani, Malay, and Bengali.

In 1833, Hamilton provided the first
modern treatment of complex numbers. In
1843, he made what he considered his great-
est discovery—the algebra of quaternions.
The quaternions represent a natural general-
ization of the complex numbers with three
numbers I, j, and k whose squares are — 1.

l

T YT Y Y T Ty
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This stamp featuring the quaternions was
issued in 1983.
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With these, rotations in three and four di-
mensions can be algebraically treated. Of
greater significance, however, is the fact that
the quaternions are noncommutative under
multiplication. This was the first ring to be
discovered in which the commutative prop-
erty does not hold. The essential idea for the
quaternions suddenly came to Hamilton after
15 years of fruitless thought!

Today Hamilton’s name is attached to sev-
eral concepts, such as the Hamiltonian func-
tion, which represents the total energy in a
physical system; the Hamilton-Jacobi differ-
ential equations; and the Cayley-Hamilton
Theorem from linear algebra. He also coined
the terms vector, scalar, and tensor.

In his later years, Hamilton was plagued
by alcoholism. He died on September 2,
1865, at the age of 60.

For more information about Hamilton,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/


http://www-groups.dcs.st-and.ac.uk/~history/This
http://www-groups.dcs.st-and.ac.uk/~history/This
http://www-groups.dcs.st-and.ac.uk/~history/This

Paul Erdos

Paul Erdds is a socially helpless Hungarian
who has thought about more mathemati-
cal problems than anyone else in history.

The Atlantic Monthly

PauL ErDOs (pronounced AIR-dish) was
one of the best-known and most highly re-
spected mathematicians of the 20th century.
Unlike most of his contemporaries, who
have concentrated on theory building, Erdos
focused on problem solving and problem
posing. The problems and methods of solu-
tion of Erdos—Iike those of Euler, whose
solutions to special problems pointed the
way to much of the mathematical theory
we have today—have helped pioneer new
theories, such as combinatorial and probabilis-
tic number theory, combinatorial geometry,
probabilistic and transfinite combinatorics,
and graph theory.

Erdos was born on March 26, 1913, in
Hungary. Both of his parents were high
school mathematics teachers. Erdos, a Jew,
left Hungary in 1934 at the age of 21 be-
cause of the rapid rise of anti-Semitism in
Europe. For the rest of his life he traveled
incessantly, rarely pausing more than a
month in any one place, giving lectures for

small honoraria and staying with fellow
mathematicians. He had little property and
no fixed address. All that he owned he car-
ried with him in a medium-sized suitcase,
frequently visiting as many as 15 places in a
month. His motto was, “Another roof, an-
other proof.” Even in his eighties, he put in
19-hour days doing mathematics.

Erdos wrote more than 1500 research pa-
pers. He coauthored papers with more than
500 people. These people are said to have
Erd6s number 1. People who do not have
Erdos number 1, but who have written a
paper with someone who does, are said to
have Erd6s number 2, and so on, induc-
tively. Erdos died of a heart attack on Sep-
tember 20, 1996, in Warsaw, Poland.

For more information about Erdos, visit:

http://www-groups.dcs.st-and
.ac.uk/~history/
http://www.oakland.edu/~grossman/
erdoshp.html
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Introduction

to Algebraic
Coding Theory

Damn it, if the machine can detect an error, why can't it locate the position
of the error and correct it?
RICHARD W. HAMMING

Motivation

518

One of the most interesting and important applications of finite fields
has been the development of algebraic coding theory. This theory,
which originated in the late 1940s, was created in response to practical
communication problems. (Algebraic coding has nothing to do with
secret codes.) Algebraic codes are now used in compact disk and DVD
players, fax machines, digital televisions, and bar code scanners, and
are essential to computer maintenance.

To motivate this theory, imagine that we wish to transmit one of two
possible signals to a spacecraft approaching Mars. If the proposed
landing site appears unfavorable, we will command the craft to orbit
the planet; otherwise, we will command the craft to land. The signal for
orbiting will be a 0, and the signal for landing will be a 1. But it is pos-
sible that some sort of interference (called noise) could cause an incor-
rect message to be received. To decrease the chance of this happening,
redundancy is built into the transmission process. For example, if we
wish the craft to orbit Mars, we could send five Os. The craft’s onboard
computer is programmed to take any five-digit message received and
decode the result by majority rule. So, if 00000 is sent and 10001 is re-
ceived, the computer decides that O was the intended message. Notice
that, for the computer to make the wrong decision, at least three errors
must occur during transmission. If we assume that errors occur
independently, it is less likely that three errors will occur than that two
or fewer errors will occur. For this reason, this decision process is fre-
quently called the maximum-likelihood decoding procedure. Our par-
ticular situation is illustrated in Figure 31.1. The general coding proce-
dure is illustrated in Figure 31.2.
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Original Encoded Received Decoded
message message message message
0 00000 Noise 10001 0

earth

| »| encoder |— | transmitter || spacecraft | 5| decoder | »

Original
message

Figure 31.1 Encoding and decoding by fivefold repetition

Encoded Noisy Received
message channel message

Decoded

encoder transmitter receiver decoder | » message

Figure 31.2 General encoding-decoding

In practice, the means of transmission are telephone, radiowave,
microwave, or even a magnetic disk. The noise might be human error,
crosstalk, lightning, thermal noise, or deterioration of a disk. Through-
out this chapter, we assume that errors in transmission occur indepen-
dently. Different methods are needed when this is not the case.

Now, let’s consider a more complicated situation. This time, assume
that we wish to send a sequence of Os and 1s of length 500. Further,
suppose that the probability that an error will be made in the transmis-
sion of any particular digit is .01. If we send this message directly, with-
out any redundancy, the probability that it will be received error free is
(.99)°%, or approximately .0066.

On the other hand, if we adopt a threefold repetition scheme by
sending each digit three times and decoding each block of three digits
received by majority rule, we can do much better. For example, the se-
quence 1011 is encoded as 111000111111. If the received message is
011000001110, the decoded message is 1001. Now, what is the proba-
bility that our 500-digit message will be error free? Well, if a 1, say, is
sent, it will be decoded as a 0 if and only if the block received is 001,
010, 100, or 000. The probability that this will occur is

ODH(.0D)(.99) + (.01)(.99)(.01) + (.99)(.01)(.01) + (.01)(.01)(.01)
(.01)*[3(.99) + .01]
=.000298 < .0003.

Thus, the probability that any particular digit in the sequence will be
decoded correctly is greater than .9997, and it follows that the proba-
bility that the entire 500-digit message will be decoded correctly is
greater than (.9997)°%, or approximately .86—a dramatic improvement
over .0066.
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This example illustrates the three basic features of a code. There is a
set of messages, a method of encoding these messages, and a method of
decoding the received messages. The encoding procedure builds some
redundancy into the original messages; the decoding procedure corrects
or detects certain prescribed errors. Repetition codes have the advantage
of simplicity of encoding and decoding, but they are too inefficient. In a
fivefold repetition code, 80% of all transmitted information is redun-
dant. The goal of coding theory is to devise message encoding and
decoding methods that are reliable, efficient, and reasonably easy to
implement.

Before plunging into the formal theory, it is instructive to look at a
sophisticated example.

I EXAMPLE 1 The Hamming (7, 4) Code

This time, our message set consists of all possible 4-tuples of Os and 1s
(that is, we wish to send a sequence of Os and 1s of length 4). Encod-
ing will be done by viewing these messages as 1 X 4 matrices with en-
tries from Z, and multiplying each of the 16 messages on the right by
the matrix

1000110

0100101
G =

0010T1TT11

0001011

(All arithmetic is done modulo 2.) The resulting 7-tuples are called
code words. (See Table 31.1.)

Table 31.1

Message Encoder G  Code Word Message Encoder G Code Word
0000 - 0000000 0110 - 0110010
0001 - 0001011 0101 - 0101110
0010 - 0010111 0011 - 0011100
0100 - 0100101 1110 - 1110100
1000 - 1000110 1101 - 1101000
1100 - 1100011 1011 - 1011010
1010 - 1010001 0111 - 0111001
1001 - 1001101 1111 - 1111111
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Notice that the first four digits of each code word constitute just the
original message corresponding to the code word. The last three digits
of the code word constitute the redundancy features. For this code, we
use the nearest-neighbor decoding method (which, in the case that the
errors occur independently, is the same as the maximum-likelihood de-
coding procedure). For any received word v, we assume that the word
sent is the code word v’ that differs from v in the fewest number of po-
sitions. If the choice of v is not unique, we can decide not to decode or
arbitrarily choose one of the code words closest to v. (The first option
is usually selected when retransmission is practical.)

Once we have decoded the received word, we can obtain the message
by deleting the last three digits of v'. For instance, suppose that 1000
were the intended message. It would be encoded and transmitted as u =
1000110. If the received word were v = 1100110 (an error in the second
position), it would still be decoded as u, since v and u differ in only one
position, whereas v and any other code word would differ in at least two
positions. Similarly, the intended message 1111 would be encoded as
1111111. If, instead of this, the word 0111111 were received, our decod-
ing procedure would still give us the intended message 1111. |

The code in Example 1 is one of an infinite class of important codes
discovered by Richard Hamming in 1948. The Hamming codes are the
most widely used codes.

The Hamming (7, 4) encoding scheme can be conveniently illus-
trated with the use of a Venn diagram, as shown in Figure 31.3. Begin
by placing the four message digits in the four overlapping regions I, II,

B B
S OVARNVAON

C C

Figure 31.3 Venn diagram of the message 1001 and the encoded
message 1001101
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III, and IV, with the digit in position 1 in region I, the digit in position
2 in region II, and so on. For regions V, VI, and VII, assign O or 1 so that
the total number of 1s in each circle is even.

Consider the Venn diagram of the received word 0001101:

A B

"
/SN

C

How may we detect and correct an error? Well, observe that each of the
circles A and B has an odd number of 1s. This tells us that something is
wrong. At the same time, we note that circle C has an even number of 1s.
Thus, the portion of the diagram that is in both A and B but not in C is
the source of the error. See Figure 31.4.

Quite often, codes are used to detect errors rather than correct them.
This is especially appropriate when it is easy to retransmit a message.
If a received word is not a code word, we have detected an error. For
example, computers are designed to use a parity check for numbers. In-
side the computer, each number is represented by a string of Os and 1s.
If there is an even number of 1s in this representation, a 0 is attached to
the string; if there is an odd number of 1s in the representation, a 1
is attached to the string. Thus, each number stored in the computer
memory has an even number of 1s. Now, when the computer reads a

A B

.
oa

C

Figure 31.4 Circles A and B but not C have wrong parity
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number from memory, it performs a parity check. If the read number
has an odd number of 1s, the computer will know that an error has been
made, and it will reread the number. Note that an even number of errors
will not be detected by a parity check.

The methods of error detection introduced in Chapters 0 and 5 are
based on the same principle. An extra character is appended to a string
of numbers so that a particular condition is satisfied. If we find that
such a string does not satisfy that condition, we know that an error has
occurred.

Linear Codes

We now formalize some of the ideas introduced in the preceding
discussion.

Definition Linear Code
An (n, k) linear code over a finite field F is a k-dimensional subspace V
of the vector space

F'=FOF®---®F

n copies

over F. The members of V are called the code words. When F is Z,, the
code is called binary.

One should think of an (n, k) linear code over F as a set of n-tuples
from F, where each n-tuple has two parts: the message part, consisting
of k digits; and the redundancy part, consisting of the remaining n — k
digits. Note that an (n, k) linear code over a finite field F of order ¢ has
g* code words, since every member of the code is uniquely expressible
as a linear combination of the & basis vectors with coefficients from F.
The set of g* code words is closed under addition and scalar multipli-
cation by members of F. Also, since errors in transmission may occur
in any of the n positions, there are ¢" possible vectors that can be
received. Where there is no possibility of confusion, it is customary to
denote an n-tuple (a,, a,, . . . , a,) more simply as a,a, * * - a,, as we
did in Example 1.

I EXAMPLE 2 The set

{0000000, 0010111, 0101011, 1001101,
1100110, 1011010, 0111100, 1110001}

is a (7, 3) binary code. |
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§ EXAMPLE 3 The set {0000, 0101, 1010, 1111} is a (4, 2) binary
code. |

Although binary codes are by far the most important ones, other
codes are occasionally used.

# EXAMPLE 4 The set
{0000, 0121, 0212, 1022, 1110, 1201, 2011, 2102, 2220}

is a (4, 2) linear code over Z,. A linear code over Z, is called a ternary
code. |

To facilitate our discussion of the error-correcting and error-
detecting capability of a code, we introduce the following terminology.

Definitions Hamming Distance, Hamming Weight

The Hamming distance between two vectors in F" is the number of com-
ponents in which they differ. The Hamming weight of a vector is the
number of nonzero components of the vector. The Hamming weight of a
linear code is the minimum weight of any nonzero vector in the code.

We will use d(u, v) to denote the Hamming distance between the
vectors u and v, and wt(u) for the Hamming weight of the vector u.

B EXAMPLE 5 Lets = 0010111, r = 0101011, # = 1001101, and v =
1101101. Then, d(s, t) = 4, d(s, u) = 4, d(s, v) = 5, d(u, v) = 1; and
wt(s) = 4, wt(t) = 4, wt(u) = 4, wt(v) = 5. |

The Hamming distance and Hamming weight have the following
important properties.

I Theorem 31.1 Properties of Hamming Distance and Hamming Weight

For any vectors u, v, and w, d(u, v) = d(u, w) + d(w, v) and d(u, v) =
wt(u — v).

PROOF To prove that d(u, v) = wt(u — v), simply observe that both
d(u, v) and wt(u — v) equal the number of positions in which # and v
differ. To prove that d(u, v) = d(u, w) + d(w, v), note that if u and v differ
in the ith position and u and w agree in the ith position, then w and v
differ in the ith position. |
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With the preceding definitions and Theorem 31.1, we can now
explain why the codes given in Examples 1, 2, and 4 will correct any
single error, but the code in Example 3 will not.

I Theorem 31.2 Correcting Capability of a Linear Code

If the Hamming weight of a linear code is at least 2t + 1, then the
code can correct any t or fewer errors. Alternatively, the same code
can detect any 2t or fewer errors.

PROOF We will use nearest-neighbor decoding; that is, for any re-
ceived vector v, we will assume that the corresponding code word sent is
a code word v’ such that the Hamming distance d(v, v') is a minimum.
(If there is more than one such v', we do not decode.) Now, suppose that
a transmitted code word u is received as the vector v and that at most ¢
errors have been made in transmission. Then, by the definition of dis-
tance between u and v, we have d(u, v) = t. If w is any code word other
than u, then w — u is a nonzero code word. Thus, by assumption,

2t + 1 =wtlw —u) = dw, u) = dlw,v) + dv, u) = dw, v) + t,

and it follows that t + 1 = d(w, v). So, the code word closest to the re-
ceived vector v is u, and therefore v is correctly decoded as u.

To show that the code can detect 2¢ errors, we suppose that a trans-
mitted code word u is received as the vector v and that at least one
error, but no more than 2¢ errors, was made in transmission. Because
only code words are transmitted, an error will be detected whenever a
received word is not a code word. But v cannot be a code word, since
d(v, u) = 2t, whereas we know that the minimum distance between dis-
tinct code words is at least 2¢ + 1. |

Theorem 31.2 is often misinterpreted to mean that a linear code with
Hamming weight 2¢ + 1 can correct any t errors and detect any 2¢ or
fewer errors simultaneously. This is not the case. The user must choose
one or the other role for the code. Consider, for example, the Hamming
(7, 4) code given in Table 31.1. By inspection, the Hamming weight of
the codeis 3 =2 - 1 + 1, so we may elect either to correct any single
error or to detect any one or two errors. To understand why we can’t do
both, consider the received word 0001010. The intended message
could have been 0000000, in which case two errors were made (like-
wise for the intended messages 1011010 and 0101110), or the intended
message could have been 0001011, in which case one error was made.
But there is no way for us to know which of these possibilities oc-
curred. If our choice were error correction, we would assume—perhaps
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mistakenly—that 0001011 was the intended message. If our choice
were error detection, we simply would not decode. (Typically, one
would request retransmission.)

On the other hand, if we write the Hamming weight of a linear code
in the form 2¢ + s + 1, we can correct any ¢ errors and detect any ¢ + s
or fewer errors. Thus, for a code with Hamming weight 5, our options
include the following:

1. Detect any four errors (t = 0, s = 4).

2. Correct any one error and detect any two or three errors (¢ = 1,
s =2).

3. Correct any two errors ( = 2, s = 0).

# EXAMPLE 6 Since the Hamming weight of the linear code given in
Example 2 is 4, it will correct any single error and detect any two errors
(t =1,s = 1) or detect any three errors (¢t = 0, s = 3). |

It is natural to wonder how the matrix G used to produce the Ham-
ming code in Example 1 was chosen. Better yet, in general, how can
one find a matrix G that carries a subspace V of F* to a subspace of F"
in such a way that for any k-tuple v in V, the vector vG will agree with
v in the first kK components and build in some redundancy in the last
n — k components? Such a matrix is a k X n matrix of the form

1 0 0] a, -+ ay,_s
0 1 0 .
100 L] ay T Qg -k

where the al.j’s belong to F. A matrix of this form is called the standard
generator matrix (or standard encoding matrix) for the resulting code.

Any k X n matrix whose rows are linearly independent will trans-
form F* to a k-dimensional subspace of F" that could be used to build
redundancy, but using the standard generator matrix has the advantage
that the original message constitutes the first £ components of the
transformed vectors. An (n, k) linear code in which the k information
digits occur at the beginning of each code word is called a systematic
code. Schematically, we have

Encoder

A 4

message
k— digits— —k —f n—k |

message | redundant digits
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Notice that, by definition, a standard generator matrix produces a sys-
tematic code.

# EXAMPLE 7 From the set of messages
{000, 001, 010, 100, 110, 101, 011, 111},

we may construct a (6, 3) linear code over Z, with the standard gene-
rator matrix

100110
G={010101
001111

The resulting code words are given in Table 31.2. Since the minimum
weight of any nonzero code word is 3, this code will correct any single

error or detect any double error. |
Table 31.2
Message Encoder G Code Word

000 - 000000
001 - 001111
010 - 010101
100 - 100110
110 - 110011
101 - 101001
011 - 011010
111 - 111100

B EXAMPLE 8 Here we take a set of messages as
{00, 01, 02, 10, 11, 12, 20, 21, 22},

and we construct a (4, 2) linear code over Z, with the standard genera-

tor matrix
{1 02 1]
G = .
0122

The resulting code words are given in Table 31.3. Since the minimum
weight of the code is 3, it will correct any single error or detect any
double error. |
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Table 31.3

Message Encoder G Code Word
00 - 0000
01 - 0122
02 - 0211
10 — 1021
11 - 1110
12 - 1202
20 - 2012
21 - 2101
22 - 2220

Parity-Check Matrix Decoding

Now that we can conveniently encode messages with a standard gener-
ator matrix, we need a convenient method for decoding the received
messages. Unfortunately, this is not as easy to do; however, in the case
where at most one error per code word has occurred, there is a fairly
simple method for decoding. (When more than one error occurs in a
code word, our decoding method fails.)

To describe this method, suppose that V is a systematic linear
code over the field F given by the standard generator matrix G =
[£, | A], where [, represents the k X k identity matrix and A is the k X
(n — k) matrix obtained from G by deleting the first k columns of G.
Then, the n X (n — k) matrix

o
H=|—/,
In—k

where —A is the negative of A and I _, is the (n — k) X (n — k) iden-
tity matrix, is called the parity-check matrix for V. (In the literature, the
transpose of H is called the parity-check matrix, but H is much more
convenient for our purposes.) The decoding procedure is:

1. For any received word w, compute wH.

2. If wH is the zero vector, assume that no error was made.

3. If there is exactly one instance of a nonzero element s € F and a
row i of H such that wH is s times row i, assume that the sent word
wasw — (0...s...0), where s occurs in the ith component. If
there is more than one such instance, do not decode.

3’. When the code is binary, category 3 reduces to the following. If
wH 1is the ith row of H for exactly one i, assume that an error was
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made in the ith component of w. If wH is more than one row of H,
do not decode.

4. If wH does not fit into either category 2 or category 3, we know that
at least two errors occurred in transmission and we do not decode.

I EXAMPLE 9 Consider the Hamming (7, 4) code given in Example
1. The generator matrix is

1000110

0100T1O01
11
11

00101
00010

and the corresponding parity-check matrix is

11 0]
101
111
H=[0 1 1|
100
010
00 1

Now, if the received vector is v = 0000110, we find vH = 110. Since this
is the first row of H and no other row, we assume that an error has been
made in the first position of v. Thus, the transmitted code word is as-
sumed to be 1000110, and the corresponding message is assumed to be
1000. Similarly, if w = 1011111 is the received word, then wH = 101,
and we assume that an error has been made in the second position. So,
we assume that 1111111 was sent and that 1111 was the intended mes-
sage. If the encoded message 1001101 is received as z = 1001011 (with
errors in the fifth and sixth positions), we find zH = 110. Since this
matches the first row of H, we decode z as 0001011 and incorrectly
assume that the message 0001 was intended. On the other hand, nearest-
neighbor decoding would yield the same incorrect result. |

Notice that when only one error was made in transmission, the
parity-check decoding procedure gave us the originally intended mes-
sage. We will soon see under what conditions this is true, but first we
need an important fact relating a code given by a generator matrix and
its parity-check matrix.
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I Lemma Orthogonality Relation

Let C be a systematic (n, k) linear code over F with a standard
generator matrix G and parity-check matrix H. Then, for any vector v
in F", we have vH = 0 (the zero vector) if and only if v belongs to C.

PROOF First note that, since H has rank n — k, we may think of H as
a linear transformation from F” onto F"~*. Therefore, it follows from
the dimension theorem for linear transformations that n =
n — k + dim (Ker H), so that Ker H has dimension k. (Alternatively,
one can use a group theory argument to show that IKer Hl = |FI¥.)
Then, since the dimension of C is also k, it suffices to show that

A
C C Ker H. To do this, let G = [I, | A], so that H = [1] Then,

n—k

A

GH = [I, 1 A] L} =—-A+A=]0] (the zero matrix).
n—k

Now, by definition, any vector v in C has the form mG, where m is a

message vector. Thus, vH = (mG)H = m(GH) = m[0] = 0 (the zero

vector). |

Because of the way H was defined, the parity-check matrix method
correctly decodes any received word in which no error has been made.
But it will do more.

I Theorem 31.3 Parity-Check Matrix Decoding

Parity-check matrix decoding will correct any single error if and only
if the rows of the parity-check matrix are nonzero and no one row is
a scalar multiple of any other row.

PROOF For simplicity’s sake, we prove only the binary case. In this
special situation, the condition on the rows is that they are nonzero and
distinct. So, let H be the parity-check matrix, and let’s assume that this
condition holds for the rows. Suppose that the transmitted code word w
was received with only one error, and that this error occurred in the ith
position. Denoting the vector that has a 1 in the ith position and Os else-
where by e, we may write the received word as w + e.. Now, using the
Orthogonality Lemma, we obtain

(w+e)H=wH+eH=0+e¢H=eH.

But this last vector is precisely the ith row of H. Thus, if there was ex-
actly one error in transmission, we can use the rows of the parity-check



31 | Introduction to Algebraic Coding Theory 531

matrix to identify the location of the error, provided that these rows are
distinct. (If two rows, say, the ith and jth, are the same, we know that
the error occurred in either the ith position or the jth position, but we
do not know in which.)

Conversely, suppose that the parity-check matrix method correctly
decodes all received words in which at most one error has been made
in transmission. If the ith row of the parity-check matrix H were
the zero vector and if the code word u = 0 - - - O were received as e,
we would find ¢, = 0 - - - 0, and we would erroneously assume that
the vector e, was sent. Thus, no row of H is the zero vector. Now, sup-
pose that the ith row of H and the jth row of H are equal and i # j.
Then, if some code word w is transmitted and the received word is
w + e, (that is, there is a single error in the ith position), we find

(w + e)H = wH + ¢, H = ith row of H = jth row of H.

Thus, our decoding procedure tells us not to decode. This contradicts
our assumption that the method correctly decodes all received words in
which at most one error has been made. |

Coset Decoding

There is another convenient decoding method that utilizes the fact that
an (n, k) linear code C over a finite field F is a subgroup of the additive
group of V = F". This method was devised by David Slepian in 1956
and is called coset decoding (or standard decoding). To use this
method, we proceed by constructing a table, called a standard array.
The first row of the table is the set C of code words, beginning in col-
umn 1 with the identity O . . . 0. To form additional rows of the table,
choose an element v of V not listed in the table thus far. Among all the
elements of the coset v + C, choose one of minimum weight, say, v'.
Complete the next row of the table by placing under the column headed
by the code word c the vector v' + ¢. Continue this process until all the
vectors in V have been listed in the table. [Note that an (n, k) linear code
over a field with g elements will have |1V:Cl = ¢" ¥ rows.] The words
in the first column are called the coset leaders. The decoding procedure
is simply to decode any received word w as the code word at the head
of the column containing w.

B EXAMPLE 10 Consider the (6, 3) binary linear code

C = {000000, 100110, 010101, 001011, 110011, 101101, 011110, 111000}.

The first row of a standard array is just the elements of C. Obviously,
100000 is not in C and has minimum weight among the elements of
100000 + C, so it can be used to lead the second row. Table 31.4 is the
completed table.
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Table 31.4 A Standard Array for a (6, 3) Linear Code

Words
Coset
Leaders

000000 100110 010101 001011 110011 101101 011110 111000
100000 000110 110101 101011 010011 001101 111110 011000
010000 110110 000101 011011 100011 111101 001110 101000
001000 101110 011101 000011 111011 100101 010110 110000
000100 100010 010001 001111 110111 101001 011010 111100
000010 100100 010111 001001 110001 101111 011100 111010
000001 100111 010100 001010 110010 101100 011111 111001
100001 000111 110100 101010 010010 001100 111111 011001

If the word 101001 is received, it is decoded as 101101, since
101001 lies in the column headed by 101101. Similarly, the received
word 011001 is decoded as 111000. |

Recall that the first method of decoding that we introduced was the
nearest-neighbor method; that is, any received word w is decoded as
the code word c¢ such that d(w, ¢) is a minimum, provided that there is
only one code word ¢ such that d(w, c) is a minimum. The next result
shows that in this situation, coset decoding is the same as nearest-
neighbor decoding.

I Theorem 31.4 Coset Decoding Is Nearest-Neighbor Decoding

In coset decoding, a received word w is decoded as a code word c such
that d(w, ¢) is a minimum.

PROOF Let Cbe alinear code, and let w be any received word. Suppose
that v is the coset leader for the coset w + C. Then,w + C = v + C, so
w = v + ¢ for some c in C. Thus, using coset decoding, w is decoded
as ¢. Now, if ¢’ is any code word, thenw —c¢' €w + C =v + C, so
that wt(w — ¢") = wt(v), since the coset leader v was chosen as a vector
of minimum weight among the members of v + C.

Therefore,

dw, ¢') = wt(w — ¢') = wt(v) = wt(w — ¢) = d(w, ¢).

So, using coset decoding, w is decoded as a code word ¢ such that
d(w, c) is a minimum. |

Recall that in our description of nearest-neighbor decoding, we
stated that if the choice for the nearest neighbor of a received word v is
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not unique, then we can decide not to decode or to decode v arbitrarily
from among those words closest to v. In the case of coset decoding, the
decoded value of v is always uniquely determined by the coset leader
of the row containing the received word. Of course, this decoded value
may not be the word that was sent.

When we know a parity-check matrix for a linear code, coset decod-
ing can be considerably simplified.

Definition Syndrome
If an (n, k) linear code over F has parity-check matrix H, then, for any
vector u in F*, the vector uH is called the syndrome’ of u.

The importance of syndromes stems from the following property.
I Theorem 31.5 Same Coset—Same Syndrome

Let C be an (n, k) linear code over F with a parity-check matrix H.
Then, two vectors of F" are in the same coset of C if and only if they
have the same syndrome.

PROOF Two vectors u and v are in the same coset of C if and only if
u — visin C. So, by the Orthogonality Lemma, «# and v are in the same
coset if and only if 0 = (u — v)H = uH — vH. |

We may now use syndromes for decoding any received word w:

1. Calculate wH, the syndrome of w.
2. Find the coset leader v such that wH = vH.
3. Assume that the vector sent was w — v.

With this method, we can decode any received word with a table that
has only two rows—one row of coset leaders and another row with the
corresponding syndromes.

# EXAMPLE 11 Consider the code given in Example 10. The parity-
check matrix for this code is

OO = O = =
S = O = O =
—_ 0 O = = O

"This term was coined by D. Hagelbarger in 1959.
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The list of coset leaders and corresponding syndromes is

Coset leader 000000 100000 010000 001000 000100 000010 000001 100001

Syndromes 000 110 101 011 100 010 001 111

So, to decode the received word w = 101001, we compute wH = 100.
Since the coset leader v = 000100 has 100 as its syndrome, we assume that
w — 000100 = 101101 was sent. If the received word is w' = 011001,
we compute w'H = 111 and assume w’' — 100001 = 111000 was
sent because 100001 is the coset leader with syndrome 111. Notice that
these answers are in agreement with those obtained by using the standard-
array method of Example 10. |

The term syndrome is a descriptive term. In medicine, it is used to
designate a collection of symptoms that typify a disorder. In coset de-
coding, the syndrome typifies an error pattern.

In this chapter, we have presented algebraic coding theory in
its simplest form. A more sophisticated treatment would make substan-
tially greater use of group theory, ring theory, and especially finite-field
theory. For example, Gorenstein (see Chapter 25 for a biography) and
Zierler, in 1961, made use of the fact that the multiplicative subgroup
of a finite field is cyclic. They associated each digit of certain codes
with a field element in such a way that an algebraic equation would be
derived whose zeros determined the locations of the errors.

In some instances, two error-correcting codes are employed. The
European Space Agency space probe Giotto, which came within
370 miles of the nucleus of Halley’s Comet in 1986, had two error-
correcting codes built into its electronics. One code checked for
independently occurring errors, and another—a so-called Reed-
Solomon code—checked for bursts of errors. Giotto achieved an error-
detection rate of 0.999999. Reed-Solomon codes are also used on
compact discs. They can correct thousands of consecutive errors.
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Irving Reed and Gustave Solomon
monitor the encounter of Voyager I
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We conclude this chapter with an adapted version of an article by Barry A. Cipra about

the Reed-Solomon codes [1]. It was the first in a series of articles called ‘“Mathematics

That Counts” in STAM News, the news journal of the Society for Industrial and Applied

Mathematics. The articles highlight developments in mathematics that have led to

products and processes of substantial benefit to industry and the public.

In this “Age of Information,” no one need be
reminded of the importance not only of
speed but also of accuracy in the storage, re-
trieval, and transmission of data. Machines
do make errors, and their non-man-made
mistakes can turn otherwise flawless pro-
gramming into worthless, even dangerous,
trash. Just as architects design buildings that
will remain standing even through an earth-
quake, their computer counterparts have
come up with sophisticated techniques capa-
ble of counteracting digital disasters.

The idea for the current error-correcting
techniques for everything from computer
hard disk drives to CD players was first in-
troduced in 1960 by Irving Reed and
Gustave Solomon, then staff members at
MIT’s Lincoln Laboratory. . . .

“When you talk about CD players and dig-
ital audio tape and now digital television, and
various other digital imaging systems that are
coming—all of those need Reed-Solomon
[codes] as an integral part of the system,” says
Robert McEliece, a coding theorist in the
electrical engineering department at Caltech.

Why? Because digital information, vir-
tually by definition, consists of strings of

“bits”—0s and 1s—and a physical device,
no matter how capably manufactured, may
occasionally confuse the two. Voyager II,
for example, was transmitting data at in-
credibly low power—barely a whisper—
over tens of millions of miles. Disk drives
pack data so densely that a read/write head
can (almost) be excused if it can’t tell where
one bit stops and the next 1 (or 0) begins.
Careful engineering can reduce the error
rate to what may sound like a negligible
level—the industry standard for hard disk
drives is 1 in 10 billion—but given the vol-
ume of information processing done these
days, that “negligible” level is an invitation
to daily disaster. Error-correcting codes are
a kind of safety net—mathematical insur-
ance against the vagaries of an imperfect
material world.

In 1960, the theory of error-correcting
codes was only about a decade old. The
basic theory of reliable digital communica-
tion had been set forth by Claude Shannon
in the late 1940s. At the same time, Richard
Hamming introduced an elegant approach to
single-error correction and double-error
detection. Through the 1950s, a number of
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researchers began experimenting with a
variety of error-correcting codes. But with
their SIAM journal paper, McEliece says,
Reed and Solomon “hit the jackpot.”

The payoff was a coding system based on
groups of bits—such as bytes—rather than
individual Os and Is. That feature makes
Reed-Solomon codes particularly good at
dealing with “bursts” of errors: six consecu-
tive bit errors, for example, can affect at
most two bytes. Thus, even a double-error-
correction version of a Reed-Solomon code
can provide a comfortable safety factor. . . .

Mathematically, Reed-Solomon codes
are based on the arithmetic of finite fields.
Indeed, the 1960 paper begins by defining a
code as “a mapping from a vector space of
dimension m over a finite field K into a vec-
tor space of higher dimension over the same
field.” Starting from a “message” (ao, a,

., am_l), where each a, is an element of
the field K, a Reed-Solomon code produces
(P(0), P(g), P(g%), . .., P(g"™ "), where N is
the number of elements in K, g is a genera-
tor of the (cyclic) group of nonzero ele-
ments in K, and P(x) is the polynomial a; +
ax+ -+ +a, x" ' If Nis greater than
m, then the values of P overdetermine the
polynomial, and the properties of finite
fields guarantee that the coefficients of P—
i.e., the original message—can be recov-
ered from any m of the values . . . .

In today’s byte-sized world, for example,
it might make sense to let K be the field of
order 28, so that each element of K corre-
sponds to a single byte (in computerese, there
are four bits to a nibble and two nibbles to a
byte). In that case, N = 28 = 256, and hence
messages up to 251 bytes long can be recov-
ered even if two errors occur in transmitting
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the values P(0), P(g), ..., P(g?>). That’s a
lot better than the 1255 bytes required by the
say-everything-five-times approach.

Despite their advantages, Reed-Solomon
codes did not go into use immediately—
they had to wait for the hardware technol-
ogy to catch up. “In 1960, there was no such
thing as fast digital electronics”—at least
not by today’s standards, says McEliece.
The Reed-Solomon paper “suggested some
nice ways to process data, but nobody knew
if it was practical or not, and in 1960 it
probably wasn’t practical.”

But technology did catch up, and nu-
merous researchers began to work on im-
plementing the codes. . . . Many other bells
and whistles (some of fundamental theo-
retic significance) have also been added.
Compact disks, for example, use a version
of a Reed-Solomon code.

Reed was among the first to recognize
the significance of abstract algebra as the
basis for error-correcting codes. “In hind-
sight it seems obvious,” he told STAM News.
However, he added, “coding theory was not
a subject when we published that paper.”
The two authors knew they had a nice result;
they didn’t know what impact the paper
would have.

Three decades later, the impact is clear.
The vast array of applications, both current
and pending, has settled the question of the
practicality and significance of Reed-
Solomon codes. “It’s clear they’re practical,
because everybody’s using them now,” says
Elwyn Berkekamp. Billions of dollars in
modern technology depend on ideas that
stem from Reed and Solomon’s original
work. In short, says McEliece, “it’s been an
extraordinarily influential paper.”
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The New Testament offers the basis for modern computer coding theory, in
the form of an affirmation of the binary number system.

“But let your communication be yea, yea; nay, nay: for whatsoever is
more than these cometh of evil.”
ANONYMOUS

. Find the Hamming weight of each code word in Table 31.1.
. Find the Hamming distance between the following pairs of vec-

tors: {1101, 0111}, {0220, 1122}, {11101, 00111}.

. Referring to Example 1, use the nearest-neighbor method to de-

code the received words 0000110 and 1110100.

4. For any vector space V and any u, v, w in F", prove that the
Hamming distance has the following properties:
a. d(u,v) = d(v, u) (symmetry)
b. d(u,v) =0ifand only ifu = v
c. du,v) =du + w, v + w) (translation invariance)
5. Determine the (6, 3) binary linear code with generator matrix
100011
G=1010101
001 110

10.

. Show that for binary vectors, wt(z + v) = wt(u) — wt(v) and

equality occurs if and only if for all i the ith component of u is 1
whenever the ith component of v is 1.

. If the minimum weight of any nonzero code word is 2, what can

we say about the error-correcting capability of the code?

. Suppose that C is a linear code with Hamming weight 3 and that

C' is one with Hamming weight 4. What can C’ do that C can’t?

. Let C be a binary linear code. Show that the code words of even

weight form a subcode of C. (A subcode of a code is a subset of
the code that is itself a code.)

Let

C = {0000000, 1110100, 0111010, 0011101, 1001110,
0100111, 1010011, 1101001}.

What is the error-correcting capability of C? What is the error-
detecting capability of C?
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11.

12.

13.

14.

15.

16.

Suppose that the parity-check matrix of a binary linear code is

0

Il
O == O =
—_— O =

Can the code correct any single error?
Use the generator matrix

G_[lOll]
0121

to construct a (4, 2) ternary linear code. What is the parity-check
matrix for this code? What is the error-correcting capability of this
code? What is the error-detecting capability of this code? Use parity-
check decoding to decode the received word 1201.

Find all code words of the (7, 4) binary linear code whose genera-
tor matrix is

1000111
0100101
G:
0010110
0001011

Find the parity-check matrix of this code. Will this code correct
any single error?

Show that in a binary linear code, either all the code words end with
0, or exactly half end with 0. What about the other components?
Suppose that a code word v is received as the vector u. Show that
coset decoding will decode u as the code word v if and only if u — v
is a coset leader.

Consider the binary linear code
C = {00000, 10011, 01010, 11001, 00101, 10110, 01111, 11100}.

Construct a standard array for C. Use nearest-neighbor decoding
to decode 11101 and 01100. If the received word 11101 has ex-
actly one error, can we determine the intended code word? If the
received word 01100 has exactly one error, can we determine the
intended code word?



17.

18.

19.

20.

21.

22,
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Construct a (6, 3) binary linear code with generator matrix

100110
G={010011
001101

Decode each of the received words
001001, 011000, 000110, 100001

by the following methods:

a. nearest-neighbor method,

b. parity-check matrix method,

c¢. coset decoding using a standard array,

d. coset decoding using the syndrome method.

Suppose that the minimum weight of any nonzero code word in a
linear code is 6. Discuss the possible options for error correction
and error detection.

Using the code and the parity-check matrix given in Example 9,
show that parity-check matrix decoding cannot detect any multiple
errors (that is, two or more errors).

Suppose that the last row of a standard array for a binary linear
code is

10000 00011 11010 01001 10101 00110 11111 0O1100.

Determine the code.

How many code words are there in a (6, 4) ternary linear code?
How many possible received words are there for this code?

If the parity-check matrix for a binary linear code is

110
011
101
H= \
100
010
00 1]

will the code correct any single error? Why?
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23.

24.

25.

26.

27.

28.

Suppose that the parity-check matrix for a ternary code is

—_
— O NN =

Can the code correct all single errors? Give a reason for your
answer.

Prove that for nearest-neighbor decoding, the converse of Theo-
rem 31.2 is true.

Can a (6, 3) binary linear code be double-error-correcting using the
nearest-neighbor method? Do not assume that the code is systematic.
Prove that there is no 2 X 5 standard generator matrix G that will
produce a (5, 2) linear code over Z, capable of detecting all possi-
ble triple errors.

Why can’t the nearest-neighbor method with a (4, 2) binary linear
code correct all single errors?

Suppose that one row of a standard array for a binary code is

000100 110000 011110 111101 101010 001001 100111 O10011.

29.

30.

31.

32.

33.

34.

3s.

Determine the row that contains 100001.

Use the field F = Z,[x]/{x* + x + 1) to construct a (5, 2) linear
code that will correct any single error.

Find the standard generator matrix for a (4, 2) linear code over Z,
that encodes 20 as 2012 and 11 as 1100. Determine the entire code
and the parity-check matrix for the code. Will the code correct all
single errors?

Assume that C is an (n, k) binary linear code and that, for each posi-
tioni=1,2,...,n,the code C has at least one vector with a 1 in the
ith position. Show that the average weight of a code word is n/2.

Let C be an (n, k) linear code over F such that the minimum weight
of any nonzero code word is 2¢ + 1. Show that not every vector of
weight r + 1 in F” can occur as a coset leader.

Let C be an (n, k) binary linear code over F' = Z,. If v € F" but
v & C, show that C U (v + C) is a linear code.

Let C be a binary linear code. Show that either every member of C
has even weight or exactly half the members of C have even
weight. (Compare with Exercise 19 in Chapter 5.)

Let C be an (n, k) linear code. For each i with 1 =i =n,let C, =
{v € C the ith component of v is 0}. Show that C: is a subcode of C.
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Chapter 1 of this award-winning book gives a fascinating historical
account of the origins of error-correcting codes.



Richard W. Hamming

For introduction of error-correcting codes,
pioneering work in operating systems and
programming languages, and the advance-
ment of numerical computation.

Citation for the Piore
Award, 1979

RICHARD W. HAMMING was born in Chicago,
[linois, on February 11, 1915. He graduated
from the University of Chicago with a B.S. de-
gree in mathematics. In 1939, he received an
M.A. degree in mathematics from the Univer-
sity of Nebraska and, in 1942, a Ph.D. in math-
ematics from the University of Illinois.

During the latter part of World War II,
Hamming was at Los Alamos, where he was
involved in computing atomic-bomb designs.
In 1946, he joined Bell Telephone Laborato-
ries, where he worked in mathematics, com-
puting, engineering, and science.

In 1950, Hamming published his famous
paper on error-detecting and error-correcting
codes. This work started a branch of informa-
tion theory. The Hamming codes are used in
many modern computers. Hamming’s work
in the field of numerical analysis has also
been of fundamental importance.
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Hamming received numerous presti-
gious awards, including the Turing Prize
from the Association for Computing Mach-
inery, the Piore Award from the Institute of
Electrical and Electronics Engineers
(IEEE), and the Oender Award from the
University of Pennsylvania. In 1986 the IEEE
Board of Directors established the Richard
W. Hamming Medal “for exceptional con-
tributions to information sciences, systems
and technology” and named Hamming as
its first recipient. Hamming died of a heart
attack on January 7, 1998, at age 82.

To find more information about Ham-
ming, visit:

http://www-groups.dcs.st-and
.ac.uk/~history/
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Jessie MacWilliams

She was a mathematician who was instru-
mental in developing the mathematical
theory of error-correcting codes from its
early development and whose Ph.D. thesis
includes one of the most powerful theo-
rems in coding theory.

VERA PLESS, SIAM News

An important contributor to coding theory
was Jessie MacWilliams. She was born in
1917 in England. After studying at Cam-
bridge University, MacWilliams came to the
United States in 1939 to attend Johns
Hopkins University. After one year at Johns
Hopkins, she went to Harvard for a year.

In 1955, MacWilliams became a pro-
grammer at Bell Labs, where she learned
about coding theory. Although she made a
major discovery about codes while a pro-
grammer, she could not obtain a promotion
to a math research position without a Ph.D.
degree. She completed some of the require-
ments for the Ph.D. while working full-time
at Bell Labs and looking after her family.
She then returned to Harvard for a year
(1961-1962), where she finished her degree.
Interestingly, both MacWilliams and her

daughter Ann were studying mathematics at
Harvard at the same time.

MacWilliams returned to Bell Labs,
where she remained until her retirement in
1983. While at Bell Labs, she made many
contributions to the subject of error-correcting
codes, including The Theory of Error-
Correcting Codes, written jointly with Neil
Sloane. One of her results of great theoretical
importance is known as the MacWilliams
Identity. She died on May 27, 1990, at the
age of 73.

To find more information about
Mac Williams, visit:

http://www.awm-math.org/
noetherbrochure/
MacWilliams80.html
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Vera Pless

Vera Pless is a leader in the field of coding
theory.

VERA PLESS was born on March 5, 1931, to
Russian immigrants on the West Side of
Chicago. She accepted a scholarship to attend
the University of Chicago at age 15. The pro-
gram at Chicago emphasized great literature
but paid little attention to physics and mathe-
matics. At age 18, with no more than one pre-
calculus course in mathematics, she entered
the prestigious graduate program in mathe-
matics at Chicago, where, at that time, there
were no women on the mathematics faculty
or even women colloquium speakers. After
passing her master’s exam, she took a job as a
research associate at Northwestern Univer-
sity while pursuing a Ph.D. there. In 1957,
she obtained her degree.

Over the next several years, Pless stayed
at home to raise her children while teaching
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part-time at Boston University. When she
decided to work full-time, she found that
women were not welcome at most colleges
and universities. One person told her out-
right, “I would never hire a woman.” Fortu-
nately, there was an Air Force Lab in the area
that had a group working on error-correcting
codes. Although she had never even heard of
coding theory, she was hired because of her
background in algebra. When the lab discon-
tinued basic research, she took a position as
aresearch associate at MIT in 1972. In 1975,
she went to the University of Illinois—Chicago,
where she remained until her retirement.

During her career, Pless wrote more than
100 research papers, authored a widely used
textbook on coding theory, and had 11 Ph. D.
students.



An Introduction to

Galois Theory

Galois theory is a showpiece of mathematical unification, bringing together
several different branches of the subject and creating a powerful machine
for the study of problems of considerable historical and mathematical
importance.

IAN STEWART, Galois Theory

Fundamental Theorem of Galois Theory

The Fundamental Theorem of Galois Theory is one of the most elegant
theorems in mathematics. Look at Figures 32.1 and 32.2. Figure 32.1
deplcts the lattice of subgroups of the group of field automorphisms of
o( \/_ i). The integer along an upward lattice line from a group H, to
a group H, is the index of H, in H,. Figure 32.2 shows the lattlce of
subfields of Q(\/_ i). The 1nteger along an upward line from a field
K, to a field K, is the degree of K, over K,. Notice that the lattice in
Figure 32.21s the lattice of Figure 32.1 tumed upside down. This is
only one of many relationships between these two lattices. The Funda-
mental Theorem of Galois Theory relates the lattice of subfields of an
algebraic extension E of a field F to the subgroup structure of the group

(e, a, &2, &, B, afB, &’B, &’B}

2 2 2
(6.2 . 2B) @ e’} {e.a?, ap, aB)
/ \\ 2 // \2
&8y _ lea’s le.a?) le.af)  (eaB)

2\
Figure 32.1 Lattice of subgroups of the group of field automorphisms of

Q(v4 2,i),wherea:i—iand ¥ 2 — —i ¥ 2,B:i— —i,and Va2 Va2
545
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0(2) 0ai\2) 0(V2,i) o1- i) o+ 2

L

o(2) Q) 0(i\2)

Figure 32.2 Lattice of subfields of Q( W 2,i0)

of automorphisms of E that send each element of F to itself. This rela-
tionship was discovered in the process of attempting to solve a polyno-
mial equation f(x) = 0 by radicals.

Before we can give a precise statement of the Fundamental Theorem
of Galois Theory, we need some terminology and notation.

Definitions Automorphism, Galois Group, Fixed Field of H
Let E be an extension field of the field F. An automorphism of E is a
ring isomorphism from E onto E. The Galois group of E over F,
Gal(E/F), is the set of all automorphisms of E that take every element
of F to itself. If H is a subgroup of Gal(E/F), the set

E,={x € E|$(x) = xforall p € H}
is called the fixed field of H.

It is easy to show that the set of automorphisms of E forms a group
under composition. We leave as exercises (Exercises 3 and 5) the veri-
fications that the automorphism group of E fixing F is a subgroup of
the automorphism group of E and that, for any subgroup H of
Gal(E/F), the fixed field E,, of H is a subfield of E. Be careful not to
misinterpret Gal(E/F) as something that has to do with factor rings or
factor groups. It does not.

The following examples will help you assimilate these definitions. In
each example, we simply indicate how the automorphisms are defined.
We leave to the reader the verifications that the mappings are indeed
automorphisms.

B EXAMPLE 1 Consider the extension Q(V'2) of Q. Since
O(V2) = {a+bV2lia,b€E Q)
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and any automorphism of a field containing Q must act as the identity
on Q (Exercise 1), an automorphism ¢ of Q(\f2) is completely deter-
mined by ¢(\/2). Thus,

2= ¢(2) = p(V2V2) = ($(V2))?

and therefore ¢(\V2) = +=\/2. This proves that the group Gal(Q(\V2)/Q)
has two elements, the identity mapping and the mapping that sends a +

N2 toa—b\V2. ]

B EXAMPLE 2 Consider the extension Q(\ﬁ 2) of Q. An automor-
phism ¢ of Q(W) is completely determined by qb(\/» ). By an argu-
ment analogous to that in Example 1, we see that qb(\r) must be a
cube root of 2. Since Q(\F) is a subset of the real numbers and ¥/ 2
is the only real cube root of 2, we must have qb(\r) =V2. Thus, ¢
is the identity automorphism and Gal(Q(\ﬁ)/Q) has only one ele-
ment. Obviously, the fixed field of Gal(Q(\F)/Q) is Q(\F) |

B EXAMPLE 3 Consider the extension Q(\f i) of Q(i). Any auto-
morphlsm ¢ of Q(\f i) fixing Q(i) is completely determined by
d)(\f) Since

B(2) = H(V2)}) = (p(V2))%,

we see that qS(\f) must be a fourth root of 2. Thus, there are at most
four possible automorphisms of Q(\F i) f1x1ng 0(i). If we define an
automorphlsm a such that «(i) = i and a(\f) = z\ﬁ then o €
Gal(Q(V/ 2, i)/O(i)) and a has order 4. Thus, Gal(Q(V/ 2, i)/Q(i)) is a
cyclic group of order 4. The fixed field of {e, a?>} (where & is the 1dent1ty
automorphism) is O(V2, i). The lattice of subgroups of Gal(Q(\F i)/
Q(i)) and the lattice of subfields of Q(\f i) containing Q(i) are shown
in Figure 32.3. As in Figures 32.1 and 32.2, the integers along the lines

(&, a, ? o’} Q(%, i)

2 2

{e, a?} (2, i)
2 2
tel 0G)

Figure 32.3 Lattice of subgroups of Gal(Q( ¥ 2, 1)/Q())
and lattice of subfields of Q(¥ 2, i) containing Q(i)
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of the group lattice represent the index of a subgroup in the group
above it, and the integers along the lines of the field lattice represent
the degree of the extension of a field over the field below it. |

B EXAMPLE 4 Consider the extension Q(\V/3, \V/5) of Q. Since

0V3,V5)={a+bV3 +cV5 +dV3V5 la, b, c d€E Q},

any automorphism ¢ of Q(\V/3, VV5) is completely determined by the
two values ¢(\/3) and ¢(\/5). This time there are four automorphisms:

e a B af

V3-\V3 V3—-\V3 V3->V3 V3 -\V3
V5 V5 V5 V5 V5-5-V5s V555

Obviously, G al(Q(\f \[)/Q) is isomorphic to Z, @ Z,. The fixed
field of {e, a} is Q(\V/3), the fixed field of {e, B} is Q(\/) and
the fixed field of {g, aB} is Q(V3V5). The lattice of subgroups of
Gal(Q(V/3, V/5)/Q) and the lattice of subfields of Q(\/3, \V/5) are shown

in Figure 32.4. |
{e.a.p ap} 0(35)
2 2 2 2 2 2
{s, a} {s. 8} {e, aB} 0(s) 0(\3) 0(V3\5)
2 2 2 2 2 2
{e}

Figure 32.4 Lattice of subgroups of GaI(Q(\/, \/E)/Q) and lattice of subfields
of Q(V3,V5)

Example 5 is a bit more complicated than our previous examples. In
particular, the automorphism group is non-Abelian.

I EXAMPLE 5 Direct calculations show that w = —1/2 + i\/3/2 satis-
fies the equatlons @ = 1and 0> + o + 1 = 0. Now, consider the
extension Q(w, 2 2) of Q. We may describe the automorphisms of
O(w, W) by specifying how they act on w and \/2 . There are six in all:

o B B? af af?

w—> 0 w—> w? w—>w w—>w w—> w? w—> w?

V2 V2 V2 oV2 V2ooV2 V2 5oV 2 V2 o2 V2o V2
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Since a3 # Ba, we know that Gal(Q(w, %)/Q) is isomorphic to .
(See Theorem 7.2.) The lattices of subgroups and subfields are shown
in Figure 32.5.

{e. a. p. Bap. a’}

e 8 ,82\ s g ” & af 2}
Q(w,\@
/ N\
Q(w) 02 0\ 0@’ 2)

Figure 32.5 Lattice of subgroups of Gal(Q(w, \35)/(2) and lattice
of subfields of Q(w, ¥'2), where w = —1/2 + i\V/3/a.

The lattices in Figure 32.5 have been arranged so that each nontrivial
proper field occupying the same zposition as some group is the fixed field
of that group. For instance, O(wV/ 2 ) is the fixed field of {&, aB}. |

The preceding examples show that, in certain cases, there is an inti-
mate connection between the lattice of subfields between E and F and
the lattice of subgroups of Gal(E/F). In general, if E is an extension of F,
and we let F be the lattice of subfields of E containing F and let  be
the lattice of subgroups of Gal(E/F), then for each K in &, the group
Gal(E/K) is in 4, and for each H in §, the field £, is in &. Thus, we
may define a mapping g: & — 9 by g(K) = Gal(E/IQ and a mapping
f:%— F by f(H) = E,,. Itis easy to show that if K and L belong to F
and K C L, then g(K) D g(L). Similarly, if G and H belong to % and
G C H, then f(G) D f(H). Thus, f and g are inclusion-reversing map-
pings between % and 9. We leave it to the reader to show that for any K
in &, we have (fg)(K) D K, and for any G in 4, we have (gf)(G) D G.
When E is an arbitrary extension of F, these inclusions may be strict.
However, when E is a suitably chosen extension of F, the Fundamental
Theorem of Galois Theory, Theorem 32.1, says that fand g are inverses
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of each other, so that the inclusions are equalities. In particular, fand g
are inclusion-reversing isomorphisms between the lattices & and 9.
A stronger result than that given in Theorem 32.1 is true, but our theo-
rem illustrates the fundamental principles involved. The student is
referred to [1, p. 285] for additional details and proofs.

I Theorem 32.1 Fundamental Theorem of Galois Theory

Let F be a field of characteristic 0 or a finite field. If E is the splitting
field over F for some polynomial in F[x], then the mapping from the
set of subfields of E containing F to the set of subgroups of Gal(E/F)
given by K — Gal(E/K) is a one-to-one correspondence. Further-
more, for any subfield K of E containing F,

1. [E:K] = |Gal(E/K)| and [K:F] = |Gal(E/F)|/|Gal(E/K)|. [The
index of Gal(E/K) in Gal(E/F) equals the degree of K over F.]

2. If K is the splitting field of some polynomial in F[x],
then Gal(E/K) is a normal subgroup of Gal(E/F) and Gal(K/F)
is isomorphic to Gal(E/F)/Gal(E/K).

3.K= E iy [The fixed field of Gal(E/K) is K.

4. If H is a subgroup of Gal(E/F), then H = Gal(E/E,,). [The
automorphism group of E fixing E, is H.]

Generally speaking, it is much easier to determine a lattice of sub-
groups than a lattice of subfields. For example, it is usually quite diffi-
cult to determine, directly, how many subfields a given field has, and it
is often difficult to decide whether or not two field extensions are the
same. The corresponding questions about groups are much more
tractable. Hence, the Fundamental Theorem of Galois Theory can
be a great labor-saving device. Here is an illustration. [Recall from
Chapter 20 that if f(x) € F[x] and the zeros of f(x) in some extension
of Farea,, a .,a,then F(a,, a,, . .., a,)is the splitting field of
f(x) over F.]

9 - -

B EXAMPLE 6 Let w = cos(2m/7) + i sin(27/7), so that w’ = 1, and
consider the field Q(w). How many subfields does it have and what are
they? First, observe that Q(w) is the splitting field of x” — 1 over Q, so
that we may apply the Fundamental Theorem of Galois Theory. A sim-
ple calculation shows that the automorphism ¢ that sends w to w* has
order 6. Thus,

[O(w):0] = IGal(Q(w)/Q)! = 6.
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Also, since
X=1=x-D®+X+x*+3+2+x+1)
and w is a zero of x” — 1, we see that

IGal(Q(w)/Q)l = [Q(w):0] = 6.

Thus, Gal(Q(w)/Q) is a cyclic group of order 6. So, the lattice of sub-
groups of Gal(Q(w)/Q) is trivial to compute. See Figure 32.6.

N

A
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Figure 32.6 Lattice of subgroups of Gal(Q(w)/Q),
where w = cos(27/7) + isin(27/7)

This means that Q(w) contains exactly two proper extensions of Q:
one of degree 3 corresponding to the fixed field of (¢*) and one of de-
gree 2 corresponding to the fixed field of (¢?). To find the fixed field of
(¢3), we must find a member of Q(w) that is not in Q and that is fixed
by ¢3. Experimenting with various possibilities leads us to discover
that o + ™! is fixed by ¢> (see Exercise 9), and it follows that Q C
Olw+w"C Q@) 43, Since [Q(w) 3 : Q] = 3 and [Q(w + o Y: 0]
divides [Q(w) 3 Q] we see that Q(w + o )= Q(w) ) . A similar
argument shows that O(w® + @’ + w°) is the fixed field of (q,')2> Thus,
we have found all subfields of Q(w). |

B EXAMPLE 7 Consider the extension £ = GF(p") of F = GF(p). Let
us determine Gal(E/F). By Corollary 2 of Theorem 22.2, E has the form
F(b) for some b where b is the zero of an irreducible polynomial p(x) of
the formx" +a _ x"'+ -+ +ax + a, wherea, ., a, _,, ..., a,be-
long to F. Since any field automorphism ¢ of E must take 1 to itself, it
follows that ¢ acts as the identity on F. Thus, p(b) = 0 implies that
p(¢p(b)) = 0. And because p(x) has at most n zeros, we know that there
are at most n possibilities for ¢p(b). On the other hand, by Exercise 45 in
Chapter 13, we know that the mapping o (a) = a? for all @ € E is an
automorphism of E, and it follows from the fact that E* is cyclic
(Theorem 22.2) that the group (o) has order n (see Exercise 11 in
Chapter 22). Thus, Gal(GF(p")/GF(p)) = Z . |
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Solvability of Polynomials by Radicals

For Galois, the elegant correspondence between groups and fields
given by Theorem 32.1 was only a means to an end. Galois sought to
solve a problem that had stymied mathematicians for centuries.
Methods for solving linear and quadratic equations were known thou-
sands of years ago (the Quadratic Formula). In the 16th century, Ital-
ian mathematicians developed formulas for solving any third- or
fourth-degree equation. Their formulas involved only the operations
of addition, subtraction, multiplication, division, and extraction of
roots (radicals). For example, the equation

X+bx+c=0
has the three solutions

A + B,
—(A + B)/2 + (A — B)V-3/2,
—(A + B)2 — (A — B)V-3/2,

where

3¢ b 3 € v
A= — ++/—=—+— and B = —— — Al T
2 27 4 2 27 4

The formulas for the general cubic x* + ax?> + bx + ¢ = 0 and the gen-
eral quartic (fourth-degree polynomial) are even more complicated, but
nevertheless can be given in terms of radicals of rational expressions of
the coefficients.

Both Abel and Galois proved that there is no general solution of a
fifth-degree equation by radicals. In particular, there is no “quintic for-
mula.” Before discussing Galois’s method, which provided a group-
theoretic criterion for the solution of an equation by radicals and led to
the modern-day Galois theory, we need a few definitions.

Definition Solvable by Radicals

Let F be a field, and let f(x) € F[x]. We say that f(x) is solvable by radi-
cals over F if f(x) splits in some extension F(a,, a,, ..., a,) of F and
there exist positive integers k,, .. ., k, such that “1k1 € Fand g,k €
Fa,,...,a,_pfori=2,...,n

So, a polynomial in F[x] is solvable by radicals if we can obtain all
of its zeros by adjoining nth roots (for various n) to F. In other words,
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each zero of the polynomial can be written as an expression (usually a
messy one) involving elements of /' combined by the operations of ad-
dition, subtraction, multiplication, division, and extraction of roots.

B EXAMPLE 8 Let = cos(¥) + i sin(¥) = 2 + 2. Then
x¥ — 3 splits in O(w, V3 ), 0¥ € 0, and (V3 )8 € O C O(w). Thus,
x% — 3 is solvable by radicals over Q. Although the zeros of x® — 3
are most conveniently written in the form W \/>w \/>w
\rw the notion of solvable by radicals is best illustrated by wrltlng
them in the form

+ V3, VEIV3E L V3 2+ rw)

Thus, the problem of solving a polynomial equation for its zeros can
be transformed into a problem about field extensions. At the same time,
we can use the Fundamental Theorem of Galois Theory to transform a
problem about field extensions into a problem about groups. This is ex-
actly how Galois showed that there are fifth-degree polynomials that
cannot be solved by radicals, and this is exactly how we will do it. Be-
fore giving an example of such a polynomial, we need some additional
group theory.

Definition Solvable Group
We say that a group G is solvable if G has a series of subgroups

{ey=H,CH,CH,C---CH,=G,

where, for each 0 =i <k, H,is normal in H,_, and H,, /H,is Abelian.

Obviously, Abelian groups are solvable. So are the dihedral groups
and any group whose order has the form p”, where p is a prime (see
Exercises 22 and 23). The monumental Feit-Thompson Theorem (see
Chapter 25) says that every group of odd order is solvable. In a certain
sense, solvable groups are almost Abelian. On the other hand, it
follows directly from the definitions that any non-Abelian simple
group is not solvable. In particular, A is not solvable. It follows from
Exercise 21 in Chapter 25 that S, is not solvable. Our goal is to con-
nect the notion of solvability of polynomials by radicals to that of
solvable groups. The next theorem is a step in this direction.
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1 Theorem 32.2 Splitting Field of x" — a

Let F be a field of characteristic 0 and let a € F. If E is the splitting
field of x™ — a over F, then the Galois group Gal(E/F) is solvable.

PROOF We first handle the case where F contains a primitive nth root
of unity w. Let b be a zero of x* — a in E. Then the zeros of x" — a are
b, wb, w?b, . .., ®" 'b, and therefore E = F(b). In this case, we claim
that Gal(E/F) is Abelian and hence solvable. To see this, observe that
any automorphism in Gal(E/F) is completely determined by its action
on b. Also, since b is a zero of x” — a, we know that any element of
Gal(E/F) sends b to another zero of x" — a. That is, any element
of Gal(E/F) takes b to w'b for some i. Let ¢ and o be two elements
of Gal(E/F). Then, since € F, ¢ and o fix w and ¢(b) = w’b and
o (b) = w*b for some j and k. Thus,

(0d)(b) = o ((b)) = 0 (w'b) = 0 (w))o (b) = wiw*b = w/**b,
whereas
(po)(b) = Pp(a (b)) = Pp(w*b) = Pp(w")P(b) = w*w/b = w b,

so that o¢ and ¢po agree on b and fix the elements of F. This shows
that ¢ = o, and therefore Gal(E/F) is Abelian.

Now suppose that F' does not contain a primitive nth root of unity.
Let w be a primitive nth root of unity and let b be a zero of x* — a in E.
The case where a = 0 is trivial, so we may assume that b # 0. Since
wb is also a zero of x" — a, we know that both w and wb belong to E,
and therefore w = wb/b is in E as well. Thus, F(w) is contained in E,
and F(w) is the splitting field of x” — 1 over F. Analogously to the
case above, for any automorphisms ¢ and o in Gal(F(w)/F) we have
¢(w) = w’ for some j and o (w) = w ¥ for some k. Then,

() () = 0 (P(w) = (@) = (0 (@) = (0
= (@) = ()" = ¢@") = d(o (0) = (do)(w).

Since elements of Gal(F(w)/F) are completely determined by their ac-
tion on w, this shows that Gal(F(w)/F) is Abelian.

Because E is the splitting field of x* — a over F(w) and F(w) con-
tains a primitive nth root of unity, we know from the case we have al-
ready done that Gal(E/F(w)) is Abelian and, by Part 2 of Theorem 32.1,
the series

{e} C Gal(E/F(w)) C Gal(E/F)
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is a normal series. Finally, since both Gal(E/F(w)) and
Gal(E/F)/Gal(E/F(w)) = Gal(F(w)/F)
are Abelian, Gal(E/F) is solvable. |

To reach our main result about polynomials that are solvable by rad-
icals, we need two important facts about solvable groups.

I Theorem 32.3 Factor Group of a Solvable Group Is Solvable

A factor group of a solvable group is solvable.

PROOF Suppose that G has a series of subgroups
{e}=H,CH, CH,C---CH, =G,

where, for each 0 =i <k, H,is normal in H,__ and H,_,/H, is Abelian.
If N is any normal subgroup of G, then

{e} = HN/N C HN/IN C H,NIN C - - - C HNIN = GIN
is the requisite series of subgroups that guarantees that G/N is solvable.
(See Exercise 25.) |
I Theorem 32.4 N and G/N Solvable Implies G Is Solvable

Let N be a normal subgroup of a group G. If both N and G/N are
solvable, then G is solvable.

PROOF Let a series of subgroups of N with Abelian factors be
N,CN,C---CN,=N
and let a series of subgroups of G/N with Abelian factors be
NIN =H,/NCH/NC:---CH/N= GIN.
Then the series
N,CN,C---CN,=H,CH C---CH =G
has Abelian factors (see Exercise 27). |

We are now able to make the critical connection between solvability
of polynomials by radicals and solvable groups.
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I Theorem 32.5 (Galois) Solvable by Radicals Implies Solvable Group

Let F be a field of characteristic 0 and let f(x) € F[x]. Suppose that
f(x) splits in F(a,, a, .. ., a,), wherea/" € Fand a" € Fa,, ...,
a,_)fori=2,...,t Let E be the splitting field for f(x) over F in
F(a,, a,, ..., a,). Then the Galois group Gal(E/F) is solvable.

PROOF We induct on . For the case r = 1, we have F C E C Fl(a,). Let
a = a,"r and let L be a splitting field of x" — a over F. Then F C
E C L, and both E and L are splitting fields of polynomials over F. By
Part 2 of Theorem 32.1, Gal(E/F) = Gal(L/F)/Gal(L/E). It follows from
Theorem 32.2 that Gal(L/F) is solvable, and from Theorem 32.3 we
know that Gal(L/F)/Gal(L/E) is solvable. Thus, Gal(E/F) is solvable.
Now suppose 1 > 1. Let a = a," € F, let L be a splitting field of
x™ — aover E, and let K C L be the splitting field of x"' — a over F.
Then L is a splitting field of (x™ — a)f(x) over F, and L is a splitting
field of f(x) over K. Since F(a,) C K, we know that f(x) splits in
K(a,, . . ., a,), so the induction hypothesis implies that Gal(L/K) is
solvable. Also, Theorem 32.2 asserts that Gal(K/F) is solvable, which,
from Theorem 32.1, tells us that Gal(L/F)/Gal(L/K) is solvable. Hence,
Theorem 32.4 implies that Gal(L/F) is solvable. So, by Part 2 of Theo-
rem 32.1 and Theorem 32.3, we know that the factor group
Gal(L/F)/Gal(L/E) = Gal(E/F) is solvable. |

It is worth remarking that the converse of Theorem 32.3 is true also;
that is, if E is the splitting field of a polynomial f(x) over a field F of
characteristic 0 and Gal(E/F) is solvable, then f(x) is solvable by radi-
cals over F.

It is known that every finite group is a Galois group over some field.
However, one of the major unsolved problems in algebra, first posed
by Emmy Noether, is determining which finite groups can occur as
Galois groups over Q. Many people suspect that the answer is “all of
them.” It is known that every solvable group is a Galois group over Q.
John Thompson has recently proved that certain kinds of simple
groups, including the Monster, are Galois groups over Q. The article by
Tan Stewart listed among this chapter’s suggested readings provides
more information on this topic.

Insolvability of a Quintic

We will finish our introduction to Galois theory by explicitly exhibit-
ing a polynomial that has integer coefficients and that is not solvable
by radicals over Q.



32 | Anlntroduction to Galois Theory 557

Consider g(x) = 3x> — 15x + 5. By Eisenstein’s Criterion (Theorem
17.4), g(x) is irreducible over Q. Since g(x) is continuous and g(—2) =
—61 and g(—1) = 17, we know that g(x) has a real zero between —2
and —1. A similar analysis shows that g(x) also has real zeros between
0 and 1 and between 1 and 2.

Each of these real zeros has multiplicity 1, as can be verified by long
division or by appealing to Theorem 20.6. Furthermore, g(x) has no
more than three real zeros, because Rolle’s Theorem from calculus
guarantees that between each pair of real zeros of g(x) there must be a
zero of g'(x) = 15x* — 15. So, for g(x) to have four real zeros, g'(x)
would have to have three real zeros, and it does not. Thus, the other two
zeros of g(x) are nonreal complex numbers, say, a + bi and a — bi.
(See Exercise 65 in Chapter 15.)

Now, let’s denote the five zeros of g(x) by a,, a,, a;, a,, a,. Since any
automorphism of K = Q(a,, a,, a,, a,, as) is completely determined by its
action on the a’s and must permute the a’s, we know that Gal(K/Q) is iso-
morphic to a subgroup of S, the symmetric group on five symbols. Since
a, is a zero of an irreducible polynomial of degree 5 over Q, we know that
[Q(a)):Q] = 5, and therefore 5 divides [K:Q]. Thus, the Fundamental
Theorem of Galois Theory tells us that 5 also divides |Gal(K/Q)I. So, by
Cauchy’s Theorem (corollary to Theorem 24.3), we may conclude that
Gal(K/Q) has an element of order 5. Since the only elements in S of or-
der 5 are the 5-cycles, we know that Gal(K/Q) contains a 5-cycle. The
mapping from C to C, sending a + bi to a — bi, is also an element of
Gal(K/Q). Since this mapping fixes the three real zeros and interchanges
the two complex zeros of g(x), we know that Gal(K/Q) contains a 2-cycle.
But, the only subgroup of S; that contains both a 5-cycle and a 2-cycle is
S.. (See Exercise 25 in Chapter 25.) So, Gal(K/Q) is isomorphic to S..
Finally, since S, is not solvable (see Exercise 21), we have succeeded in
exhibiting a fifth-degree polynomial that is not solvable by radicals.

Seeing much, suffering much, and studying much are the three pillars
of learning.
BENJAMIN DISRAELI

1. Let E be an extension field of Q. Show that any automorphism of £
acts as the identity on Q. (This exercise is referred to in this chapter.)

2. Determine the group of field automorphisms of GF(4).

3. Let E be a field extension of the field F. Show that the automor-
phism group of E fixing F is indeed a group. (This exercise is re-
ferred to in this chapter.)
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4.

10.

11.

12.

13.

14.

15.

16.

17.

Given that the automorphism group of Q(\/2, /5, \/7) is isomor-
phic to Z, ® Z, @ Z,, determine the number of subfields of o2,
V5, \ﬁ) that have degree 4 over Q.

. Let E be a field extension of a field F and let H be a subgroup of

Gal(E/F). Show that the fixed field of H is indeed a field. (This
exercise is referred to in this chapter.)

. Let E be the splitting field of x* + 1 over Q. Find Gal(E/Q). Find

all subfields of E. Find the automorphisms of E that have fixed
fields Q(\@), 0(Vv—2), and Q(i). Is there an automorphism of E
whose fixed field is Q?

. Let f(x) € F[x] and let the zeros of f(x) be a;, a,, ..., a, If K=

F(a,, a,, ..., a,), show that Gal(K/F) is isomorphic to a group of
permutations of the a’s. [When K is the splitting field of f(x) over F,
the group Gal(K/F) is called the Galois group of f(x).]

. Show that the Galois group of a polynomial of degree n has order

dividing n!.

Referring to Example 6, show that the automorphism ¢ has order 6.
Show that w + w™ ! is fixed by ¢’ and w* + @’ + ® is fixed by ¢>.
(This exercise is referred to in this chapter.)

Let E = Q(\@, \@). What is the order of the group Gal(E/Q)?
What is the order of Gal(Q(\V/10)/Q)?

Suppose that F is a field of characteristic 0 and E is the splitting
field for some polynomial over F. If Gal(E/F) is isomorphic to A,
show that there is no subfield K of E such that [K:F] = 2.

Determine the Galois group of x> — 1 over Q and x* — 2 over Q.
(See Exercise 7 for the definition.)

Suppose that K is the splitting field of some polynomial over a field
F of characteristic 0. If [K:F] = p?q, where p and ¢ are distinct
primes, show that K has subfields L,, L,, and L, such that [K:L,] =
p, [K:L,] = p? and [K:L,] = q.

Suppose that E is the splitting field of some polynomial over a field F
of characteristic 0. If Gal(E/F) is isomorphic to D, draw the subfield
lattice for the fields between E and F.

Suppose that F' C K C E are fields and E is the splitting field of
some polynomial in F[x]. Show, by means of an example, that K
need not be the splitting field of some polynomial in F[x].

Suppose that E is the splitting field of some polynomial over a field
F of characteristic 0. If [E: F] is finite, show that there is only a fi-
nite number of fields between E and F.

Suppose that E is the splitting field of some polynomial over a field
F of characteristic 0. If Gal(E/F) is an Abelian group of order 10,
draw the subfield lattice for the fields between E and F.
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18. Let w be a nonreal complex number such that w3 = 1. If ¢ is the
automorphism of Q(w) that carries w to w*, find the fixed field of (¢).

19. Determine the isomorphism class of the group Gal(GF(64)/GF(2)).
20. Determine the isomorphism class of the group Gal(GF(729)/GF(9)).

Exercises 21, 22, and 23 are referred to in this chapter.

21. Show that S, is not solvable.

22. Show that the dihedral groups are solvable.

23. Show that a group of order p”, where p is prime, is solvable.
24. Show that S, is solvable when n = 4.

25. Complete the proof of Theorem 32.3 by showing that the given
series of groups satisfies the definition for solvability.

26. Show that a subgroup of a solvable group is solvable.

27. Let N be a normal subgroup of G and let K/N be a normal sub-
group of G/N. Prove that K is a normal subgroup of G. (This exer-
cise is referred to in this chapter.)

28. Show that any automorphism of GF(p") acts as the identity on
GF(p).
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Philip Hall

He [Hall] was preeminent as a group theo-
rist and made many fundamental discover-
ies; the conspicuous growth of interest

in group theory in the 20th century owes
much to him.

J. E. ROSEBLADE

PHiLIP HALL was born on April 11, 1904, in
London. Abandoned by his father shortly
after birth, Hall was raised by his mother, a
dressmaker. He demonstrated academic
prowess early by winning a scholarship to
Christ’s Hospital, where he had several out-
standing mathematics teachers. At Christ’s
Hospital, Hall won a medal for the best
English essay, the gold medal in mathemat-
ics, and a scholarship to King’s College,
Cambridge.

Although abstract algebra was a field ne-
glected at King’s College, Hall studied
Burnside’s book Theory of Groups and some
of Burnside’s later papers. After graduating in
1925, he stayed on at King’s College for fur-
ther study and was elected to a fellowship in
1927. That same year, Hall discovered a
major “Sylow-like” theorem about solvable
groups: If a solvable group has order mmn,
where m and n are relatively prime, then
every subgroup whose order divides m is con-
tained in a group of order m and all subgroups
of order m are conjugate. Over the next three
decades, Hall developed a general theory of
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finite solvable groups that had a profound in-
fluence on John Thompson’s spectacular
achievements of the 1960s. In the 1930s, Hall
also developed a general theory of groups of
prime-power order that has become a founda-
tion of modern finite group theory. In addi-
tion to his fundamental contributions to finite
groups, Hall wrote many seminal papers on
infinite groups.

Among the concepts that have Hall’s name
attached to them are Hall subgroups, Hall
algebras, Hall-Littlewood polynomials, Hall
divisors, the marriage theorem from graph
theory, and the Hall commutator collecting
process. Beyond his own discoveries, Hall
had an enormous influence on algebra
through his research students. No fewer than
one dozen have become eminent mathemati-
cians in their own right. Hall died on
December 30, 1982.

To find more information about Hall,
visit:

http://www-groups.dcs.st-and
.ac.uk/~history/
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Cyclotomic Extensions

“...to regard old problems from a new angle requires creative imagination
and marks real advances in science.”
ALBERT EINSTEIN

Motivation

For the culminating chapter of this book, it is fitting to choose a topic
that ties together results about groups, rings, fields, geometric construc-
tions, and the history of mathematics. The so-called cyclotomic exten-
sions is such a topic. We begin with the history.

The ancient Greeks knew how to construct regular polygons of 3, 4,
5,6, 8,10, 12, 15, and 16 sides with a straightedge and compass. And,
given a construction of a regular n-gon, it is easy to construct a regular
2n-gon. The Greeks attempted to fill in the gaps (7, 9, 11, 13, 14,
17, ...) but failed. More than 2200 years passed before anyone was
able to advance our knowledge of this problem beyond that of the
Greeks. Incredibly, Gauss, at age 19, showed that a regular 17-gon is
constructible, and shortly thereafter he completely solved the problem
of exactly which n-gons are constructible. It was this discovery of the
constructibility of the 17-sided regular polygon that induced Gauss to
dedicate his life to the study of mathematics. Gauss was so proud of
this accomplishment that he requested that a regular 17-sided polygon
be engraved on his tombstone.

Gauss was led to his discovery of the constructible polygons through
his investigation of the factorization of polynomials of the form x" — 1
over Q. In this chapter, we examine the factors of x” — 1 and show how
Galois theory can be used to determine which regular n-gons are con-
structible with a straightedge and compass. The irreducible factors of
x" — 1 are important in number theory and combinatorics.
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Cyclotomic Polynomials

Recall from Example 2 in Chapter 16 that the complex zeros of x” — 1
are 1, o = cos(®%) + i sin(*9), w%, o3, ..., o' '. Thus, the splitting
field of x” — 1 over Q is Q(w). This field is called the nth cyclotomic
extension of Q, and the irreducible factors of x” — 1 over Q are called
the cyclotomic polynomials.

Since w = cos(*™) + i sin(*7) generates a cyclic group of order
n under multiplication, we know from Corollary 3 of Theorem 4.2 that
the generators of (w) are the elements of the form wf, where 1 <k <n
and gcd(n, k) = 1. These generators are called the primitive nth roots
of unity. Recalling that we use ¢(n) to denote the number of positive
integers less than or equal to n and relatively prime to n, we see that for
each positive integer n there are precisely ¢(n) primitive nth roots of
unity. The polynomials whose zeros are the ¢(n) primitive nth roots
of unity have a special name.

Definition

For any positive integer n, let v, w,, ..., ® Sn) denote the primitive nth
roots of unity. The nth cyclotomic polynomial over Q is the polynomial
PX)=x—-0)x—w) - (x—w ¢(n)).

In particular, note that @ (x) is monic and has degree ¢(n). In
Theorem 33.2 we will prove that ® (x) has integer coefficients, and in
Theorem 33.3 we will prove that ® (x) is irreducible over Z.

B EXAMPLE1 ®,(x) = x — 1, since 1 is the only zero of x — 1. ®,(x) =
x + 1, since the zeros of x> — 1 are 1 and —1, and —1 is the only primitive
root. ®,(x) = (x — w)(x — w?), where w = cos() + isin(F) = (-1 +
z\@)/2, and direct calculations show that (133(x) = x* + x + 1. Since
the zeros of x* — 1 are =1 and =i and only i and —i are primitive, ®,(x) =
x—Dx+i)=x2+1. |

In practice, one does not use the definition of ®, (x) to compute it.
Instead, one uses the formulas given in the exercises and makes recur-
sive use of the following result.

§ Theorem 33.1

For every positive integer n, x" — 1 = 11, ®,(x), where the product
runs over all positive divisors d of n.
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Before proving this theorem, let us be sure that the statement
is clear. For n = 6, for instance, the theorem asserts that xX® — 1 =
D, ()P, (x)P,(x)P(x), since 1, 2, 3, and 6 are the positive divisors of 6.

PROOF Since both polynomials in the statement are monic, it suffices
to show that they have the same zeros and that all zeros have multi-
plicity 1. Let w = cos(%”) + i sin(%”). Then (w) is a cyclic group of
order n, and (w) contains all the nth roots of unity. From Theorem 4.3 we
know that for each j, lw/| divides n so that (x — w/) appears as a factor in
®, ;,(x). On the other hand, if x — « is a linear factor of @ ,(x) for some
divisor d of n, then a? = 1, and therefore o” = 1. Thus, x — « is a factor
of x" — 1. Finally, since no zero of x” — 1 can be a zero of ® ,(x) for two
different d’s, the result is proved. |

Before we illustrate how Theorem 33.1 can be used to calculate
®, (x) recursively, we state an important consequence of the theorem.

§ Theorem 33.2

For every positive integer n, ® (x) has integer coefficients.

PROOF The case n = 1 is trivial. By induction, we may assume that
g(x) = II, @, (x) has integer coefficients. From Theorem 33.1 we

d<n
know that x" — 1 = Cbn(x)g(x), and, because g(x) is monic, we may
carry out the division in Z[x] (see Exercise 45 in Chapter 16). Thus,
® (x) € Z[x]. [ |

Now let us do some calculations. If p is a prime, we have from The-
orem 33.1 that x» — 1 = CI)I(x)(I)p(x) = (x — 1)(Dp(x), so that
CI)p(x) = —D/I(x—1)=xP"1+xP2+ .-+ x + 1. From Theo-
rem 33.1 we have

X0 =1 =D x0)D,0)P,(x)PD(x),

so that @ (x) = x® — D/((x = 1)(x + 1)(x*> + x + 1)). So, by long
division, ®(x) = x> — x + 1. Similarly, ® (x) = (' — 1)/
(x—Dx+DHx*+3+x2+x+1)=x*—-x¥+x>—x+1.

The exercises provide shortcuts that often make long division unnec-
essary. The values of ® (x) for all n up to 15 are shown in Table 33.1.
The software for Computer Exercise 1 provides the values for @ (x) for
all values of n up to 1000. Judging from Table 33.1, one might be led
to conjecture that 1 and —1 are the only nonzero coefficients of the
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Table 33.1 The Cyclotomic Polynomials ® (x) upton =15

n D (x)

1 x—1

2 x+1

3 X+x+1

4 X2 +1

5 P+ +x+1

6 X—x+1

7 X+ + ¥+ +2+x+1

8 xX*+1

9 X+ +1

10 =¥+ -x+1

11 X+ + B+ F 0+ 2+ +
12 X*=x2+1

13 X2+ + X0+ O+ B+ T+ A+
14 X=X+t +2—x+1

15 B=x 4+ -+ —x+1

cyclotomic polynomials. However, it has been shown that every integer
is a coefficient of some cyclotomic polynomial.

The next theorem reveals why the cyclotomic polynomials are
important.

B Theorem 33.3 (Gauss)

The cyclotomic polynomials ® (x) are irreducible over Z.

PROOF Let f(x) € Z[x] be a monic irreducible factor of @ (x).
Because ® (x) is monic and has no multiple zeros, it suffices to show
that every zero of @ (x) is a zero of f(x).

Since @ (x) divides x" — 1 in Z[x], we may write x" — 1 = f(x)g(x),
where g(x) € Z[x]. Let w be a primitive nth root of unity that is a zero
of f(x). Then f(x) is the minimal polynomial for w over Q. Let p be any
prime that does not divide n. Then, by Corollary 3 of Theorem 4.2,
w? is also a primitive nth root of unity, and therefore 0 = (w?)" — 1 =
f(wP)g(wP), and so f(w?) = 0 or g(w?) = 0. Suppose f(w”) # 0. Then
g(w?) = 0, and so w is a zero of g(x?). Thus, from Theorem 21.3, f(x)
divides g(x?) in Q[x]. Since f(x) is monic, f(x) actually divides g(x”)
in Z[x] (see Exercise 45 in Chapter 16). Say g(x”) = f(x)h(x), where
h(x) € Z[x]. Now let g(x), f(x), and h(x) denote the polynomials in
Zp[x] obtained from g(x), f(x), and h(x), respectively, by reducing
each coefficient modulo p. Since this reduction process is a ring ho-
momorphism from Z[x] to Zp[x] (see Exercise 9 in Chapter 16), we
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have g(x?) = f(x)h(x) in Zp[x]. From Exercise 31 in Chapter 16 and
Corollary 5 of Theorem 7.1, we then have (g(x))? = g(x?) = f (x)h(x),
and since Z [x] is a unique factorization domain, it follows that g(x)
and f (x) have an irreducible factor in Z [x] in common; call it m(x).
Thus, we may write f(x) = k (x)m(x) and g(x) = k,(x)m(x), where
k,(x), ky(x) € Zp[xL Then, viewing x" — 1 as a member of Zp[x],
we have x" — 1 = f(x)gx) = kl(x)kz(x)(m(x))z. In particular, x” — 1
has a multiple zero in some extension of Z . But because p does not
divide n, the derivative nx" ! of x* — 1 is not 0, and so nx"~ ! and x” — 1
do not have a common factor of positive degree in Z |x]. Since this
contradicts Theorem 20.5, we must have f(w?) = 0.

We reformulate what we have thus far proved as follows: If B is
any primitive nth root of unity that is a zero of f(x) and p is any prime
that does not divide n, then 37 is a zero of f(x). Now let k be any inte-
ger between 1 and n that is relatively prime to n. Then we can write
k= p,p, - p,where each p, is a prime that does not divide n (repe-
titions are permitted). It follows then that each of w, w”', (w?)? .. .,
(wPP Py P = oF is a zero of f(x). Since every zero of ® (x) has the
form w*, where k is between 1 and n and is relatively prime to n, we
have proved that every zero of ® (x) is a zero of f(x). This completes
the proof. |

Of course, Theorems 33.3 and 33.1 give us the factorization of
x"™ — 1 as a product of irreducible polynomials over Q. But Theorem 33.1
is also useful for finding the irreducible factorization of x* — 1 over Z,
The next example provides an illustration. Irreducible factors of x” — 1
over Z, are used to construct error-correcting codes.

B EXAMPLE 2 We determine the irreducible factorization of x> — 1 over
Z, and Z,. From Table 33.1, we have x* — 1 = (x — D(x + D(x* +
x + 1)(x?> — x + 1). Taking all the coefficients on both sides mod 2, we
obtain the same expression, but we must check that these factors are ir-
reducible over Z,. Since x% 4+ x + 1 has no zeros in Z,, it is irreducible
over Z, (see Theorem 17.1). Finally, since —1 = 1 in Z,, we have the
irreducible factorization x® — 1 = (x + 1)*(x* + x + 1)% Over Z,,
we again start with the factorization x® — 1 = (x — D(x + D> +
x + 1)(x? — x + 1) over Z and view the coefficients mod 3. Then 1 is
a zero of x> + x + 1 in Z,, and by long division we obtain x> + x + 1 =
(x = D(x+2)=(x+2)% Similarly, x> —x + 1 =(x = 2)(x + 1) =
(x + 1)% So, the irreducible factorization of x® — 1 over Zyis (x + 1)}
(x + 2)%. |

‘We next determine the Galois group of the cyclotomic extensions of Q.
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§ Theorem 33.4

Let w be a primitive nth root of unity. Then Gal(Q(w)/Q) = U(n).

PROOF Since 1, w, »?, . .., " ! are all the nth roots of unity, Q(w)
is the splitting field of x” — 1 over Q. For each k in U(n), w* is a prim-
itive nth root of unity, and by the lemma preceding Theorem 20.4, there
is a field automorphism of Q(w), which we denote by ¢,, that carries ©
to wX and acts as the identity on Q. Moreover, these are all the auto-
morphisms of Q(w), since any automorphism must map a primitive nth
root of unity to a primitive nth root of unity. Next, observe that for
every r, s € U(n),

(. d)(w) = ¢ (0°) = (¢, (0) = (@) = 0" = ¢ (w).

This shows that the mapping from U(n) onto Gal(Q(w)/Q) given by
k — ¢, is a group homomorphism. Clearly, the mapping is an isomor-
phism, since w” # w*® when r, s € U(n) and r # s. |

The next example uses Theorem 33.4 and the results of Chapter 8 to
demonstrate how to determine the Galois group of cyclotomic extensions.

B EXAMPLE 3 Let o = cos(%”) + i sin(%”) and let B8 = COS(%) +
i sin(%T). Then

Gal(Q(w)/Q) = U(9) =
and

Gal(Q(B)/Q) = U(15) = US) D UB) = 2, D Z,. |

The Constructible Regular n-gons

I Lemma

As an application of the theory of cyclotomic extensions and Galois the-
ory, we determine exactly which regular n-gons are constructible with a
straightedge and compass. But first we prove a technical lemma.

Let n be a positive integer and let o = cos( ) +i sm( ) Then

Q(cos( )) C O(w).

PROOF Observe that from (cos(%) + i s1n(2”))(cos(2”) — isin(*%) =
cos?() + sin?(*) = 1, we have cos(*®) — i sin(**) = 1/w. Moreover,
(0 + lw)2 =2 cos(%f )/2 = cos(*%). Thus, cos(%f) € Q(w). |



33 | Cyclotomic Extensions 567

I Theorem 33.5 (Gauss, 1796)

It is possible to construct the regular n-gon with a straightedge and
compass if and only if n has the form 2*p, p, - - - p,, where k = 0 and
the p;’s are distinct primes of the form 2™ + 1.

PROOF If it is possible to construct a regular n-gon, then we can con-
struct the angle 277/n and therefore the number cos(zf). By the results of
Chapter 23, we know that cos(zf) is constructible only if [Q(cos(%”)) : 0]
is a power of 2. To determine when this is so, we will use Galois theory.
Let @ = cos(*") + i sin(*7). Then IGal(Q(w)/Q)| = [Q(w) : Q] =
¢(n). By the lemma on the preceding page, Q(cos(%”)) C O(w), and by
Theorem 32.1 we know that

[Q(cos(3)) : Q] = 1Gal(Q(w)/Q)!/1Gal(Q(w)/Q(cos(3M)))!
= P(n)/IGal(Q(w)/Q(cos( Z))!.

Recall that the elements o of Gal(Q(w)/Q) have the property that
o(w) = o* for 1 = k = n. That is, o(cos(*%) + i sin(*%)) = cos(*Z¥) +
i sin(%). If such a o belongs to Gal(Q(w)/Q(cos(zf))), then we must
have cos(%) = cos(zf). Clearly, this holds only when £k = 1 and k =
n — 1. So, IGal(Q(w)/Q(cos(*5)))! = 2, and therefore [Q(cos(*D)) : Q] =
¢(n)/2. Thus, if an n-gon is constructible, then ¢(n)/2 must be a power
of 2. Of course, this implies that ¢(n) is a power of 2.

Write n = 2kp1” 'p,"? - p™, where k = 0, the p;’s are distinct odd
primes, and the n’s are positive. Then $(n)=I1Un) = |U(2")||U(pl”‘)|
\U(p,y D)l - - 1U(p ) = 28 pm=lp, — D) p,t(p, — 1) -+
p,"~'(p, — 1) must be a power of 2. Clearly, this implies that each n, =
1 and each p, — 1 is a power of 2. This completes the proof that the
condition in the statement is necessary.

To prove that the condition given in Theorem 33.5 is also sufficient,
suppose that n has the form 2p p, - - - p,» where the p.’s are distinct
odd primes of the form 2™ + 1, and let w = cos(%”) + i sin(zf). By
Theorem 33.3, O(w) is a splitting field of an irreducible polynomial
over Q, and therefore, by the Fundamental Theorem of Galois Theory,
d(n) = [Q(w) : O] = IGal(Q(w)/Q)!. Since ¢(n) is a power of 2 and
Gal(Q(w)/Q) is an Abelian group, it follows by induction (see Exer-
cise 15) that there is a series of subgroups

H,CH, C - CH, = Gal(Qw)/Q)

where H is the identity, H, is the subgroup of Gal(Q(w)/Q) of order 2
that fixes cos(zf), and |H,, ,:Hl=2fori=0,1,2,...,7— 1. By the
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Fundamental Theorem of Galois Theory, we then have a series of sub-
fields of the real numbers

= . = 2m
0= EHt - EHt_1 - - EH1 Q(cos(5,)),

where [E E, ] = 2. So, for each i, we may choose 3, € E such
that E,, = E (B) Then B, is a zero of a polynomial of the form

x2 + b x+c E E, [x], and it follows that E,, » =E, (\/ b? — 4c,).
Thus, 1t follows frorn Exercise 3 in Chapter 23 that every elernent of
Q(cos( 7)) is constructible. |

It is interesting to note that Gauss did not use Galois theory in his
proof. In fact, Gauss gave his proof 15 years before Galois was born.

Difficulties should act as a tonic. They should spur us to greater exertion.
B. C. FORBES

1. Determine the minimal polynomial for cos(5) + i sin(5) over Q.
Factor x'?> — 1 as a product of irreducible polynomials over Z.

3. Factor x* — 1 as a product of irreducible polynomials over Z,, Z,,
and Z..

4. For any n > 1, prove that the sum of all the nth roots of unity is 0.

5. For any n > 1, prove that the product of the nth roots of unity is
(_ 1)n+1.

6. Let w be a primitive 12th root of unity over Q. Find the minimal
polynomial for w* over Q.

7. Let F be a finite extension of Q. Prove that there are only a finite
number of roots of unity in F.

N

8. For any n > 1, prove that the irreducible factorization over Z of
x" U+ x2+ -+ x + 1is [1®,(x), where the product runs
over all positive divisors d of n greater than 1.

9. If 2" + 1 is prime for some n = 1, prove that n is a power of 2.
(Primes of the form 2" + 1 are called Fermat primes.)

10. Prove that ® (0) = 1 foralln > 1.

11. Prove that if a field contains the nth roots of unity for n odd, then it
also contains the 2nth roots of unity.

12. Let m and n be relatively prime positive integers. Prove that the

splitting field of x™" — 1 over Q is the same as the splitting field of
(x™— 1)(x" — 1) over Q.
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Prove that @, (x) = ® (—x) for all odd integers n > 1.

Prove that if p is a prime and k is a positive integer, then CDpk(x) =
@p(xl"‘"). Use this to find ®y(x) and P, (x).

Prove the assertion made in the proof of Theorem 33.5 that there ex-
ists a series of subgroups H, C H C - - - C H with |H, , : H| =2
fori =0,1,2,...,t— 1. (This exercise is referred to in this
chapter.)

Prove that x? — 1 and x” — 1 have isomorphic Galois groups over Q.
(See Exercise 7 in Chapter 32 for the definition.)

Let p be a prime that does not divide n. Prove that CI)pn(x) =
D (xP) D (x).

Prove that the Galois groups of x!° — 1 and x® — 1 over Q are not
isomorphic.

Let E be the splitting field of x> — 1 over Q. Show that there is a
unique field K with the property that Q C K C E.

Let E be the splitting field of x® — 1 over Q. Show that there is no
field K with the property that 0 C K C E.

Letw = cos(zr’;) —1i sin(%r). Find the three elements of Gal(Q(w)/Q)
of order 2.

Mathematics is not a deductive science—that’s a cliché. When you try to
prove a theorem, you don't just list the hypotheses, and then start to rea-
son. What you do is trial and error, experimentation, guesswork.

PAUL HALMOS, | Want to Be a Mathematician.

Software for the first computer exercise in this chapter is available at the
website:

1.

http://www.d.umn.edu/~jgallian

This program returns the nth cyclotomic polynomial. Enter several
choices for n of the form pg and p?q, where p and ¢ are distinct
primes. Make a conjecture about the nonzero coefficients of ® (x).

Use computer software such as Mathematica, Maple, or GAP to
find the irreducible factorization over Z of all polynomials of the
form x" — 1, where n 1s between 2 and 100. On the basis of this
information, make a conjecture about the nature of coefficients of
the irreducible factors of x” — 1 for all n. Then test your conjec-
ture for n = 105.


http://www.d.umn.edu/~jgallian

Carl Friedrich Gauss

He [Gauss] lives everywhere in
mathematics.
E. T. BELL, Men of Mathematics

CARL FRIEDRICH GAUSS, considered by many
to be the greatest mathematician who has ever
lived, was born in Brunswick, Germany, on
April 30, 1777. While still a teenager, he made
many fundamental discoveries. Among these
were the method of “least squares” for han-
dling statistical data, and a proof that a
17-sided regular polygon can be constructed
with a straightedge and compass (this result

CARL FRIEDRICH GAUSS

This stamp was issued by East Germany in
1977. It commemorates Gauss’s construc-
tion of a regular 17-sided polygon with a
straightedge and compass.
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was the first of its kind since discoveries by the
Greeks 2000 years earlier). In his Ph.D. disser-
tation in 1799, he proved the Fundamental
Theorem of Algebra.

Throughout his life, Gauss largely ig-
nored the work of his contemporaries and, in
fact, made enemies of many of them. Young
mathematicians who sought encouragement
from him were usually rebuffed. Despite this
fact, Gauss had many outstanding students,
including Eisenstein, Riemann, Kummer,
Dirichlet, and Dedekind.

Gauss died in Géttingen at the age of 77 on
February 23, 1855. At Brunswick, there is a
statue of him. Appropriately, the base is in the
shape of a 17-point star. In 1989, Germany is-
sued a bank note (see page 112) depicting
Gauss and the Gaussian distribution.

To find more information about Gauss,
visit:

http://www-groups.dcs
.st-and.ac.uk/~history/


http://www-groups.dcs.st-and.ac.uk/~history/
http://www-groups.dcs.st-and.ac.uk/~history/

Manjul Bhargava

We are watching him [Bhargava] very
closely.
He is going to be a superstar.
He's amazingly mature mathematically.
He is changing the subject in a
fundamental way.

PETER SARNAK

MANJUL BHARGAVA was born in Canada on
August 8, 1974, and grew up in Long Island,
New York. After graduating from Harvard in
1996, Bhargava went to Princeton to pursue
his Ph.D. under the direction of Andrew
Wiles (see page 340). Bhargava investigated
a “composition law” first formulated by
Gauss in 1801 for combining two quadratic
equations (equations in a form such as
x> + 3xy +6y> = 0) in a way that was very
different from normal addition and revealed
a lot of information about number systems.
Bhargava tackled an aspect of the problem in
which no progress had been made in more
than 200 years. He not only broke new
ground in that area but also discovered 13
more composition laws and developed a
coherent mathematical framework to explain
them. He then applied his theory of composi-
tion to solve a number of fundamental
problems concerning the distribution of
extension fields of the rational numbers and
of other, related algebraic objects. What
made Bhargava’s work especially remark-
able is that he was able to explain all his
revolutionary ideas using only elementary
mathematics. In commenting on Bhargava’s
results, Wiles said, “He did it in a way that

Gauss himself could have understood and
appreciated.”

Despite his youth, Bhargava already has
won many awards, including a Clay Research
Fellowship, the Clay Research Award, the
Blumenthal Award for the Advancement of
Research in Pure Mathematics, the SASTRA
Ramanujan Prize, and the 2008 Cole Prize in
number theory (see page 430). In 2002 he
was named one of Popular Science maga-
zine’s “Brilliant 10,” in celebration of scien-
tists who are shaking up their fields. In 2003,
Bhargava accepted a full professorship with
tenure at Princeton at the age of 28.

In addition to doing mathematics,
Bhargava is an accomplished tabla player
who has studied with the world’s most
distinguished tabla masters. He performs
extensively in the New York and Boston
areas. To hear him play the tabla, visit

http://www.npr.org/templates/story/
story.php?storyld=4111253

To find more information about Bhargava,
visit
www.Wikipedia.org and

www.d.umn.edu/~jgallian/
manjulMH4.pdf
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www.Wikipedia.org
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Supplementary Exercises for Chapters 24-33

True/false questions for Chapters 24-33 are available on the Web at

. Prove that the only group of order 561 is Z

http://www.d.umn.edu/~jgallian/TF

. Let G = (x,y | x = (xy)’, y = (xy)*). To what familiar group is G

isomorphic?

LetG=(z1z =1)and H = {(x, y | x> = y*> = 1, xy = yx). Show
that G and H are isomorphic.

Show that a group of order 315 = 32 - 5 - 7 has a subgroup of
order 45.

Let G be a group of order p?q?, where p and ¢ are primes and p > gq.
If IGI # 36, prove that G has a normal Sylow p-subgroup.

Let H denote a Sylow 7-subgroup of a group G and K a Sylow
5-subgroup of G. Assume that |[HI = 49, IK| = 5, and K is a sub-
group of N(H). Show that H is a subgroup of N(K).

Prove that no finite group of order greater than 6 has exactly three
conjugacy classes.

Suppose that K is a normal Sylow p-subgroup of H and that H is a
normal subgroup of G. Prove that K is a normal subgroup of G.
(Compare this with Exercise 53 in Chapter 9.)

Show that the polynomial x> — 6x + 3 over Q is not solvable by
radicals.

Let H and K be subgroups of G. Prove that HK is a subgroup of G
if H= N(K).

. Suppose that H is a subgroup of a finite group G and that H con-

tains N(P), where P is some Sylow p-subgroup of G. Prove that
N(H) = H.

. Prove that a simple group G of order 168 cannot contain an ele-

ment of order 21.

61°


http://www.d.umn.edu/~jgallian/TF

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.
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Prove that the center of a non-Abelian group of order 105 has
order 5.

Let n be an odd integer that is at least 3. Prove that every Sylow
subgroup of D, is cyclic.

Let G be the digraph obtained from Cay({(1, 0), (0, 1)}: Z, ® Z)
by deleting the vertex (0, 0). [Also, delete each arc to or from
(0, 0).] Prove that G has a Hamiltonian circuit.

Prove that the digraph obtained from Cay({(1, 0), (0, 1)}: Z, ® Z)
by deleting the vertex (0, 0) has a Hamiltonian circuit.

Let G be a finite group generated by @ and b. Let s, 5,, ..., s, be
the arcs of a Hamiltonian circuit in the digraph Cay({a, b}: G). We
say that the vertex s s, - * - 5, travels by a if 5, | = a. Show that if
a vertex x travels by a, then every vertex in the coset x{(ab™ ') trav-
els by a.

Recall that the dot product u - v of two vectors u = (u,, u,, . .., u,)
andv = (v, v,, ..., v ) from F"is

uwv, + Uy, + -+ uv,

(where the addition and multiplication are those of F). Let C be an
(n, k) linear code. Show that

C*={veF'lv-u=0forallu € C}

is an (n, n — k) linear code. This code is called the dual of C.

Find the dual of each of the following binary codes:

a. {00, 11},

b. {000, 011, 101, 110},

c. {0000, 1111},

d. {0000, 1100, 0011, 1111}.

Let C be a binary linear code such that C C C*. Show that wt(v) is
even for all vin C.

Let C be an (n, k) binary linear code. If v is a binary n-tuple, but
v & C*, show that v - u = 0 for exactly half of the elements « in C.
Suppose that C is an (n, k) binary linear code and the vector

11 ---1 & C*. Show that wt(v) is even for every v in C.
Suppose that C is an (n, k) binary linear code and C = C~. (Such a
code is called self-dual.) Prove that n is even. Prove that 11 - - - 1

is a code word.
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24. If G is a finite solvable group, show that there exist subgroups of G
{e}=H,CH CH,C---CH =G

such that H_ ,/H, has prime order.

The End.

Title of song by JOHN LENNON AND PAUL MCCARTNEY,
Abbey Road, side 2, October 1969
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Don'’t wait for answers
Just take your chances
Don’t ask me why

BILLY JOEL, “Don’t Ask Me Why,” Glass Houses

Many of the proofs given below are merely sketches. In these
cases, the student should supply the complete proof.

Chapter 0

To make headway, improve your head.

wn

11.
13.
15.

17.
19.
21.
23.

25.
27.

29.

B. C. FORBES

. {1,2,3,4};{1,3,5,7}; {1,5,7,11}; {1,3,7,9, 11,13, 17, 19}; {1,2,3,4,6,7,8,9, 11, 12, 13,

14,16, 17, 18, 19, 21, 22, 23, 24}

. 12,2,2,10,1,0,4,5.
. 1942, June 18; 1953, December 13.
. By using 0 as an exponent if necessary, we may write a = p,' - - - p/"and b = p " - - - p /",

where the p’s are distinct primes and the m’s and n’s are nonnegative. Then Iem (a, b) = p,*' - - - p,*,
where s; = max(m,, n,), and ged(a, b) = p," - - - p,*, where t, = min(m,, n,). Then Icm(a, b) -
gcd(a, b) — plm1+n1 . .pkmk+nk = ab.

. Write a = ngq, + r  and b = nq, + r,, where 0 = r|, r, < n. We may assume that r, = r,. Then

a—b=n(q, —q, + (r, — r,), where r, = r, = 0. If amod n = b mod n, then r, = r, and n
divides a — b. If n divides @ — b, then by the uniqueness of the remainder, we have r, — r, = 0.
Use Exercise 9.

Use the “GCD Is a Linear Combination” theorem (Theorem 0.2).

Let p be a prime greater than 3. By the Division Algorithm, we can write p in the form 6n + 7,
where r satisfies 0 = r < 6. Now observe that 6n, 6n + 2, 6n + 3, and 6n + 4 are not prime.
Since st divides a — b, both s and 7 divide a — b. The converse is true when ged(s, 1) = 1.

Use Euclid’s Lemma and the Fundamental Theorem of Arithmetic.

Use proof by contradiction.

Let S be a set with n + 1 elements and pick some a in S. By induction, S has 2" subsets that do not
contain a. But there is a one-to-one correspondence between the subsets of S that do not contain a
and those that do. So, there are 2 - 2" = 2"*! subsets in all.

Consider n = 200! + 2.

Sayp,p, P, = q,4," " q,, where the p’s and g’s are primes. By the Generalized Euclid’s
Lemma, p, divides some g,, say q, (we may relabel the ¢’s if necessary). Then p, = g, and p, - - -
P, = g, q, Repeating this argument at each step, we obtain p, = ¢,,...,p, = g, and r = s.
Suppose that S is a set that contains @ and whenever n = a belongs to S, then n + 1 € S. We must
prove that S contains all integers greater than or equal to a. Let T be the set of all integers greater
than a that are not in S and suppose that 7"is not empty. Let b be the smallest integer in 7 (if 7 has
no negative integers, b exists because of the Well Ordering Principle; if 7 has negative integers, it
can have only a finite number of them so that there is a smallest one). Then b — 1 € §, and there-
foreb=0b—-1)+1€S.

Al
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31.
33.
35.

37.

39.

41.
45.
47.
49.
51.

53.
55.

57.
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The statement is true for any divisor of 8* — 4 = 4092.

6 P.M.

Observe that the number with the decimal representation aya - - - a,a, is a, - 10° + ag - 108 + - - - +

a, * 10 + a,. Then use Exercise 11 and the fact that ¢,10'mod 9 = a, mod 9 to deduce that the

check digit is (a, + a3 + - - - + a, + ay) mod 9.

For the case in which the check digit is not involved, see the answer to Exercise 35. If a transpo-

sition involving the check digit ¢ = (a, + a, + - - - + @) mod 9 goes undetected, then a,, =

(@, +a,+---+ a4+ c)mod9. Substitution yields 2(a, + a, + - - - + a,) mod 9 = 0. Therefore,

modulo 9, we have 10(a; + a, + -+ +ay) =a, +a, + -+ + a, = 0. It follows that c = a,.

In this case the transposition does not yield an error.

Say the number is aga, . . . a,a, = ag - 108 + a, - 107 + - - - + a, - 10 + a,,. Then the error is

undetected if and only if (¢,10' — a,'10°) mod 7 = 0. Multiplying both sides by 5’ and noting that

50 mod 7= 1, we obtain (@, — @,") mod 7 = 0.

4

Cases where (2a — b — ¢) mod 11 = 0 are undetected.

The check digit would be the same.

4302311568

2. Since § is one-to-one, B(a(a,)) = B(a(a,)) implies that a(a,) = a(a,) and since « is one-to-
one, a, = a,.

3. Let ¢ € C.There is a b in B such that 8(b) = ¢ and an a in A such that a(a) = b. Thus, (Ba)(a)
= Blala)) = Bb) = c.

4. Since a is one-to-one and onto we may define o~ !(x) = y if and only if a(y) = x. Then
a Ya(a)) = aand a(a” (b)) = b.

No.(1,0) € Rand (0, —1) €ER, but (1, —1) € R.

a belongs to the same subset as a. If a and b belong to the subset A, then b and a also belong to

A. If a and b belong to the subset A and b and ¢ belong to the subset B, then A = B, since the

distinct subsets of P are disjoint. So, a and ¢ belong to A.

Apply v to both sides of ay = By.

Chapter 1
Think of what you're saying, you can get it wrong and still think that it’s all right.

W

11.
13.
15.
17.
19.
21.
23.

JOHN LENNON AND PAUL MCCARTNEY,
“We Can Work It Out,” single

. Three rotations: 0°, 120°, 240°, and three reflections across lines from vertices to midpoints of

opposite sides.
no

. D, has n rotations of the form k(360°/n), where k = 0, . .., n — 1. In addition, D, has n reflections.

When r is odd, the axes of reflection are the lines from the vertices to the midpoints of the opposite
sides. When 7 is even, half of the axes of reflection are obtained by joining opposite vertices; the
other half, by joining midpoints of opposite sides.

. A rotation followed by a rotation either fixes every point (and so is the identity) or fixes only the

center of rotation. However, a reflection fixes a line.

. Observethat1-1=1;1(—1)= —1; (—1)1 = —1; (—1)(—1) = 1. These relationships also hold

when 1 is replaced by “rotation” and —1 is replaced by “reflection.”
HD = DVbutH # V.

Ry, R g H, V

See answer for Exercise 13.

In each case, the group is D.

cyclic

Their only symmetry is the identity.

It would wobble violently.
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Chapter 2

The noblest pleasure is the joy of understanding.

LEONARDO DA VINCI

1. Does not contain the identity; closure fails.
3. Under modulo 4, 2 does not have an inverse. Under modulo 5, each element has an inverse.
99
> [10 8}
7. a. 2a +3b; b. —2a +2(—b+c);e. —3(a+2b)+2c=0
9. e
11. Use the fact that det (AB) = (det A)(det B).
13. 29
15. (ab)" need not equal a"b" in a non-Abelian group.
17. Use the Socks-Shoes Property.
19. For the case n > 0, use induction. For n < 0, note that e = (a~'ba)"(a”'ba)™ = (a~'ba)"
(a~'b™"a) and solve for (a~'ba)".
21. {1,3,5,9,13, 15, 19, 23, 25, 27, 39, 45}
23. Suppose x appears in a row labeled with a twice. Say x = ab and x = ac; then cancellation yields
b = c. But we use distinct elements to label the columns.
25. Use Exercise 23.
27. a leb™Y aca™!
29. If x* = eand x # ¢, then (x ')* = e and x # x~!. So, nonidentity solutions come in pairs.
If x> # e, then x~ ! # x and (x~1)? # e. So solutions to x> # e come in pairs.
31. Observe that since RF is a reflection, we have (RF)(RF) = R;. So, RFR = Fl'=F.
33. Observe thataa™'b = ba™'a.
35. Since a®> = b*> = (ab)’> = e, we have aabb = abab. Now cancel on the left and right.
37. If n is not prime, the set is not closed under multiplication modulo n. If n is prime, the set is
closed and for every r in the set there are integers s and ¢ such that 1 = rs + nt = rs modulo n.
39. Closure follows from the definition of multiplication. The identity is EZ i;ﬂ The inverse of
[a a} . {1/(4a) 1/(4a)}
“l1/¢a) 1/¢4a)])
Chapter 3

The brain is as strong as its weakest think.

ELEANOR DOAN

1. 1Z,1 = 12; 1U(10)| = 4; 1U(12)l = 4; 1UQ20)I = 8; ID,| = 8
InZ,, 100 = 1; 111 = 151 = 171 = [111 = 12; 12 = 1101 = 6; 131 = 191 = 4; 14| = 18] = 3; 16| = 2.
In U10), 111 = 1; 131 = 171 = 4; 191 = 2.
In U12), 111 = 15151 = 2; 171 = 2; 111 = 2.
In U20), I11 = 15131 =171 = 1131 = 1171 = 4; 191 = |11] = 1191 = 2.
InD,, IRyl = 15 IRyl = IRyl = 45 IR gl = |HI = IVI = IDI = ID'| = 2.
In each case, notice that the order of the element divides the order of the group.
3. In Q, 10l = 1 and all other elements have infinite order. In Q*, |11 = 1, |=11 = 2, and all other
elements have infinite order.
5. Each is the inverse of the other.
7. Suppose that m < nand a” = a". Then e = a"a~" = a"~". This contradicts the assumption that

a has infinite order.
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. If a has infinite order, then e, a, @, . . . are all distinct and belong to G, so G is infinite.

If lal = n, thene, a, d? ..., a" 'are distinct and belong to G.

By brute force, show that k* = 1 for all k.

For any integer n = 3, D, contains elements a and b of order 2 with labl = n. In general, there is
no relationship among lal, 151, and labl.

(2),(3),(6).

U,20) = {1,9, 13, 17}; Us(20) = {1, 11}; Uy(30) = {1, 11}; U,(30) = {1, 11}. U,(n) is closed
because (ab) mod k = (@ mod k)(b mod k) = 1 - 1 = 1. H is not closed.

If x € Z(G), then x € C(a) for all a, sox € N C(a). If x € N C(a), then xa = ax for all a in G,
sox € Z(G). v o

The case that k = 0 is trivial. Let x € C(a). If k is positive, then by induction on k, xa**! = xaa*+
axd“ = adx = @"*'x. The case where k is negative now follows from Exercise 20.

a. C5)=G;C(7)=1{1,3,5,7}

b. Z(G) = {1, 5}

c. 121 = 2; 131 = 4. They divide the order of the group.

Mimic the proof of Theorem 3.5.

No.InD,, C(R ) = D,.

For the first part, see Example 4. For the second part, use D,,.

Since the only elements of finite order in R* are 1 and — 1, the only finite subgroups are {1} and
{1, —1}.

2

First observe that (a%)”? = a" = e, so |a“| is at most n/d. Moreover, there is no positive integer
t < n/d such that (a®)’ = a" = e, for otherwise |a| # n.

Not tht[l IT—F "}
ote al 0] 0 1

For any positive integer n, a rotation of 360°/n has order n. A rotation of \/2° has infinite order.
Ry)» (Rgp) (R,5)» (D), (D"), {H), (V). (Note that (R, ) = (R,;)). The subgroups {R, R, D, D"}
and {R,, Rg H, V} are not cyclic.

Nonidentity elements of odd order come in pairs. So, there must be some element a of even order,
say lal = 2m. Then la™ = 2.

Let Igl = m and write m = ng + r where 0 = r < n. Then g" = g" " = g"(g")~7= (g")" 7 be-
longs to H. So, r = 0.

1 € H. Let a, b € H. Then (ab™')> = a*(b*)~", which is the product of two rationals. 2 can be
replaced by any positive integer.

180°

I(3) =4
a b a b ,

Let d and | | J belong to H. It suffices to show thata —a’ + b —b" +c—¢' +d —
c c

d' = 0. This follows froma + b+ c+d=0=a" +b" + ¢ +d' . If Oisreplaced by 1, H is
not a subgroup.
If 22 and 2 € K, then 2¢(20)"! = 24P € K, sincea — b € H.

= 1 | is notin H.
0 2 0 3

Ifa + biand ¢ + di € H, then (a + bi)(c + di)~" = (ac + bd) + (bc — ad)i and (ac + bd)*> +
(bc —_ad)2 = 1, so that H is a subgroup. H is the unit circle in the complex plane.

a+b a
a. lab + b*# a*;a, b €ER
a b

:a b
b. { ]|a2#b2;a,b€R}
Lb a

C. la#0;a€R
0 a

Use T_heorem 0.2.
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Chapter 4

There will be an answer, let it be.

[

o Ut W
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. For Z, generators are 1 and 5; for Z,, generators are 1, 3, 5, and 7; for Z,

JOHN LENNON AND PAUL MCCARTNEY, “Let It Be,” single

o> generators are 1, 3,7,

9,11, 13,17, and 19.

. (20) = {20, 10, 0}; <10) = {10, 20, 0} (a®) = {a*, ', a°}; (a'®) = {a"°, a*, a°}

. (3)=1{3,9.7.1};(7) = {7,9,3,1}

. U@®)orD,.

. Six subgroups; generators are the divisors of 20. Six subgroups; generators are a¥, where k is a

divisor of 20.

By definition, a~! € (a). So, {a~') C {(a). By definition,a = (a™") ™" € (a™'). So, {a) C (a™').
(21) N (10) = (18) = (6). In the general case {(a") N (a") = (a"), where

k = lcm (m, n) mod 24.

lgl divides 12 is equivalent to g'> = e. So, if a'> = e and b'?> = ¢, then (ab™")'> = a'>(b'>) ' =
ee”! = e. The general result is given in Exercise 29 of Chapter 3.

is odd or infinite

(1), (7), (11), (17), (19), (29)

a. lal divides 12. b. lal divides m. ¢. By Theorem 4.3, lal = 1,2, 3,4, 6, 8, 12, or 24. If lal = 2,
then a® = (a*)* = ¢* = e. A similar argument eliminates all other possibilities except 24.

Yes, by Theorem 4.3. The subgroups of Z are of the form (n) = {0, *n, =2n, *3n,...},n =0,
1,2, 3,....The subgroups of (a) are of the form (") forn =0, 1,2,3,....

For the first part, use Theorem 4.4; D, has n elements of order 2 when 7 is odd and n + 1 ele-
ments of order 2 when 7 is even.

See Example 14 of Chapter 2.

1000000, 3000000, 5000000, 7000000. By Theorem 4.3, (1000000 is the unique subgroup of or-
der 8, and only those on the list are generators; a'000000, 3000000 " ;5000000 47000000 By Theorem 4.3,
(a"%%%0%Y i5 the unique subgroup of order 8, and only those on the list are generators.

LetG = {a,,a,,...,a}. Nowlet la] = n. Considern = n\n, - - - n,.

Mimic Exercise 32.

Mimic Exercise 34.

Suppose a and b are relatively prime positive integers and (a/b) = Q*. Then there is some positive in-
teger n such that (a/b)" = 2. Clearly,n # 0, 1,or —1.If n > 1, a" = 2b", so that 2 divides a. But then
2 divides b as well. A similar contradiction occurs if n < —1.

For 6, use Z,s. For n, use Zn-1.

Let t = lem(m, n) and labl = 5. Then (ab)’ = a'b’ = e, and therefore s divides 7. Also, e =

(ab)* = a’b*, so that a* = b%, and therefore a* and b~* belong to (@) N (b) = {e}. Thus, m divides
s and n divides s, and, therefore, ¢ divides s. This proves that s = 7. For the second part, try D,.

An infinite cyclic group does not have an element of prime order. A finite cyclic group can have
only one subgroup for each divisor of its order. A subgroup of order p has exactly p — 1 elements
of order p. Another element of order p would give another subgroup of order p.
1-4,3:-4,7-4,9-4; x4, 7, (xh°.

1 of order 1; 33 of order 2; 2 of order 3; 10 of order 11; 20 of order 33

1,2, 10,20

Say a and b are distinct elements of order 2. If a and b commute, then ab is a third element

of order 2. If a and b do not commute, then aba is a third element of order 2.

Use Exercise 18 of Chapter 3 and Theorem 4.3.

1 and 2

In a cyclic group there are at most n solutions to the equation x" = e.

12 or 60; 48
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61. Observe that a®™ = ¢ = a*. Thus |a| is common divisor of 280 and 440, and therefore |a|
divides gcd(280, 440) = 40.

63. Say b is a generator of the group. Since p and p" — 1 are relatively prime, we know by Corollary
3 of Theorem 4.2 that b also generates the group. Finally, observe that (b?)k = (b¥)?.

65. Use the fact that a cyclic group of even order has a unique element of order 2.

67. G is a group because it is closed. It is not cyclic because every nonzero element has order 3.

69. Since m and n are relatively prime, it suffices to show both m and n divide k. By Corollary 2 of
Theorem 4.1, it is enough to show that @* = e. Note that a* € (a) N (b}, and since {a) N (b) is a
subgroup of both (a) and (b), we know that [{a) N (b)| must divide both |[{a)| and [(b)|. Thus,
Ka) N (b)Y = 1.

71. Observe that among the integers from 1 to p” the p"~ ! integers p, 2p, 3p, . .., p"~'p are exactly the
ones that are not relatively prime to p.

Supplementary Exercises for Chapters 1-4

Four short words sum up what has lifted most successful individuals above the crowd: a little bit
more. They did all that was expected of them and a little bit more.
A. LOU VICKERY

1. a. Let xh,x™ ' and xh,x~' belong to xHx'. Then (xhx~")(xhx~")~! = xh h,”'x~' € xHx ! also.
b. Let (h) = H. Then {(xhx~') = xHx ' ¢. (xhx N(xhyx ") = xhhyx ' = xh,hx! =
(xhx N(xhx™h

3. Suppose cl(a) N cl(b) # ¢. Say xax™' = yby~'. Then (y~'x)a(y~'x)~' = b. Thus, for any ubu~"
in cl(b), we have ubu~' = (uy~'x)a(uy~'x)~' € cl(a). This shows that cl(b) C cl(a). By symme-
try, cl(a) C cl(b). Because a = eae™ ' € cl(a), the union of the conjugacy classes is G.

5. Observe that (xax™")* = xa*x~!. Thus, (xax~")* = ¢ if and only if a* = e.

7. Try D,.

9. By Exercise 5, for every x in G, lxax™!| = lal, so that xax™' = a or xa = ax.

1. 1 of order 1, 15 of order 2, 8 of order 15, 4 of order 5, 2 of order 3.

13. Let IGl = 5. Leta # e belong to G. If lal = 5, we are done. If lal = 3, then {e¢, a, a*} is a sub-
group of G. Let b be either of the remaining two elements of G. Then the set {e, a, a>, b, ab, a*b}
consists of six different elements, a contradiction. Thus, lal # 3. Similarly, lal # 4. We may now
assume that every nonidentity element of G has order 2. Pick a # e and b # ¢ in G with a # b.
Then {e, a, b, ab} is a subgroup of G. Let ¢ be the remaining element of G. Then {e, a, b, ab, c,
ac, be, abce} is a set of eight distinct elements of G, a contradiction. It now follows thatifa € G
and a # e, then lal = 5.

15. a"(b")~' = (ab™')", so G" is a subgroup. For the non-Abelian group, try D,.

17. Suppose G = H U K. Pick h € H with h & K. Pick k € K, but k & H. Then, hk € G, but hk & H
and hk & K. U(8) is the union of the three subgroups.

19. If lal = p*and Ibl = p” with k =< r, say, then lab™'| divides p".

21. Note that ba> = ab and a® = b*> = e imply ba = a’b. Thus, every member of the group can be
written in the form a’b/. Therefore, the group is {e, a, a°, b, ab, a®b}. D, satisfies these conditions.

23. xy = yxif and only if xyx'y~! = e. But, (xy)x Iy ! = x"I(xy)y ! = ee = e.

25. Letx € N(gHg™'). Then x(gHg ")x~! = gHg '. Thus g " 'xgHg 'x g = ¢ " xgH(g 'xg)"! = H.
This means that g~ xg € N(H). So x € gN(H)g . Reverse the argument to show gN(H)g ! C
N(gHg™).

27. Look at D,,.

29. Solution from Mathematics Magazine.” “Yes. Let a be an arbitrary element of S. The set {a" | n =
1,2, 3, ...} is finite, and therefore a™ = a” for some m, n with m > n = 1. By cancellation we

"Mathematics Magazine 63 (April 1990): 136.
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have @@ = a, where r{(a) = m — n + 1 > 1. If x is any element of S, then aa" @~ 'x = a’“x = ax,
and this implies that @@~ 1x = x. Similarly, we see that xa"@~! = x, and the element ¢ = a"®@~! is an
identity. The identity element is unique, for if e’ is another identity, then e = ee’ = e'. If r(a) > 2
then a"®~2 s an inverse of a, and if (@) = 2 then a®> = a = e is its own inverse. Thus S is a group.”
1" is rational so H # ¢. Say @ and b" are rational. Then (ab~')"" = (a™)'/(b")" is rational.

Use det (AB) = (det A)(det B) to prove H is a subgroup. H is not a subgroup when det A is an integer,
since det A~! need not be an integer.

Choose x # ¢ and y & (x). Then G = (x) U (y). But then xy € (y), so that {(x) C (y) and therefore
G = (y). To prove that |G| = pq or p*, use Theorem 4.3.

If T'and U are not closed, then there are elements x and y in 7 and w and z in U such that xy is not
in T and wz is not in U. It follows that xy € U and wz € T. Then xywz = (xy)wz € U and xywz =
xy(wz) € T, a contradiction.

Let G be the group of all polynomials with integer coefficients under addition. Let H, be the sub-
group of polynomials of degree at most k together with the zero polynomial (the zero polynomial
does not have a degree).

Take g = a.

Let S = {s,, 8, ..., 5.} and let g be any element in G. Then the set {gs, ', gs, ', g5,"', .. .,
gsk’l} and S have at least one element in common. Say gsi’l =5 Then g = 8,8,

Let K = {x € G | Ixl divides d}. The sub test shows that K is a subgroup. Let x € H. By Theorem
4.3, Ixl divides d. So, H C K. Lety € K, lyl = t, and d = tq. By Theorem 4.3, H has a subgroup
of order 7 and G has only one subgroup of order . So, (y) C H.

To check associativity, note (a*b) *c=((a+b) — 1)xc=a+b—1+c —1=a+b+
c—2andax(bxc)y=axb+c—1)=a+b+c—1)—1=a+ b+ c— 2. Todetermine
the identity e, we observe that a * ¢ = a if and only if @ + ¢ — 1 = a. Thus 1 is the identity (it is
obvious that the operation is commutative). If a~! exists, we have musta = a™! = a +

a~! =1 =1, and therefore a~ ' is —a + 2. To find a generator, observe that for any positive
integer k, a = ka — (k — 1). So, for positive k and a = 2, we have 2 = k + 1. One can also check
that 2=k + 1 when k = 0 or negative. Thus 2 generates all integers.

Chapter 5

Mistakes are often the best teachers.

17.

JAMES A. FROUDE

a.2 b.3 ¢ 5
a.3 b.12 ¢. 6 d.6 e 12 f. 2
12

. For S, the possible orders are 1, 2, 3,4, 5, 6; for A, 1,2,3,4,5;forA,, 1,2,3,4,5,6,7.

. a. even b. odd c. even d. odd e. even

. even; odd

. An even number of 2-cycles followed by an even number of 2-cycles gives an even number of

2-cycles in all. So the finite subgroup test is verified.

. Suppose that @ can be written as a product of m 2-cycles and 8 can be written as a product of n

2-cycles. Then af3 can be written as a product of m + n 2-cycles. Now observe that m + n is
even if and only if m and n are both even or both odd.

213546
123456

b'ﬁa_{162345}
12345
215 3
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Suppose H contains at least one odd permutation, say, o. Imitate the proof of Theorem 5.7 with o
in place of (12).

The identity is even; the set is not closed.

a. Cla,y) = {a, a,, as, a,};b. Clayy) = {a, a, ap,}

180; 75

B = (2457136)

(124586739), (142568793), (214856379).

Let @, B € stab(a). Then aB(a) = a(B(a)) = a(a) = a. Also, a(a) = a implies «~ (a(a)) =

a Ya)ora =a '(a).

m is a multiple of 6 but not a multiple of 30.
6!/5 = 144

3,7,9

Let o = (123) and B = (145).

(123)(12) # (12)(123) in S (n = 3).

Cycle decomposition shows that any nonidentity element of A, is a 5-cycle, a 3-cycle, or a product of
a pair of disjoint 2-cycles. Then, observe that there are (5 - 4 - 3 - 2 - 1)/5 = 24 group elements of the
form (abcde), (5 - 4 - 3)/3 = 20 group elements of the form (abc), and (5 -4 -3 -2)/(2-2-2) =
15 group elements of the form (ab)(cd).

One possibility is {(1), (12)(34), (56)(78), (12)(34)(56)(78)}.

Hint: (13)(12) = (123) and (12)(34) = (324)(132).

Veritying that a * a(b) # b * o(a) is done by examining all cases. To prove the general case,
observe that o(a) = o 1(b) # o (b) * o'*1(a) can be written in the form o(a) * o(c(b)) #

o'(b) * a(o(a)), which is the case already done. If a transposition were not detected, then

@) al@) + o', ) x5 0'a) = olay) = - 0ia, ) 5 0 @) s 07(a,),
which implies o(a) * o' \(a,, ) = o'(a,, ) = o (a).

Observe that (¢,a, - - - a,) = (1a))(la,)(1a,_)) - - - (1a)).

If @ has odd order k and « is an odd permutation, then & = o would be odd.

By case-by-case analysis, H is a subgroup for n = 1, 2, 3 and 4. For n = 5, observe that (12)(34)
and (12)(35) belong to H but their product does not.

The product of an element of Z(A,) of order 2 and an element of A, of order 3 would have order 6.
The product of an element of Z(A,) of order 3 and an element of A, of order 2 would have order 6.
Labeling the four tires 1, 2, 3, and 4 in clockwise order starting with 1 being the tire in the
upper left-hand corner, we may represent the four patterns as

a = (1324) top left-hand pattern

B = (1423) top right-hand pattern

v = (14)(23) bottom right-hand pattern

6 = (13)(24) bottom left-hand pattern

Notice that « ' = B and that 8 = a*y. Thus, we need only find the smallest subgroup of S, con-
taining v and . To this end, observe that the set {&, @, o2, &3, v, ay, &y, oy} is closed under
multiplication on the left and right by both « and . This implies that the set is closed under multi-
plication and is therefore a group. Since ay # ya, the subgroup is non-Abelian.

Chapter 6

Think and you won't sink.

1.
3.
5.
7.

B. C. FORBES, Epigrams

Try n — 2n.

dxy) = Vay = VaVy = ¢p@)e()

Tryl —>1,3—-555->57,7—>11.

D, , has elements of order 12 and S, does not.
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9. Since T,(x) = ex = x for all x, T is the identity. For the second part, observe that Tgo (Tg)’1 =T,=
ng_l = Tgo Tg_l and cancel.

11. For any x in the group, we have (¢,¢,)(x) = ¢ ($,(x)) = qbg(hxh‘l) = ghxh'g7! = (gh)x(gh)™ ' =
& ().

13. d)ihgo and qSRO disagree on H; ¢R90 and ¢,, disagree on R ; d)Rgo and ¢, disagree on R,,,. The remain-
ing cases are similar.

15. Let o € Aut(G). We show that o~ ! is operation-preserving: o~ !(xy) = a~'(x)a~(y) if and only
if a(a1(xy)) = a(a™'(x)a~ (y)), that is, if and only if xy = a(a™'(x))a(a '(y)) = xy. Soa™!is
operation-preserving. That Inn(G) is a group follows from the equation qbgq&h = d)gh.

17. That « is one-to-one follows from the fact that 7~ exists modulo n. The operation-preserving condi-
tion is Exercise 11 in Chapter 0.

19. Use Part 2 of Theorem 6.2.

21. The inverse of a one-to-one function is one-to-one. To see that ¢! is operation-preserving, let a and b
belong to G. Then ¢~ X(ab) = ¢~1(a) ¢~'(b) if and only if ab = P(¢p " (@))P(d~ (b)) = ab [we ob-
tained the first equality by applying ¢ to both sides of ¢~'(ab) = ¢~ '(a)$p~'(b)]. Finally, let g € G.
Then ¢~ '(¢(g)) = g, so that ¢! is onto.

23. T (x) = T (y) if and only if gx = gy or x = y. This shows that 7 is a one-to-one function. Let y €

8 8 8
G. Then 7,(g™'y) = y, so that T, is onto.

25. Apply the appropriate definitions.

27. Show that Q is not cyclic.

29. Trya + bi —> [a _b].

b a

31. Yes, by Cayley’s Theorem.

33. Observe that ¢ (v) = gyg™" and ¢_(y) = zgy(zg) ™" = zgyg~'z™" = gyg™" since z € Z(G). So,
b, =,

35. ¢, = ¢, implies gxg ™! = o~ for all x. This implies /~gx(~1g)™! = x, and therefore i~'g € Z(G).

37. Say lal = n. Then ¢ "(x) = a@"xa™" = x, so that ¢ " is the identity. For the example, take
a= Ry inD,.

39. Observe that D = R,V and H = Ry,D.

4L (RyRygR, Rorg)(H D'V D).

43. Consider the mapping ¢ (x) = x> and note that 2 is not in the image.

45. Use the fact that if @ > 0, then @ = Va\a. For the second part, use the first part together with
the fact that the inverse of an automorphism is an automorphism.

47. Say ¢ is an isomorphism from Q to R* and ¢ takes 1 to a. It follows that the integer » maps to a”
and the rational r/s maps to a”. But @’ # a™ for any r/s.

Chapter 7

Use missteps as stepping stones to deeper understanding and greater achievement.

—_ 0 N W W

SUSAN TAYLOR

H = {a, &y, a3, a ), asH = {a, ag, o, a), agl = {a, @y, @, a0}

. H,1+H2+H

. a.yes b.yes c.no

. 8/2 = 4, so there are four cosets. Let H = {1, 11}. The cosets are H, 7H, 13H, 19H.

. Since la*l = 15, there are two cosets: {a*) and a{a®).

. Suppose that » € H and h < 0. Then hR™ C hH = H. But AR is the set of all negative real

numbers. Thus, H = R*.

. 1,2,3,4,5,6, 10, 12, 15, 20, 30, 60
15.
17.

Use Lagrange’s Theorem (Theorem 7.1) and Corollary 3.
By Exercise 16, we have 5°mod 7 = 1 . So, using mod 7, we have 5> = 50-50-52-5=1-1-
4-5=6;7mod 11 = 2.
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19. Use Corollary 4 of Lagrange’s Theorem (Theorem 7.1) together with Theorem 0.2.
21. By closure (234)(12) = (1342) belongs to H so that | H| is divisible by 3 and 4 and divides 24. But if
|HI = 12 then the even permutations in H would be a subgroup of A, of order 6, which does not exist

(see Example 5).
23. Since G has odd order, no element can have order 2. Thus, for each x # e, we know that x # x~ L.
So, we can write the product of all the elements in the form ea,a,'a,a,”" ... aa, ' = e.

25. Let H be the subgroup of order p and K be the subgroup of order g. Then H U Khasp + ¢ — 1 <
pq elements. Let a be any element in G that is not in H U K. By Lagrange’s Theorem, lal = p, g,
or pq. But lal # p, for if so, then (@) = H. Similarly, lal # g.

27. 1,3, 11, 33. If Ixl = 33, then Ix'!| = 3. Elements of order 11 occur in multiples of 10.

29. No. Observe that by Lagrange’s Theorem, the elements of a group of order 55 must have orders
1,5, 11, or 55; then use Theorem 4.4.

31. Observe that IG:H| = IGI/IHI, |G:K| = |Gl/IK|, and |K:H| = |KI/|HI.

33. Certainly, a € orb(a). Now suppose that ¢ € orb(a) N orb(D). Then ¢ = a(a) and ¢ = B(D) for
some « and 3, and therefore (B~ '@)(a) = b. So, if x € orb(b), then x = y(b) = (yB~'a)(a) for
some 7. This proves that orb(b) C orb(a). By symmetry, orb(a) C orb(b).

35. a. stab(1) = {(1), 24)(56)}; orb(1) = {1, 2, 3, 4}

b. stab,(3) = {(1), (24)(56)}; orb,(3) = {3,4, 1, 2}
c. stab(5) = {(1), (12)(34), (13)(24), (14)(23)}; orb;(5) = {5, 6}

37. Suppose that IZ(G)l = p"~! and let a be an element of G not in Z(G). Then C(a) contains both a
and Z(G). By Lagrange’s Theorem, we must have C(a) = G. But then a € Z(G).

39. 2520

41. Consider the mapping from G to G defined by ¢(x) = x? and let |Gl = 2k + 1. Use the observa-
tion that x = xe = xx?*1 = x2*2 = (x2)F*1 (o prove that ¢ is one-to-one and Exercise 10 of
Chapter 5 to show that ¢ is onto.

43. Suppose that B € G and det(B) = 2. Then det(A~'B) = 1, so that A”'B € H and therefore B €
AH. Conversely, for any Ah € AH we have det(Ah) = det(A)det(h) =2 -1 = 2.

45. It is the set of all permutations that carry face 2 to face 1.

47. aH = bH if and only if det (@) = *det (b).

49. 50

Chapter 8

There is always a right and a wrong way, and the wrong way always seems the more reasonable.
GEORGE MOORE, The Bending of The Bough

1. Closure and associativity in the product follow from the closure and associativity in each compo-
nent. The identity in the product is the n-tuple with the identity in each component. The inverse
of (g, 8y ----8)is (g, g, W g, ).

. Use g > (g, ¢;) and h — (e, h).

5. To show that Z & Z is not cyclic, note that (a, b + 1) & {(a, b)).
7. Use (g, &) — (¢, &) In general, G, @ G, - - - @ G, is isomorphic to the external direct product of
any rearrangement of G,G», . . . ,G,,.
9. Yes, by Theorem 8.2.
11. Observe by Theorem 4.4 that as long as d divides n, the number of elements of order din a
cyclic group depends only on d. So, in both Zg, . and Z, there are ¢(4) = 2 elements of order
4 and ¢(2) = 1 element of order 2. Similarly for Z, © Z .

13. Try a + bi — (a, b).

15. Use Exercise 3 and Theorem 4.3.

17. (m/r) @ (n/s).

w
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Since {(g, h)) C (g) D (h), a necessary and sufficient condition for equality is that
lem(lgl,1hl) = I(g,h)| = I{g) ® (h)l = IglIhl. This is equivalent to gcd(lgl,lhl) = 1.
I(a,b,c)l = lem{lal,|bl,lcI} = 3, unless a = b = ¢ = e. In general, the order of every
nonidentity elementof Z © Z @ - - - © Z , where p is prime, is p.

Map [i ﬂ to (a, b, c, d). Let R* denote

ROROD - - - DR (kfactors). Then the

group of m X n matrices under addition is isomorphic to R™".

(g, 8)(h, h)y' = (gh™!, gh ") When G = R, G ® G is the plane and H is the line y = x.
(3, 0), (3, D), ((3,2)),4(0, 1))

60

{0, 400} & {0, 50, 100, 150}

Compare the number of elements of order 2 in each group.

The mapping ¢(3"6") = (m, n) is an isomorphism. The mapping ¢ (3"9") = (m, n)
is not well-defined since ¢(3°9°) = ¢(3°, 9").

D,, has elements of order 24, whereas D, D D, does not.

12
Aut(U(25)) = Aut(Z,,) = UQ20) =~ U4 © U(5) = Z,D Z,.
2k — 1; 2* — 1, where ¢ is the number of the ny, ny, ..., n, thatare even.

No. Z,,® Z,, ® Z, has 7 elements of order 2 whereas Z,; @ Z, ® Z,, has only 3.

Using the fact that an isomorphism from Z,, is determined by the image of 1 and the fact that a
generator must map to a generator, we determine that there are 4 isomorphisms.

Since a € Z, and b € Z , we know that lal divides m and 15| divides n. So, I(a, b)I = lem(lal,
|bl) divides lcm(m, n).

2,2, 7, 7,

Observe that every nonidentity element of Z & Z has order p and each subgroup of order p
contains p — 1 of them. So, there are exactly (p?> — 1)/(p — 1) = p + 1 subgroups of order p.
Look at Z® Z,.

U(165) = U(11) @ U(15) = U(5) @ U(33) = U(3) D U(55) = U(3) D U5) ® U(11)

Mimic the analysis for elements of order

12 in U(720) in this chapter.

60

They are both isomorphic to Z,, ® Z,.

That U(n)? is a subgroup follows from Exercise 15 of Supplementary Exercises

for Chapters 1—4. 12 = (n — 1) shows that it is a proper subgroup.

275

U(117) = U(9) @ U(13) = Z, @ Z,,, which contains ((2, 0)) & ((0, 4)).

Consider U(49).

Consider U(65).

no

Supplementary Exercises for Chapters 5-8

All things are difficult before they are easy.

THOMAS FULLER

. Consider the finite and infinite cases separately. In the finite case, note that |H| = I¢(H)|. Now

use Theorem 4.3. For the infinite case, use Exercise 2 in Chapter 6.

. Observe that p(x 1y 1xy) = (h(x)) " (P(») " 1dh(x)p(y), so ¢ carries the generators of G’ to the

generators of G'.

. All nonidentity elements of G and H have order 3. G # H.
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. Certainly the set HK has |HIIK| symbols. However, not all symbols need represent distinct group

elements. That is, we may have hk = h'k’ although h # h' and k # k’. We must determine the
extent to which this happens. For every tin H N K, hk = (ht)(t"'k), so each group element in HK
is represented by at least [H N K| products in HK. But hk = h’k’ implies t = h™'h' = k(k')"! €
H N K, sothat h’ = ht and k' = ¢~ 'k. Thus each element in HK is represented by exactly |[H N
K! products. So, IHK| = |H| IKI/IH N K.

. U(n), where n = 4, 8, 3, 6, 12, 24.

3 2
Hint: 3 + 2i \/ﬁ(\/ﬁ—i_\/ﬁl)
Suppose ¢: O — R is an isomorphism. Let ¢(1) = x,. Show that ¢(a/b) = (a/b)x, for all integers
a, bwith b # 0.
In Q, the equation 2x = a has a solution for all a. The corresponding equation x> = b in Q" does
not have a solution for all b.
Suppose x?~2 = 1. Since |U(p)| = p — 1, we have that x*~! = 1 for all x € U(p). So, by cancel-
lation, x = 1.

(RSRCH)

2,42, DZ,DZ, Dy D;D Z,.

Saya =aya, --a,and 3 =Db, b , wherethea’sand b’s are cycles. Then o' = a,a, - - -
ab, ~'--- b ~'is afinite number of cycles.

Count elements of order 2.

Count elements of order 2.

x=¢,(x) = axa™", so that xa = ax. Conversely, if G is Abelian, ¢, is the identity.

U4,(450)

4, 10)

Count elements of order 2.

20; (8,7, (3251))

LetH = {x € Z, ® Z.lx’ = (0,0)}. Then |Hl = p* and every nonidentity element of

(2, Z,;)/H has order p.

(12)(34)(56789)

1260

B = (17395)(286)

Say the points in H lie on the line y = mx. Then (a, b) + H = {(a + x, b + mx) | x € R}. This
setis the liney — b = m(x — a).

aH = bH implies a™'b € H. So (a~'b)"' = b~ 'a € H. Thus, Hb"'a = Hor Hb~' = Ha ™.
These steps are reversible.

P

p(p +1)

By Theorem 8.3, U(pq) = U(p) ® U(g), so an element x" in U(pq) corresponds to an element

(X}, x3) € U(p) @ U(q). It follows from Corollary 4 of Theorem 7.1 that (x}, x3) = (1, 1), the
identity of U(p) ® U(q).

First observe that (n, n—1, ... 2,1)(12)(123 ... n) = (In). Also, (1n)(123 ... n) = (123 ...n — 1).
So, by induction, (12) and (123 . .. n) generate S, _ ;. This means that every 2-cycle not involving n
can be generated. Now note that (1k)(1n)(1k) = (kn), so all 2-cycles are generated.

Let B have order 2. In disjoint cycle form, 3 is a product of transpositions, so there must be some i
missing from this product. Thus, B(i) = i. Pick j such that () # j. Since o is an n-cycle, some
power of o, say o, takes i to j. If 8 commutes with o, it commutes with o as well. Then
(a'B)(@) = d'(B(i)) = o'(i) = j, whereas (Ba")(i) = B(a'(i)) = B(j) # j. This proves that

a'B # Bo'.
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Chapter 9

There’s a mighty big difference between good, sound reasons and reasons that sound good.

w

BURTON HILLIS

. no
. Sayi<jandlethEHiﬂHj.Thenh€H1H2~-Hi~~ j_lﬂH]: {e}.
. Recall that if A and B are matrices, then

det (ABA™") = (det A)(det B)(det A)~ .

7. Letx € G. If x € H, then xH = H = Hx. If x € H, then xH is the set of elements in G, not in H.
But Hx is also the set of elements in G, not in H.

9. G/H~Z,
GIK=~Z,®Z,

11. No, look at D,.

13. This follows directly from (ab)h = a(bh) for all h € H.

15. 2

17. H = {0 + (20), 4 + (20), 8 + (20, 12 + (20), 16 + (20)}. G/H = {0 + (20) + H, 1 + (20) + H,
2 +(20) + H,3 + (20) + H}.

19. 40/10 = 4

21. By Theorem 9.5, the group has an element a of order 3 and an element b of order 11.

Then labl = 33.

23. ©; no, (6, 3) + ((4, 2)) has order 2.

25. Z,

27. yes; no

29. Mimic the argument given in Example 13 in this chapter.

31. Certainly, every nonzero real number is of the form *r, where r is a positive real number. Real
numbers commute, and R N {1, —1} = {1}.

33. No.If G = H X K, then Igl = lem(lAl, |kl) provided that |4l and |kl are finite. If 1Al or |kl is infi-
nite, so is Igl.

35. For the first question, note that (3) N (6) = {1} and (3){6) N (10) = {1}. For the second ques-
tion, observe that 12 = 37162,

37. Say Igl = n. Then (gH)" = g"H = eH = H. Now use Corollary 2 to Theorem 4.1.

39. Letx € C(H), g € G, and h € H. We must show that gxg~'h = hgxg'. Note that in the expres-
sion (gxg~Hh(gxg ") ~! = gxg 'hgx g~ ! the terms x and x~ ! cancel since g~ 'hg € H and x
commutes with every element of H. Then we have (gxg~)h(gxg™ ") ™' = gxg " 'hgx"'g"! =
gg 'hgg™' = h. So, gxg~' € C(H).

41. Take G =Z,H = {0,3},a=1,and b = 4.

43. Use Lagrange’s Theorem and Exercise 7 of this chapter.

45. Since NC NH C G,wehave |G: N|=|G: NH||NH : N|. Thus, |G : H| = 1 or [NH : N| = 1.

It follows that G = NH or NH = N.

47. Use the “G/Z Theorem.”

49. If H is normal in G, then xNAN(xN)~! = xhx~'N € H/N, so H/N is normal in G/N. Now assume
HIN is normal in G/N. Then xhx~'N = xNhN(xN)~' € H/N. Thus, xhx~'N = h'N for h’ € H. So,
xhx~!' = h'n for some n € N.

51. Say H has index n. Then (R*)" = {x"| x € R*} C H. If nis odd, then (R*)" = R*; if n is even,
then (R*)" = R*. So, H = R* or
H=R".

53. Use Exercise 7 and observe that VK # KV.

55. Suppose nh, and nyh, € NH. Then
nhn,h, =nn'hh,€NH.Also (nh)"" =h ~'n~"=nh~' € NH.

57. Let N = {a), H = (d), and x € G. Then, x(a")"x"! = (xa"x" )" = (a")* = (d")" € H.




Al4 Selected Answers

59.

61.
63.
65.
67.
69.
71.

73.

75.

gcd(lxl, IG/HI) = 1 implies ged(IxH|, IG/HI) = 1. But IxH| divides |G/H|. Thus IxH| = 1 and
therefore xH = H.

Note that G/N is a group and use Corollary 4 of Theorem 7.1.

Use Theorems 9.4 and 9.3.

Say IgH| = n. Then Igl = nt (by Exercise 37) and Ig'l = n. For the second part, consider Z/(k).
It is not a group table. No, because ¥ is not normal in D,.

Use Theorem 9.3 and Theorem 7.2.

By Exercise 70, A; would have an element of the form (ab)(cd) that commutes with every ele-
ment of A,. Try (abc).

To see that H is normal, observe that xg’x~' = (xgx~')”. To verify the second part, note
that(gH)” = ¢’H = H.

Since H has index 2 in G, is it a normal subgroup of G and |G/H| = 2. It follows that for every a
in G we have (aH)?> = H. If a is an element of G of order 2n + 1, then H = a*""'H =
((aH)*)"aH = aH. Thus, a is in H.

Chapter 10

It's always helpful to learn from your mistakes because then your mistakes seem worthwhile.

N U W=

19.
21.
23.

25.
27.
29.
31.
33.
35.

37.
39.

41.

GARRY MARSHALL

. Note that det(AB) = (det A)(det B).

. Note that (f+ g)' =f" + g'.

. Observe that (xy)” = x"y". Odd values of r yield an isomorphism.

- (09)(g,8,) = 0(d(8,8,) = 0(d(g)d(8,) = T(d(g)o(d(g,) = (Td)(g ) Td)(g,).

Ker ¢ is a normal subgroup of Ker o¢. |H|/|K| = [Ker o¢:Ker ¢]

. d((g, h) (&', 1) = d((gg’, hh')) = gg' = d((g, M)d((g', h")). The kernel is {(e, h)Ih € H}.

. Consider ¢: Z® Z — Z, D Z, given by ¢((x, y)) = (x mod a, y mod b) and use Theorem 10.3.
13.
15.
17.

(a, b) — b is a homomorphism from A € B onto B with kernel A © {e}.

3,13,23

Suppose ¢ is such a homomorphism. By Theorem 10.3, Ker ¢ = ((8, 1)), {(0, 1)) or ((8, 0)). In
these cases, (1, 0) + Ker ¢ has order either 16 or 8. So, (Z,,D Z,)/ Ker ¢ is not isomorphic to Z,
DZ,

Since IKer ¢l is not 1 and divides 17, ¢ is the trivial map.

S)

a. The possible images are isomorphic to Z, Z,, Z,, Z,, Z, and Z .

b. (1) =Z,,(2) =Z ., (3) = Z,,(4) = Z,,{6) = Z, and (12) = Z,.

4 onto; 10 to

For each k with 0 = k = n — 1, the mapping 1 — k determines a homomorphism.

Use Theorem 10.3 and properties 5, 7, and 8 of Theorem 10.2.

¢ (7)) =TKerp = {7,17}

11 Ker ¢

d(a,b) + (c,d)=¢dp((a+c,b+d)y=@+c)—b+d)y=a—b+c—d=¢(a, b))+
d((c,d). Kerp = {(a,a) |l a € Z}.¢7'(3) = {(a + 3,a) | a E Z}.

d(xy) = (xy)° = x%° = P(x)Ph(y). Ker ¢ = (cos 60° + i sin 60°).

Show that the mapping from K to KN/N given by k — kN is an onto homomorphism with kernel
KNN.

For each divisor d of k there is a unique subgroup of Z, of order d, and this subgroup is gener-
ated by ¢(d) elements. A homomorphism from Z, to a subgroup of Z, must carry 1 to a genera-
tor of the subgroup. Furthermore, the order of the image of 1 must divide n, so we need con-
sider only those divisors d of k that also divide n.
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43. D, (e}, Z,,Z,D Z,

45. Tt is divisible by 10.

47. It is infinite. Z

49. Let y be the natural homomorphism from G onto G/N. Let Hbea subgroup of G/N and let
v~ '(H) = H. Then H is a subgroup of G and H/N = y(H) = y(y"'(H)) = H.

51. The mapping g — qﬁg is a homomorphism with kernel Z(G).

53. (f + 9)(3) = fi3) + g(3). The kernel is the set of elements in Z[x] whose graphs pass through the
point (3, 0).

55. Let g belong to G. Since ¢(g) belongs to Z,  Z, = (1, 0) U (0, 1) U (1, 1), it follows that
G =¢ (1,00 U o 10, 1)) U ¢~ ({1, 1)). Moreover, each of these three subgroups is proper.

57. Use Exercise 54 in Chapter 9 and Exercise 39 above to prove the first assertion. To verify that
G/(H N K) is not cyclic, observe that it has two subgroups of order 2.

59. Mimic Example 16.

61. Suppose that H is a proper subgroup of G that is not properly contained in a proper subgroup of
G. Then G/H has no nontrivial, proper subgroup. It follows from Exercise 24 in Chapter 7 that
G/H is isomorphic to Z, for some prime p. But then for every coset g + H we have p(g + H) = H
so that pg € H for all g € G. But then G = pG C H. Both Q and R satisfy the hypothesis.

Chapter 11

Think before you think!

N2 |

13.
15.

17.
19.
21.

STANISLAW |. LEC, Unkempt Thoughts

.n=4

2,2,9Z,

. n=36

2,02,2,02,82,2,02,02,2,0Z,®Z,SZ,

. The only Abelian groups of order 45 are Z, and Z, D Z, D Z. In the first group, 13| = 15; in the

second one, I(1, 1, )| = 15. Z, @ Z, ® Z, does not have an element of order 9.

2,972,922, 92, 9Z,DZ,
. 2,072, DZ,DZ
. By the Fundamental Theorem, any finite Abelian group G is isomorphic to some direct product of

cyclic groups of prime-power order. Now go across the direct product and, for each distinct prime
you have, pick off the largest factor of the prime-power. Next, combine all of these into one fac-
tor (you can do this, since the subscripts are relatively prime). Let us call the order of this new
factor n,. Now repeat this process with the remaining original factors and call the order of the
resulting factor n,. Then n, divides n,, since each prime-power divisor of 7, is also a prime-
power divisor of ;. Continue in this fashion. Example: If

G=2,02,®2,82,82,0ZOZ,

then

G=Zy; )s.,DZy ,5.,DZ,
Now note that 2 divides 3 - 25 - 2 and 3 - 25 - 2 divides 27 - 125 - 4.
7,87,

a.l b.1 c1 d.1 e 1 f. Thereisaunique Abelian group of order n if and only if n is
not divisible by the square of any prime.

7,07,

Z,DZ,

n is square-free (no prime factor of n occurs more than once).
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23.

25.
27.
29.
31.
33.
35.

37.

Among the first 11 elements in the table, there are nine elements of order 4. None of the other
isomorphism classes has this many.

Z,® Z, @ Z,; one internal direct product is (7) X (101) X (199).

3;6;12

7,®7,

Use Theorems 11.1, 8.1, and 4.3. - -

Ka)K! = lallKl/I{a) N K| = lallK| = lallKIp = |Glp = IGI.

By the Fundamental Theorem of Finite Abelian Groups, it suffices to show that every group of the
formZ, w ©Z, 12 ® 07 i is a subgroup of a U-group. Consider first a group of the form
Z n @D i n ( p , and p, need not be distinct). By Dirichlet’s Theorem, for some s and # there are
distinet prlmes g and rsuchthatg = #p " + land r = sp " + 1. Then U(gr) = U(q) ® U(r) =~
Z,m D Z, m and this latter group contalns a subgroup 1somorphlc toZ, K D Z, 12 The general
case follows in the same way.

Look at D,.

Supplementary Exercises for Chapters 9-11

You cannot have success without the failures.

H. G. HASLER, The Observer

. Say aH = Hb. Then a = hb for some h in H. Then Ha = Hhb = Hb = aH.

3. Suppose diag(G) is normal. Then (e, a)(b, b)(e, a)~' = (b, aba™") € diag(G). Thus b = aba™'. If

11.
13.

15.

17.
19.

21.

G is Abelian, (g, h)(b, b) - (g, h)~' = (ghg™!, hbh™") = (b, b). The index of diag(G) is |G|

. Let @ € Aut(G) and ¢, € Inn(G). Then (a a~N(x) = (ad ) '(x) = alaa™'(x)a™") =

a(@x(e(@) ™" = ¢, (x).

. R* (See Example 2 in Chapter 10.)
. a. 1 0 b

Z(H) = 0 b e Q

0 1
0 0 1
b. The mapping

1 0 b
0
L0 0 1]

is an isomorphism.
¢. The mapping

—_
o
\:

S

(1 a b
0 1 ¢ |—=(@o

LO O 1 |

is a homomorphism with Z(H) as the kernel.

d. The proofs are valid with R and Z,

balb+2Z)y=a+7Z=27

Use Exercise 5 of the Supplementary Exercises for Chapters 1—-4. Such a set is possible only when # is

prime. For the first example, consider D , where p is a prime. For the second example, try D,.

Observe that hkh™'k~! = (hkh™")k™' € K and hkh™'k~' = h(kh~'k™") € H.

Use Theorem 7.3 and Exercise 7 of Chapter 9.

First observe that ¢((4, 0, 0)) = ¢(4(1, 0, 0)) = 4¢(1, 0, 0) = (0, 0), so that Ker ¢ = {(0, 0, 0),

(4,0, 0)}. But then (Z, ® Z, @ Z,)/Ker ¢ has more than three elements of order 2, whereas Z, @ Z,

has only three.

Use Theorem 7.2 together with the fact that S, has no element of order 6.




23.
25.
217.

29.

31.
33.

35.

37.

39.

41.
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The number is m in all cases.

The mapping g — g" is a homomorphism from G onto G" with kernel G,.

Let |HI = p. Exercise 7 of Supplementary Exercises for Chapters 5-8 shows that H is the only
subgroup of order p. But xHx ™! is also a subgroup of order p. So, xHx™' = H.

Say a and b are integers and a/b + Z has order n in Q/Z. Then na/b = m for some integer m.
Thus,a/b + Z=min + Z=m(l/n + Z) € {1/n + Z).

If (1, 0) > a and (0, 1) — b, then (x, 0) = ax and (0, y) — by.

First note that by Exercise 11, every element in Q/Z has finite order. For each positive integer n, let
B, denote the set of elements of order n and suppose that ¢ is an isomorphism from Q/Z to itself.
Then, by property 5 of Theorem 6.2, ¢(B,) C B,. By Exercise 29 we know that B, is finite, and
since ¢ preserves orders and is one-to-one, we must have ¢(B,) = B,. Since it follows from Exer-
cise 11 and Exercise 29 that O/Z = U B, , where the union is taken over all positive integers n, we
have ¢(Q/Z) = Q/Z.

If the group is not Abelian, for any element a not in the center, the inner automorphism induced by
a is not the identity; if the group is Abelian and contains an element a with |a| > 2, then x — x !
works; if every nonidentity element has order 2, then G is isomorphic to a group of the form
Z,®Z,® - DZ,.In this case, the mapping that takes (a,, a,, a,, ...,a) to (ay, a,, as, ..., a,) is
not the identity.

G/H is isomorphic to Z, @ Z,. G/H is not isomorphic to a subgroup of G since G has only one
element of order 2.

1 x{{1 ¥ 1 x+ y]
Ob that = ,
serve tha {O IMO 1] [O |
. 1 X -1 1 —X
so H is closed. Also, {0 J = [O J’

which is in H. Thus, H is a subgroup of G.

Si [1 a”l le a}_l {1 a“l x][l —ab_l} {1 b_l)c}b1 o H
in = = n .
“lo »llo 1]lo » o »llo 1Jlo b 0o 1 Jooenssto

we have that H is normal in G.

Let g belong to G. Since gKg~' = K, conjugation is an automorphism of K. Thus gHg™' = H.

Chapter 12

Mistakes are the postals of discovery.

N=R IV [

11.

JAMES JOYCE

. Forany n > 1, the ring M,(Z,) of 2 X 2 matrices with entries from Z is a finite noncommutative

ring. The set M,(2Z) of 2 X 2 matrices with even integer entries is an infinite noncommutative
ring that does not have a unity.

. InR, consider {n\V2 |n € Z}.

. The proofs given for a group apply to a ring as well.

. In Z , nonzero elements have multiplicative inverses. Use them.

. If a and b belong to the intersection, then they belong to each member of the intersection. Thus

a — b and ab belong to each member of the intersection. So, @ — b and ab belong to the
intersection.

Part 3: 0 = 0(—b) = (a + (—a))(—b) = a(—b) + (—a)(—b) = —(ab) + (—a)(—b).
So, ab = (—a)(—D).

Part4: a(b — ¢) = a(b + (—c¢)) = ab + a(—c) = ab + (—(ac)) = ab — ac.

Part 5: Use part 2.

Part 6: Use part 3.
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13.
15.

17.
19.

21.

23.
25.
27.
29.
31.
33.
35.

37.
39.
41.
43.
45.
47.
49.
51.

Hint: Z is a cyclic group under addition, and every subgroup of a cyclic group is cyclic.

For positive m and n, observe that ;m - a)(n - by =(a+a+---+a) b+ b+ -+ b)=
(ab + ab + - - - + ab), where the last term has mn summands. Similar arguments apply in the
remaining cases.

From Exercise 15, we have (n - a)(m - a) = (nm) + a*> = (mn) - a* = (m - a)(n - a).

Let a, b belong to the center. Then (a — b)x = ax — bx = xa — xb = x(a — b). Also,

(ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab).

Gepseesx )@y, - a) = (X, .., X)) for all X; in R, if and only ifxlai =X for all X, in R, and
i=1,...,n.

{1, —1,i, —i}

f(x) =1and gx) = —1.

If a is a unit, then b = a(a™'b).
Consider a™! — a™2b.

Try the ring M (Z).

Note that 2x = (2x)> = 8x* = 8x.

For Z,use n = 3. For Z ,use n = 5. Say m = p’t where p is a prime. Then (pf)” = 0 in zZ,
since m divides (p1)".

Every subgroup of Z  is closed under multiplication.

ara — asa = a(r — s)a. (ara)(asa) = ara*sa = arsa.ala =a*> = 1,s01 € S.

The subring test is satisfied.

Look at (1,0, 1) and (0, 1, 1).

Observethatn -1 —m-1=m—m)- 1. Also,(n - 1)(m - 1) = (nm) - (1)(1)) = (nm) - 1.
(mi2"\meZ,nezZ)

(a + b)a—b)=a>+ ba—ab — b> = a*> — b*if and only if ba — ab = 0.

Z,DZ,,Z, D Z, D - - - (infinitely many copies).

Chapter 13

Work now or wince later.

w

11.
13.

15.

B. C. FORBES, Epigrams

. The verifications for Examples 1-6 follow from elementary properties of real and complex num-

bers. For Example 7, note that

b oo -1 o)

For Example 8, note that (1, 0)(0, 1) = (0, 0).

. Letab=0anda # 0. Thenab = a - 0,s0b = 0.
. Letk € Z, If ged(k, n) = 1, then k is a unit. If gcd(k, n) = d > 1, write k = sd. Then k(n/d) =

sd(nld) = sn = 0.

. Lets € R, s # 0. Consider the set S = {sr | r € R}. If § = R, then sr = 1 (the unity) for some r.

If § # R, then there are distinct | and r, such that sr| = sr,. In this case, s(r, — r,) = 0. To see
what happens when the “finite” condition is dropped, consider Z.

. (a, + bNa) — (a, + bp/@) = (a, — a,) + (b, — bo\/d: (a, + b/d)(a, + bz\/;j) =

(a,a, + b\byd) + (a,b, + azbl)\/a. Thus the set is a ring. Since Z[Vd]is a subring of the
ring of complex numbers, it has no zero-divisors.
The even integers.

l-ad+a+ad*+-+a"VH)=1+a+a*+ - +a'—-a—-a*— —a'=1—a"=
1-0=1.
Suppose a # 0 and @” = 0 (where we take n to be as small as possible). Thena -0 =0 = g" =

a - a' ', so by cancellation, "' = 0.
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17. If > = a and b*> = b, then (ab)*> = a*b*> = ab. The other cases are similar.

19. Suppose that a is an idempotent and a" = 0. By the previous exercise, a = 0.

21. (3 + 4i)? =3 + 4i.

23. @* = aimpliesa(a — 1) = 0. Soifaisaunit,a — 1 = 0anda = 1.

25. See Theorems 3.1 and 12.3.

27. Note that ab = 1 implies aba = a. Thus 0 = aba — a = a(ba — 1). So, ba — 1 = 0.

29. A subdomain of an integral domain D is a subset of D that is an integral domain under the opera-
tions of D. To show that P is a subdomain, show that it is a subring and contains 1. Every
subdomain contains 1 and is closed under addition and subtraction, so every subdomain
contains P. [Pl = char D when char D is prime and |P| is infinite when char D is 0.

31. Use Theorems 13.3, 13.4, and 7.1 (Lagrange’s Theorem).

33. By Exercise 32, 1 is the only element of an integeral domain if and only if 1 = —1. This is true
only for fields of characteristic 2.

35. a. Since a® = b3, a® = b°. Then a = b because we can cancel @ from both sides (since a® = b°).
b. Use the fact that there exist integers s and ¢ such that 1 = sn + fm, but remember that you

cannot use negative exponents in a ring.

37. 1 —al=1—-2a+a>*=1—-2a+a=1—a.

39. Z,

41. Let S = {a,, a,, . . ., a,} be the nonzero elements of the ring. First show that § = {a,a,, a;a,, . . .,
a,a,}. Thus, a; = a,a, for some i. Then q, is the unity, for if @, is any element of S, we have
a,a, = a,a,a,, so thata,(a, — aa,) = 0.

43. Say x| = nand lyl = m with n < m. Consider (nx)y = x(ny).

45. a. Use the Binomial Theorem.

b. Use part a and induction.
¢. Consider {0, 3, 6, 9} under addition and multiplication modulo 12.
47. Use Theorems 13.4 and 9.5 and Exercise 43.

b 00
49. n {a d} = { 0 0} for all members of M,(R) if and only if na = O for all @ in R.
c

51. Use Exercise 50.

53.a.2 b.2,3 ¢2,36,11 d.2,3,9,10

55. 2

57. See Example 10.

59. Use Exercise 25 and part a of Exercise 45.

61. Choose a # 0 and a # 1 and consider 1 + a.

63. d(x) = P(x- 1) = dp(x) - p(1) so P(1) = 1. Also, 1 = ¢(1) = p(xx~") = p(x) p(x7").

65. Since a field of order 27 has characteristic 3, we have 3a = 0 for all a. From this, we have
6a = 0 and 5a = —a.

Chapter 14

Not one student in a thousand breaks down from overwork.
WILLIAM ALLAN NEILSON

1. Letr,a and r,a belong to {a). Then r,a — ra = (r, — r,)a € (). If r € R and r,a € (a), then
r(r,a) = (rr)a € {a).

3. Clearly, Iis not empty. Now observe that (r,a, + - +ra) — (s,a, + - +s.a)=(r —s)q
+o A (r, = s)a, €L Also,if re R, thenr(ria, + -+ +ra)=(rpa, + -+ (r)a, €L
That I C J follows from closure under addition and multiplication by elements from R.

5. Leta + bi,c + di € S.Then (a + bi) — (¢ + di) = a — ¢ + (b — d)i and b — d is even. Also,
(a + bi)(c + di) = ac — bd + (ad + cb)i and ad + cb is even. Finally, (1 + 2i)(1 + i) =
—1+3i&S.
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~

11.
13.

15.
17.
19.

21.

23.

25.
27.
29.

31.

33.

35.
37.

39.
41.
43.
45.
47.
49.

51.

53.

55.

57.
59.

. Since ar| — ar, = a(r| — r,) and (ar))r = a(r;r),4R = {..., =16, =8,0,8, 16, .. .}.
. If n is prime, use Euclid’s Lemma (Chapter 0). If n is not prime, say n = st where s < nand t < n,

then st belongs to nZ but s and 7 do not.

a.a=1 b.a=3 c.a=gcd(m,n)

a.a=12

b. a = 48. To see this, note that every element of (6)(8) has the form 61,8k, + 61,8k, + - - +
61 8k = 48s € (48). So, (6)(8) C (48). Also, since 48 € (6)(8), we have (48) C (6)(8).

c.a=mn

Letr € R. Thenr = 1r € A.

Letu € Ibeaunitandletr € R. Thenr = r(u 'u) = GruHu € L.

Observe that (2) and (3) are the only nontrivial ideals of Z, so both are maximal. More gener-

ally, Z,, where p and ¢ are distinct primes, has exactly two maximal ideals.

Clearly, I is closed under subtraction. Also, if b,, b,, b,, and b, are even, then every

a; a2:||:bl b,

is even.
as a4]lbs bJ

entry of {

{qu +r 2¢,+rn

Use the observation that every member of R can be written in the form .
23t ry 2q,+ 1y

2q, + 2q, +
Then note that { TN ch rz] f2
2qs+ 1y 2q,+ 1y

r
+ 1=

I
I3 Ty

(br, +a,) — (bry+ a,) = b(r, —r,) + (a, — a) EB;r'(br + a) = b(r'r) + r'a €EB.

Use Exercise 17.

Since every element of (x) has the form xg(x), we have (x) C I. If fix) € I, then flx) = a x" + - - - +
ax=x(ax""'+---+a) € ).

Suppose fix) + A # A. Then fix) + A = f{0) + A and f{0) # 0. Thus,

1
+A = — + A
(fx) ) 70)

This shows that R/A is a field. Now use Theorem 14.4.
Since B3+ )3 —i)=10,10+3+i) =0+ 3 +i).Also,i+3+i)=-3+3+i)H=7+
B+i).So, ZliINB3+i)y={k+3+ilk=0,1,...,9},since 1 + (3 + i) has additive order 10.
Use Theorems 14.3 and 14.4.
Since every f(x) in {x, 2) has the form f{x) = xg(x) + 2h(x), we have f{0) = 2h(0), so that fix) € I.
Iffix) E L thenflx) = ax" + - - + ax + 2k =x(ax"' + - -+ a)) + 2k € (x, 2). I is prime
and maximal. Z[x]/I has two elements.
3x+1+1
Every ideal is a subgroup. Every subgroup of a cyclic group is cyclic.
Use Exercise 42.
Say b, c € Ann(A). Then (b — ¢)a = ba — ca =0 — 0 = 0. Also, (rb)a = r(ba) =r- 0= 0.
a.(3) b.(3) ¢.(3)
Suppose (x + N({0)))" = 0 + N({0)). We must show that x € N({0)). We know that x" +
N(0)) = 0 + N(0)), so that x* € N({0)). Then, for some m, (x*)" = 0, and therefore x € N({0)).
The set Zz[x]/(x2 + x + 1) has only four elements and each of the nonzero ones has a multiplica-
tive inverse. For example,

+FEP+Fx+ 1) +1 4+ +Hx+1) =1+ +x+ 1)
x + 2+ (x> + x + 1) is not zero, but its square is.
If fand g € A, then (f — g)(0) = f(0) — g(0) is even and (f- g)(0) = f(0) - g(0) is even.
fx) = zl € Rand g(x) = 2 € A, but filx)g(x) & A.
Hint: Any ideal of R/I has the form A/I, where A is an ideal of R.
Use the fact that R/I is an integral domain to show that R/ = {I, 1 + I}.
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61. (x) C(x,2") C (x,2"" Y C---C(x,2)
63. Taking r = 1 and s = O shows that a € I. Taking » = 0 and s = 1 shows that b € I. If J is any
ideal that contains a and b, then it contains / because of the closure conditions.

Supplementary Exercises for Chapters 12-14

If at first you don't succeed, try, try, again. Then quit. There’s no use being a damn fool about it.
W. C. FIELDS

1. InZ theyare 0, 1,5,and 6. In Z,,
21, and 25.
3. We must show that " = 0 implies a = 0. First show this for the case when 7 is a power of 2.
If n is not a power of 2, say 13, for example, note that '3 = 0 implies a'® = 0.
5. Suppose A € Cand B € C.Picka € Aand b € Bsuchthata, b & C.Butab € C and Cis
prime.
7. {0} D {0}, RO R, RD {0}, and {0} @ R. The ideals of F & F are {0} D {0}, FD F,
F® {0}, and {0} D F.
9. Suppose that a” mod n = 0. Since n divides a™, every prime p divisor of n divides ™. By Euclid’s
Lemma (Chapter 0), p divides a, and since = is square-free, if follows that n divides a.
11. Suppose a,, a, € Abuta, & B and a, & C. Use a, + a, to derive a contradiction.
13. Clearly {a) contains the right-hand side. Now show that the right-hand side contains @ and is an
ideal.
15. Since A is an ideal, ab € A. Since B is an ideal, ab € B. Soab € A N B = {0}.
17. 6
19. Use Exercise 4.
21. Consider x2 + 1 + {(x* + x2).
23. Consider Z.
25. Say char R = p (remember p must be prime). Then char R/A = the additive order of 1 + A.
But I1 + Al divides 111 = p.
27. Use Theorems 13.2, 14.3, and 14.4.

bEZ}bt[l 1“1 0} {1 O]- (inA
5 1] = 1Isnotin A.
a 2 1 1)lo o 10

31. Z[i]/A has two elements. (From this it follows that A is maximal. See Theorem 14.4.)

33. A finite subset of a field is a subfield if it contains a nonzero element and is closed under addi-
tion and multiplication.

35. Observe that (a + bi) (a — bi) = a> + b>.

37. 5

39. The inverse is 2x + 3.

41. Observe that Z,[x, y]Xx, y) = Z and use Theorem 14.4.

43. Say (a,b)" = (0, 0). Then " = 0 and " = 0. If ¢ = 0 and " = 0, then (a, b)™ =
(@™, ("™ = (0, 0).

45. If > = a, then p*la(a — 1). Since a and a — 1 are relatively prime, p*la or p¥l(a — 1).
So,a=0ora=1.

47. mZ,[V2]. (@ + bV2)™' = (a — bV2)/@® — 2b%) = (a — bV2)A@® + b)). Tn Z,[V2] (1 +2V2)
1 +5v2)=0.

49. Ifx" = 0, then (rx)" = r'x" = 0.

they are 0, 1, 5, and 16. In Z, ,

they are 0, 1, 6, 10, 15, 16,

a b
29. Ob that A =
serve thal {[0 O}




A22 Selected Answers

Chapter 15

For every problem there is a solution which is simple, clean and wrong.

= \o 3 W

[

23.
25.
27.

29.

31.

33.
35.
37.
39.
41.
43.
45.
47.

49.

51.
53.
5S.

57.
59.

H. L. MENCKEN

. Part 3: ¢(A) is a subgroup because ¢ is a group homomorphism. Let s € S and ¢(r) = 5. Then

sd(a) = d(rd(a) = ¢(ra) and (a)s = P(a)d(r) = P(ar).

Part 4: Let a and b belong to ¢~ '(B) and r belong to R. Then ¢(a) and ¢(b) are in B. So,

d(a) — ¢(b) = ¢p(a) + ¢(—b) = ¢p(a — b) € B. Thus, a — b € B. Also, ¢(ra) = ¢p(r)dp(a) E B
and ¢(ar) = Pp(a)p(r) € B. So, ra and ar € ¢~ '(B).

. We already know the mapping is an isomorphism of groups. Let ®(x + Ker ¢p) = ¢(x). Note that

O((r + Ker ¢p)(s + Ker ¢)) = P(rs + Ker ¢p) = p(rs) = d(r)p(s) = P(r + Ker ¢p) P(s + Ker ¢p).

. d(2 + 4) = $(1) = 5, whereas ¢(2) + p(4) =0+ 0 = 0.
. Observe that (x + y)/1 = x/1 + y/1 and (xy)/1 = x/1y/1.
ca=¢() =@l = () = aa = a’.

. If a and b (b # 0) belong to every member of the collection, then so do a — b and ab™!. Thus,

by Exercise 25 in Chapter 13, the intersection is a subfield.

. Apply the definition.
15.
17.
19.
21.

Multiplication is not preserved.

yes

The set of all polynomials passing through the point (1, 0).

ForZ to Z;, 1 — 0,1—1,1— 3, and 1 — 4 each define a homomorphism. For Z,, 10 Zy,

1—6,1— 15, and 1 — 21 each define a homomorphism.

The zero map and the identity map.

Use Exercise 24.

Say 1 is the unity of R. Let s = ¢(r) be any element of S. Then ¢(1)s = p(1)d(r) = p(1r) =

@(r) = 5. Similarly, s¢(1) = s.

Observe that an idempotent must map to an idempotent. It follows that (a, b) — a, (a, b) = b,

and (a, b) — 0 are the only ring homomorphisms.

Saym=aga,_, .- -aaandn=>bpb _, .. -bb,.Thenm—n=(a, — bk)l()k +

(a,_, — b D10+ + (a, — b)10 + (a, — b,). Now use the test for divisibility by 9.

Use the appropriate divisibility tests.

Mimic Example 8.

Use Exercise 35.

Look at both sides mod 2.

Observe that (2 - 107>+ 2) mod 3 = 1 and (10'® + 1) mod 3 = 2 = —1 mod 3.

This follows directly from Theorem 13.3 and Theorem 10.1, part 3.

No. The kernel must be an ideal.

a. Suppose ab € ¢~ (A). Then ¢p(a)dp(b) € A, so thata € ¢~ '(A) or b € ¢~ '(A).

b. Consider the natural homomorphism from R to S/A. Then use Theorems 15.3 and 14.4.

a.¢p((a,b) + (@', b)) =¢(a+a',b+ D)) =a+a = ¢(a, b)) + ¢((a’, b)) so ¢ preserves
addition. Also, ¢((a, b)(a', b")) = ¢((aa’, bb")) = aa’ = ¢((a, b))((a’, b")).

b. ¢p(a) = ¢(b) implies that (a, 0) = (b, 0), which implies that a = b. p(a + b) = (a + b, 0) =
(a,0) + (b, 0) = d(a) + ¢(b). Also, d(ab) = (ab, 0) = (a, 0)(b, 0) = ¢(a) (D).

c. Use (1, 5) = (s, r).

Observe that x* = 1 has two solutions in R but four in C.

Use Exercises 46 and 52.

Ifa/b=ad'/b" andc/d = c'/d ,thenab’ = ba' and cd’' = dc'. So, acb'd’" = (ab")(cd") =

(ba')(dc") = bda'c'. Thus, ac/bd = a'c'/b'd’ and therefore (a/b)(c/d) = (a'lb")(c'! d").

First note that any field containing Z and i must contain Q[i]. Then prove (a + bi)/(c + di) € Q[i].

The subfield of Eis {ab™' | a, b € D, b # 0}.

1—-0,



61.
63.

65.
67.

69.
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Reflexive and symmetric properties follow from the commutativity of D. For transitivity, assume
alb = c/d and c/d = elf. Then adf = (bc)f = b(cf) = bde, and cancellation yields af = be.

Try ab™' — alb.

The mapping a + bi — a — bi is a ring isomorphism of C.

Certainly the unity 1 is contained in every subfield. So, if a field has characteristic p, the subfield
{0, 1,...,p — 1} is contained in every subfield. If a field has characteristic 0, then {(m - 1)(n - 1)7!
I m,n € Z, n # 0} is a subfield contained in every subfield. This subfield is isomorphic to Q
[map (m - 1)(n - 1)~ to m/n].

The mapping ¢(x) = (x mod m, x mod n) from Z  to Z @® Z is aring isomorphism.

Chapter 16
You know my methods. Apply them!

11.
13.
15.
17.
19.

21.
23.

25.
217.
29.
31.
33.

35.

SHERLOCK HOLMES,
The Hound of the Baskervilles

Lfreg=3x"+2°% +2x+2

frg=20"+3x0+ x5+ 2 +3x2 + 2x + 2

. 1,2,4,5
. Write f(x) = (x — a)g(x) + r(x). Since deg (x — a) = 1, deg r(x) = O or r(x) = 0. So r(x) is a

constant. Also, f(a) = r(a).

. Use Corollary 1 of Theorem 16.2.

. Let f(x), g(x) € R[x]. By inserting terms with the coefficient 0, we may write
fx)=ax"+ - +a,
and
gx)=>bx"+ -+ b,
Then

D(fx) + g(0) = dla, + b)x" + -+ + Pla, + b)
=(d(a,) + db)x" + -+ Play) + p(by)
= (@la)x" + -+ Plag) + (b )x" + -+ + $(by))
= (f(x)) + D(g(x)).

Multiplication is done similarly.

Quotient, 2x> + 2x + 1; remainder, 2

It is its own inverse.

No. See Exercise 17.

If f(x) = a x" + -+ - + a,and g(x) = b x" + - + b, then f(x) - g(x) = anbmxm+” + -+ agh,.
Let m be the multiplicity of b in g(x). Then we may write f{x) = (x — a)" (x — b)" ¢'(x), where
q'(x) is in F[x] and ¢'(b) # 0. This means that b is a zero of f{x) of multiplicity at least m.

If b is a zero of f(x) greater than m, then b is a zero of g(x) = fix)/(x — b)" = (x — a)*q' (x).

But then 0 = g(b) = (b — a)" ¢’ (D), and therefore ¢'(b) = 0.

Use Corollary 3 of Theorem 16.2.

If fix) # g(x), then deg[f(x) — g(x)] < deg p(x). But the minimum degree of any member of
(p(x)) is deg p(x).

Start with (x — 1/2)(x + 1/3) and clear fractions.

“Long divide” x — a into f{x) and induct on deg f(x).

By Theorem 16.4, 1 = (x — 1).

Use Corollary 2 of Theorem 15.5 and Exercise 9 in this chapter.

For any a in U(p), @*~! = 1, so every member of U(p) is a zero of x*~! — 1. Now use the Factor
Theorem and a degree argument.

Use Exercise 34.
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37.

39.
41.

43.
45.
47.
49.

51.

Observe that, modulo 101, (50!)% = (501)(—1)(—2) - - - (—50) = (50!1)(100)(99) - - - (51) = 100!
and use Exercise 34.

Take R = Zand I = (2).

Hint: Fx] is a PID. So { f(x), g(x)) = {(a(x)) for some a(x) € F[x]. Thus a(x) divides both f(x) and
g(x). This means that a(x) is a constant.

Write fix) = (x — a)g(x). Use the product rule to compute f'(x).

Say deg g(x) = m, deg h(x) = n, and g(x) has leading coefficient a. Let k(x) = g(x) — ax™ "h(x).
Then deg k(x) < deg g(x) and h(x) divides k(x) in Z[x] by induction. So, i(x) divides k(x) +
ax""h(x) = g(x) in Z[x].

Consider the remainder when x* is divided by x> + x + 1.

Observe that every term of f(a) has the form ciai and ciai mod m = cibi mod m. To prove the sec-
ond statement, assume that there is some integer k such that f(k) = 0. If k is even, then because
kmod 2 = 0, we have by the first statement 0 = f(k) mod 2 = f(0) mod 2 so that f(0) is even.
This shows that k is not even. If & is odd, then £k mod 2 = 1, so by the first statement f(k) = 0 is
odd. This contradiction completes the proof.

A solution to x** — 1 = 0 in Z,, is a solution to x> = 1 in U(37). So, by Corollary 2 of

Theorem 4.1, x| divides 25. Moreover, we must also have that |x| divides |U(37)! = 36.

Chapter 17

Experience enables you to recognize a mistake when you make it again.

o

13.
15.

17.
19.
21.
23.

FRANKLIN P. JONES

. Use Theorem 17.1.
. If f(x) is not primitive, then f(x) = ag(x), where a is an integer greater than 1. Then a is not a unit

in Z[x] and f(x) is reducible.

. a. If fix) = g(x)h(x), then afix) = ag(x)h(x).

b. If fix) = g(x)h(x), then flax) = g(ax)h(ax).
c. If fix) = g(x)h(x), then fix + a) = g(x + a)h(x + a).
d. Trya=1.

. Find an irreducible polynomial p(x) of degree 2 over Z,. Then Z [x1/{p(x)) is a field of order 25.
. Note that —1 is a zero. No, since 4 is not a prime.
. Letf(x) = x* + 1 and g(x) = f(x + 1) = x* + 4x* + 6x% + 4x + 2. Then f(x) is irreducible over

Q if g(x) is. Eisenstein’s Criterion shows that g(x) is irreducible over Q. To see that x* + 1 is
reducible over R, observe that

B—=—1=x+DHx*—1)
so any complex zero of x* + 1 is a complex zero of x® — 1. Also note that the complex zeros of
x* + 1 must have order 8 (when considered as an element of C). Let o = \6/2 + i \6/2.
Then Example 2 in Chapter 16 tells us that the complex zeros of x* + 1 are w, @*, ®°, and ’, s0
*Hl=x—0)x— o) — od)(x— o).
But we may pair these factors up as (x — ) (x — @))((x — @?)(x — @) = (x> — V2 + 1)
(x> + V2 x +1) to factor using reals (see DeMoivre’s Theorem, Example 7 in Chapter 0).
(x+3)x+ 5x+6)
a. Consider the number of distinct expressions of the form (x — ¢)(x — d).
b. Reduce the problem to the case considered in part a.
Use Exercise 16, and imitate Example 10.
Map Z,[x] onto Z,[i] by f(x) — f(i). This is a ring homomorphism with kernel (x* + 1).
X+, +x+2,x32+2x+2
1 has multiplicity 1, 3 has multiplicity 2.
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25. We know that a,(rls)" + anfl(r/s)"’l +--+a,=0.Soar"+ sanflr”*1 + -+ s"a, = 0.
This shows that s | a " and r | s"a,. Now use Euclid’s Lemma and the fact that r and s are rela-
tively prime.

27. Use induction and Corollary 2 of Theorem 17.5.

29. If there is an a in Z, such that a?=—1,thenx*+ 1 =%+ a)(x* — a).

If there is an a in Z, such that a?=2thenx*+1=0x2+ax+ D> —ax+1).

If there is an @ in Z, such that a> = —2,thenx* + 1 = (&2 + ax — D(x2 — ax — 1).

To show that one of these three cases must occur, consider the group homomorphism from Z>1= to
itself given by x — x2. Since the kernel is {1, —1}, the image H has index 2 (we may assume that
p # 2). Suppose that neither —1 nor 2 belongs to H. Then, since there is only one coset other
than H, we have —1H = 2H. Thus, H = (—1H)(—1H) = (—1H)(2H) = —2H, so that —2 is in H.

31. Since (f + g)(a) = fla) + g(a) and (f- g)(a) = fla)g(a), the mapping is a homomorphism.
Clearly, p(x) belongs to the kernel. By Theorem 17.5, { p(x)) is a maximal ideal, so the kernel
is { p(x))-

33. The mapping a — a + {p(x)) is an isomorphism.

35. Although the probability of rolling any particular sum is the same with either pair of dice, the
probability of rolling doubles is different (1/6 with ordinary dice, 1/9 with Sicherman dice). Thus
the probability of going to jail is different. Other probabilities are also affected. For example, if
in jail one cannot land on Virginia by rolling a pair of 2’s with Sicherman dice, but one is twice
as likely to land on St. James with a pair of 3’s with the Sicherman dice as with ordinary dice.

37. The analysis is identical except that 0 = g, r, t, u = n. Now, just as whenn = 2, we have g = r =
t = 1, but this time 0 = u = n. However, when u > 2, P(x) = x(x + 1) - (> + x + D(x*> —x + 1)*
has (—u + 2)x?**3 as one of its terms. Since the coefficient of x**3 represents the number of dice
with the label 2u + 3, the coefficient cannot be negative. Thus, u = 2, as before.

Chapter 18

He thinks things through very carefully, before going off half-cocked.

GENERAL CARL SPAATZ, in Presidents
Who Have Known Me, GEORGE E. ALLEN

1. 1. la> — db*l = 0 implies a*> = db>. Thus a = 0 = b, since otherwise d = 1 or d is divisible by
the square of a prime.
2. N((a + bVd) (@' + b'N/d)) = N(aa' + dbb" + (ab' + a’b)\/d) = |(aa’ + dbb')* —
d(ab’ + a'b)? = la*a'* + d*b*b'? — da*bh'?* — da'*b?| = |a® — db*|la’? — db'? =
N(a + b\/d) N(a' + b'"\/d).
3.Ifxy = 1,then 1 = N(1) = N(xy) = N(x)N(y) and N(x) = 1 = N(y). If N(a + b\/d) = 1, then
+*l=a—db*=(a+bVd) (a — b\f) and a + b\/d is a unit.
4. This property follows directly from properties 2 and 3.
3. Let!/ = Ul.Leta,b € landr € R. Then a € [, for some i and b € IJ for some j. Thus a, b € I,
where k = max{i, j}. So,a —b €l Clandraandar € I, C I.
. Clearly, (ab) C (b). If {ab) = (b), then b = rab, so that | = ra and a is a unit.
7. Sayx =a + biandy = ¢ + di. Then
xy = (ac — bd) + (bc + ad)i.

wn

So
d(xy) = (ac — bd)* + (bc + ad)* = (ac)* + (bd)* + (bc)* + (ad)>.
On the other hand,
dx)d(y) = (a® + b»)(c?® + d?) = a’c* + b*d* + b>c* + a*d>.
9. Suppose a = bu, where u is a unit. Then d(b) = d(bu) = d(a). Also, d(a) < d(au™") = d(b).
11. m=0andn= —1giveq= —i,r=—2 —2i.
13. 3-7and (1 + 2V—=5)(1 — 2V/—5). Mimic Example 8 to show that these are irreducible.
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15.

17.

19.
21.

23.
25.
27.
29.
31.
33.

35.

37.
39.

41.

Observe that 10 = 2 - 5and 10 = (2 — V=6) (2 + V—6) and mimic Example 8. A PID

is a UFD.

Suppose 3 = af3, where «, B € Z[i] and neither is a unit. Then 9 = d(3) = d(a)d(pB), so that
d(a) = 3. But there are no integers such that > + b> = 3. Observe that 2 = —i(1 + i)> and
5=(1+ 21 — 2i).

Use Exercise 1 withd = —1.5and 1 + 2i; 13and 3 + 2i; 17 and 4 + i.

Mimic Example 1.

(=1 +V35)(1 + V5) =4 =2 - 2. Now use Exercise 22.

Use the fact that x is a unit if and only if N(x) = 1.

See Example 3.

p|(a1a2 s+ a,_,)a,implies that p|a1a2 “rra,_ or p|an. Thus, by induction, p divides some a,.
Use Exercise 10 and Theorem 14.4.

Suppose R satisfies the ascending chain condition and there is an ideal / of R that is not finitely
generated. Then pick a, € I. Since I is not finitely generated, (a,) is a proper subset of I, so
we may choose a, € I but a, €& (a,). As before, (a,, a,) is proper, so we may choose a, € I
but a, €& {(a,, a,). Continuing in this fashion, we obtain a chain of infinite length (a,) C
(a,,a,) Clay, aya,) C-- .

Now suppose every ideal of R is finitely generated and there is a chain [, C I, C I, C - - .
Let/ = UI.ThenI = <“1’ ays ooy an>. Since I = UI, each a, belongs to some member of the
union, say I,.. Letting k = max {i"1i=1,...,n}, we see that all a; € I,. Thus, I C I, and the
chain has length at most k.

Say I = {a + bi). Then a®> + b> + I = (a + bi)(a — bi) + I = I and a* + b* € I. For any
c,d€Zletc=q,(a>+ b>) + r and d = g,(a* + b?) + r,, where 0 = r|, r, < a’ + b*. Then
ctdi+I=r +rji+l

N(6 + 2\/=7) = 64 = N(1 + 3V/—7). For the other part, use Exercise 25.

Theorem 18.1 shows that primes are irreducible. So, assume that a is an irreducible in a UFD R
and that albc in R. We must show that alb or alc. Since albc there is an element d in R such that

bc = ad. Now replace b, ¢, and d by their factorizations as a product of irreducibles and use uniqueness.
See Exercise 21 in Chapter 0.

Supplementary Exercises for Chapters 15-18

Errors, like straws, upon the surface flow;
He who would search for pearls must dive below.

W W

11.

13.
15.

JOHN DRYDEN

. Use Theorem 15.3, Supplementary Exercise 8 for Chapters 12—14, Theorem 14.4, and

Example 13 in Chapter 14.

. To show the isomorphism, use the First [somorphism Theorem.
. Use the First Isomorphism Theorem.
. Consider the obvious homomorphism from Z[x] onto Z,[x]. Then use the First Isomorphism

Theorem and Theorem 14.3.

. As in Example 7 in Chapter 6, the mapping is onto, is one-to-one, and preserves multiplication.

Also, a(x + y)a~! = axa™' + aya™', so that it preserves addition as well.
2+ ={0+2+)1+2+)2+2+i),3+2+i),4+(2+i)}. Note that

542+ =Q+D2 -+ Q2 +i)
=0+ Q2 +i).
Observe that (3 + 2V2)(3 — 2V2) = 1.

Inanearegiven(k-i-12=k+l.SO,k2+2k+1=k+10rk2=—k=n—k.
Also,(n — k> =n*—2nk + k* =k, so(n — k> =n — k.
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17. Observe that for any integer a, a>mod 4 = 0 or 1.

19. Use the Mod 2 Irreducibility Test.

21. Use Theorem 14.4. The factor ring has two elements.

23. Use Theorem 14.4.

25. Say alb, c/d € R. Then (ad — bc)/(bd) and ac/(bd) € R by Euclid’s Lemma. The field of
quotients is Q.

27. Z[i)/(3) is a field and Z, D Z, is not.

29. Consider the mapping from R[x] to (R/D[x] givenby a x" + - - - + a, — (a, + Dx" + -+ - +
(ay +1I).

31. Let ! = (2)[x]. Then Z[x]/I is isomorphic to Z,[x].

33. (x, 3).

Chapter 19

When | was young | observed that nine out of every ten things | did were failures, so | did ten times
more work.

GEORGE BERNARD SHAW

1. R"has basis {(1,0,...,0),(0,1,0,...,0),...,(0,0,...,1)}; M,(Q) has basis

tlo oblo o}V 615 V1)

Z [x] has basis {1, x, x2,...}; Chas basis {1, i}.
3. (ax* +ax+a) + (@) x> +a/x+a))=(a, + a,)x> + (a, + a/)x + (a, + a;) and
a(a,* + ax + ay) = aax* + aax + aa,. Abasis is {1, x, x*}. Yes.
. Linearly dependent, since —3(2, —1,0) — (1,2,5) + (7, —1,5) = (0, 0, 0).

7. Suppose au + b(u +v) + c(u +v+w)=0.Then(a + b+ c)u + (b + ¢)v + cw = 0. Since {u, v, w}
are linearly independent, we obtain ¢ = 0,0 + ¢ =0,anda + b + ¢ =0.So,a=b =c = 0.

9. If the set is linearly independent, it is a basis. If not, then delete one of the vectors that is a linear
combination of the others (see Exercise 8). This new set still spans V. Repeat this process until you
obtain a linearly independent subset. Since the set is finite, we will eventually obtain a linearly
independent set that still spans V.

11. Letu,, u,, u, be a basis for U and w, w,, w, be a basis for W. Use the fact that u, u,, u,, w, w,,
w, are linearly dependent over F. In general, if dim U + dim W > dim V, then U N W # {0}.
13. no

wn

15. yes; 2
17 { a a+b] [ a' a’+b’]_{ a+a a+b+a +0b
“la+b b a+b b a+b+a +b b+ b and
[ a a+b}_{ ac ac+bc}
“latb b ac+bc bc |

19. Suppose B is a basis. Then every member of V'is some linear combination of elements of B. If
av,+---+ay, =a'v,+---+a'v,wherev, € B, then(a, —a)v, + -+ (@a,—a v, =0
and a; — a;' = 0 for all i. Conversely, if every member of V'is a unique linear combination of
elements of B, certainly B spans V. Also,ifav, +---+ay =0,thenay, +---+ay =
Ov, + -+ +0v and a; = O for all i.

21. Since w, = a,u, + a,u, + -+ au, anda, # 0, wehaveu, = a w, —au, — - —au),
non 1 1 1 1 272 non
and therefore u, € (w, u,, ..., u ). Clearly, u,, ..., u € (w,, u, ..., u, ) Hence every linear
combination of u, ..., u isin (w, u, ..., u).

23. {(1,0,1,1),(0, 1,0, D)}.
25. Study the proof of Theorem 19.1.
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27.

If V.and W are vector spaces over F, then the mapping must preserve addition and scalar multi-
plication. That is, 7: V — W must satisty 7(« + v) = T(u) + T(v) for all vectors u and v in V, and
T(au) = aT(u) for all vectors u in V and scalars a in F. A vector space isomorphism from V to W
is a one-to-one linear transformation from V onto W.

29. Suppose v and u belong to the kernel and a is a scalar. Then 7(v + u) = T(v) + T(u) =0+ 0=10
and T(av) = aT(u) = a -0 = 0.

31. Let {v,,v,,...,v,} beabasis for V.Mapav, + a,v, + - +ay to(a,ay --,a,).

Chapter 20

Well here’s another clue for you all.

—

13.

15.
17.
19.
21.

23.
25.

27.

29.
31.
33.
35.

37.

—\o N ! W=

JOHN LENNON AND PAUL MCCARTNEY,
“Glass Onion,” The White Album

. Compare with Exercise 24 in the Supplementary Exercises for Chapters 12-14.

- Q(V=3)

o(V-=3)

. Note that x = V1 + V5 implies x* — 2x2 — 4 = 0.

d=a+a+lLa?=a+a+ 1;a'"% =42

. The set of all expressions of the form

(@m" +a,_
where b, # 0.
X =x=x(x*—1D=x(3+ D — D =x(x— D3+ 1% x0—x=x(x*—1)=x(x — 1)°
(see Exercise 45 in Chapter 13).

Hint: Use Exercise 45 in Chapter 13.

a=4/3,b=2/3,c=5/6

Use the factthat 1 + i = —(4 — i) +5and4 —i=5— (1 + Q).

If the zeros of fix) are a, a,, . . . , a,, then the zeros of fix + a) are a; — a,a, — a,...,a, — a. Now
use Exercise 20.

Q and Q(V2)

Let F = Z,[x]/{x* + 2x + 1) and denote the cosets x + (x* + 2x + 1) by Band 2 +
@W+2x+1)by2.Thenx® +2x + 1 =(x — B)x— B — Dx + 28 + 1).

Suppose that ¢: 0(V—=3) = 0(\V3)is an isomorphism. Since ¢(1) = 1, we have ¢p(—3) = —3.
Then —3 = ¢(—3) = ¢( V=-3V=-3)= (&( \/=3))2. This is impossible, since ¢(V —3)is a
real number.

Use long division.

Use Theorem 20.5.

Use Theorem 20.5.

Since L is a splitting field of f{x) over F, we may write flx) = (x — a,)(x — a,) . .. (x — a,), where the
coefficients of f{x) belong to F. But then these coefficients also belong to L.

Since I(Z,[x]/{ fix)))*| = 31, every nonidentity is a generator.

T a /b, + b+ by,

Chapter 21

Work is the greatest thing in the world, so we should always save some of it for tomorrow.

1.

DON HERALD

It follows from Theorem 21.1 that if p(x) and g(x) are both monic irreducible polynomials in
Flx] with p(a) = g(a) = 0, then deg p(x) = deg g(x). If p(x) # q(x), then (p — ¢)(@) = p(a) —
g(a) = 0 and deg (p(x) — g(x)) < deg p(x), contradicting Theorem 21.1. To prove Theorem 21.3,
use the Division Algorithm (Theorem 16.2).
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3. Note that [Q(%): Q] = n and use Theorem 21.5.

5. Use Exercise 4.

7. Suppose 0(Va) = QVb). If Vb € Q, then Va € Q and we may take ¢ = ValVb. Vb & O,
then Va & Q. Write Va = r + s\/b. It follows that » = 0 and @ = bs®. The other direction
follows from Exercise 20 in Chapter 20.

9. Observe that [F(a):F] must divide [E:F].

11. Note that [F(a, b):F] is divisible by both m = [F(a):F] and n = [F(b):F] and [F(a,b):F] = mn.

13. Note that a is a zero of x* — a* over F(a®)[x]. For the second part, take F = Q,a = 1; F = Q,a =
(—1+iV3)/2; F=Q,a= V2.

15. Suppose E, N E, # F.Then [E:E, N E,] - [E; N E,:F] = [E,:F] implies [E:E, N E,] = 1, s0
that £, = E, N E,. Similarly, £, = E, N E,.

17. E must be an algebraic extension of R, so that £ C C. But then [C:E][E:R] = [C:R] = 2.

19. Let a be a zero of p(x) in some extension of F. First note [E(a):E] = [F(a):F] = deg p(x). Then
observe that [E(a):F(a)][F(a):F] = [E(a):E][E:F]. This implies that deg p(x) divides [E(a):E],
so deg p(x) = [E(a):E].

21. Hint: If @ + B and af are algebraic, then so is V' (a + 8)> — 4aB.

23. Vb — 4ac

25. Use the Factor Theorem.

27. Say a is a generator of F*. If char F' = 0, then the prime subfield of F is isomorphic to Q. Since O*
is not cyclic, we have that F = Zp(a), and it suffices to show that a is algebraic over Z . If a € Zp, we
are done. Otherwise, 1 + a = a* for some k # 0. If k > 0, we are done. If k < 0, then a ¥ +
a'~* =1 and we are done.

29. If [K:F] = n, then there are elements Vis Voo e e Y, in K that constitute a basis for K over F.

The mapping a,v, +--- +ay, —(a,, ..., a,) is a vector space isomorphism from K to F". If K'is
isomorphic to F", then the n elements in K corresponding to (1,0, ...,0),(0,1,...,0),...,
(0,0,...,1)in F" constitute a basis for K over F.

31. Observe that [F(a,b) : F(a)] = [F(a)(b) : F(a)] = [F(b) : F] = [F(a)(b) : F(b)][F(b) : F] =
[F(a)(b) : F] = [F(a,b) : F].

33. Mimic Example 5.

35. Mimic Example 6.

37. Observe that K = F(a,, a, . . ., a,), where a,, a,, . . ., a, are the zeros of the polynomial. Now
use Theorem 21.5.

39. Elements of Q(7) have the form (¢, ™ + a,_ 7" '+ -+ a)bm" + b _ w" '+ -+ b,
where the a’s and b’s are rational numbers. So, if /2 € Q(7r), we have an expression of the form
27"+ b, mw" T+ o+ b)) = (a, 7+ a, w4 -+ ay)” Equating the lead terms
of both sides, we have 2b27>" = a2m*". But then we have m = n, and \/2 is equal to the rational
number a,,/b,,.

41. Observe that F(a) = F(1 +a").

Chapter 22

Tell me tell me tell me come on tell me the answer.

JOHN LENNON AND PAUL MCCARTNEY,
“Helter Skelter,” The White Album

. [GF(729):GF(9)] = 3

[GF(64):GF(8)] = 2

. The lattice of subfields of GF(64) looks like Figure 21.3 with GF(2) at the bottom, GF(64) at the

top, and GF(4) and GF(8) on the sides.
2+ 1
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7. Use Theorem 22.2.
9. The only possibilities for f(x) are x> + x + 1 and x> + x> + 1. See Exercise 8 in Chapter 20 for the
first case. See Example 2 in this chapter for the second case.
11. Use Exercise 44 in Chapter 15 and Corollary 4 of Lagrange’s Theorem (Theorem 7.1).
13. Use the fact that if g(x) is an irreducible factor of x* — x over Z, and deg g(x) = m, then the field
Z,[x]Kg(x)) has order 2" and is a subfield of GF(8). Now use Theorem 22.3.
15. Direct calculations show that given x> + 2x + 1 = 0, we have x> # 1 and x'3 # 1.
17. Direct calculations show that x'> = 1, whereas (2x)> # 1 and (2x)'3 # 1. Thus, 2x is a generator.
19. First observe that for any field F the set F* is a group under multiplication. Now use Theorem
22.2 and Theorem 4.3.
21. Find a quadratic irreducible polynomial p(x) over Z; then Z, [x)/Kp(x)) is a field of order 9.

23. Leta, b € K. Then, by Exercise 45b in Chapter 13, (a — b)Pm =a" —b" =a—b. Also,
(ab)"" = a”" b?" = ab. So, K is a subfield.

25. Consider ¥’'~! — 1 and use Corollary 3 of Lagrange’s Theorem (Theorem 7.1).

27. identical

29. Consider g(x) = x> — a. Note that IGF(p)[x]/{g(x))| = p?, so that g(x) has a zero in GF(p?). Now
use Theorem 22.3.

31. Use Exercise 11.

33. Since F* is a cyclic group of order 124, it has a unique element of order 2.

35. Use Exercise 45 in Chapter 13.

37. Consider the field of quotients of Zp[x]. The polynomial f(x) = x is not the image of any element.

Chapter 23

Why, sometimes I've believed as many as six impossible things before breakfast.
LEWIS CARROLL

1. To construct a + b, first construct a. Then use a straightedge and compass to extend a to the
right by marking off the length of b. To construct @ — b, use the compass to mark off a length of
b from the right end point of a line of length a.

3. Let y denote the length of the hypotenuse of the right triangle with base 1, and let x denote the
length of the hypotenuse of the right triangle with base |c|. Then y> = 1 + d?,y? + x> = (1 + Icl)?,
and Icl? + d? = x2. So, 1 + 2lcl + lcl? =1 + d? + IcI* + d?, which simplifies to Icl = d>.

5. Usesin?6 + cos? 0 = 1.

7. Usecos 26 = 2 cos? 6 —1.

9. Usesin(e — ) = sina cos 8 — cos a sin B.

11. Solving two linear equations with coefficients from F involves only the operations of F.

13. Use Theorem 17.1 and Exercise 25 in Chapter 17.

15. If so, then an angle of 40° is constructible. Now use Exercise 10.

17. This amounts to showing that \/7r is not constructible. But if \/7r is constructible, so is .
However, [Q(7r) : Q] is infinite.

19. No, since [Q( \3/§):Q] =3.

21. No, since [Q( \3/;):Q] is infinite.

Supplementary Exercises for Chapters 19-23

The things taught in colleges and schools are not an education, but the means of education.
RALPH WALDO EMERSON,]Oul’naIS

1. Use Theorem 20.5.

3. Suppose b is one solution of x" = a. Since F* is a cyclic group of order ¢ — 1, it has a cyclic
subgroup of order n, say {c). Then each member of {c) is a solution to the equation x" = 1. It
follows that b{c) is the solution set of x" = a.
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5. (5a® + 2)la = 5a + 2a~'. Now observe that since a> + a + 1 = 0, we know that
a(—a—1)=1,andsoa ! = —a — 1. Thus, (5a*> + 2)la = —2 + 3a.

7.5

9. Since F(a) = F(a™"), we have degree of a = [F(a):F] = [F(a™"):F] = degree of a .

11. If abis a zero of ¢ x" + - + ¢\ x + ¢, € F[x], then ais a zero of ¢ b"x" + - - - +
¢,bx + ¢, € F(b)[x].

13. Every element of F(a) can be written in the form f{a)/g(a), where f(x), g(x) € F|x]. If fla)/g(a) is
algebraic and not in F, then there is some i(x) € F[x] such that h(f(a)/g(a)) = 0. By clearing
fractions and collecting like powers of a, we obtain a polynomial in a with coefficients from F
equal to 0. But then a would be algebraic over F.

15. Use Corollary 2 to Theorem 22.2.

17. If the basis elements commute, then so would any combination of basis elements. However, the
entire space is not commutative.

19. {x, X2, x3}

21. Use Exercise 45 in Chapter 13.

23. By Theorem 20.5, the zeros of X" — a are distinct, say |, @,, . . ., @,. Then 8, = «,/a, for
i =1,2,...,nare all the nth roots of unity.

Chapter 24

Difficulty, my brethren, is the nurse of greatness.

3.

~

13.
15.
17.
19.
23.
25.

27.

29.
31.

WILLIAM CULLEN BRYANT

. a=-ecae 'ycac™' = bimpliesa = ¢ 'bc = ¢ 'b(¢c™ )7 a = xbx ' and b = ycy~ ! imply

a = xycy 'x7! = xye(xy) "

Observe that T(xC(a)) = xax™' = yay~' = T(yC(a)) if and only if y~'xa = ay~'x if and only if
y~'x € C(a) if and only if yC(a) = xC(a). This proves that T is well defined and one-to-one.

T is onto by definition.

. By way of contradiction, assume that H is the only Sylow 2-subgroup of G and that K is the only

Sylow 3-subgroup of G. Then H and K are normal and Abelian (corollary to Theorem 24.5 and
corollary to Theorem 24.2). So, G = H X K = H & K and, from Exercise 4 in Chapter 8, G is
Abelian.

. Use Exercise 7 in Supplementary Exercises for Chapters 5-8.
. Use Exercise 55 in Chapter 9 and Exercise 7 of the Supplementary Exercises for Chapters 5-8.
. By Theorem 24.5, n,, the number of Sylow p-subgroups has the form 1 + kp and 7, divides|ml.

Butif k = 1, n, does not divide Iml. Thus k = 0. Now use the corollary to Theorem 24.5.

8

15

By Exercise 16, G has seven subgroups of order 3.

10; ((123)), ((234)), ((134)), ((345)), ((245))

21

Sylow’s Third Theorem implies that the Sylow 3- and Sylow 5-subgroups are unique. Pick any x
not in the union of these. Then Ix| = 15.

By Sylow, n,; = 1 or 35. Assume n, = 35. Then the union of the Sylow 17-subgroups has 561
elements. By Sylow, ny = 1. Thus, we may form a cyclic subgroup of order 85 (Exercise 55 in
Chapter 9 and Theorem 24.6). But then there are 64 elements of order 85. This gives too many
elements.

Use the “G/Z Theorem” (Theorem 9.3).

Let H be the Sylow 3-subgroup and suppose that the Sylow 5-subgroups are not normal. By
Sylow, there must be six Sylow 5-subgroups, call them K|, . . ., K. These subgroups have

24 elements of order 5. Also, each of the cyclic subgroups HK |, . .., HK has eight generators.
Thus, there are 48 elements of order 15 which results in more than 60 elements in the group.
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33.
35.

37.

39.

41.

43.
45.

47.
49.

51.

53.
5S.
57.

Mimic the proof of Sylow’s First Theorem.

Pick x € Z(G) such that |x| = p. If x € H, by induction, N(H/{x)) > H/{(x), say y(x) € N(H/{x))
but not H/{x). Now show y € N(H) but not H. If x & H, then x € N(H), so that N(H) > H.
Automorphisms preserve order.

Since 3 divides IN (K)I, we know that N (K) has subgroup H, of order 3. Now use the fact

that H K is cyclic group of order 15 and Exercise 25 in the Supplementary Exercises for
Chapters 1-4.

Normality of H implies cl(h) C H for h in H. Now observe that i € cl(h). This is true only when
H is normal.

The mapping from H to xHx™! given by & — xhx~! is an isomorphism.

Say cl(x) = {x, gxg, ", g,x8, ', ..., gxg, '} Ifx~! = gxg,”!, then for each gj)cgj‘1 in cl(x), we
have (gjxgj‘l) 1= gjx“gj‘1 = gj(gixgi‘l)gj‘1 € cl(x). Because |G| has odd order, gjxg/.“ #*
(gjxgj‘l)‘l. It follows that Icl(x)! is even. But Icl(x)! divides IGI.

Mimic Example 4.

Say cl(e) and cl(a) are the only two conjugacy classes of a group G of order n. Then cl(a) hasn — 1
elements all of the same order, say m. If m = 2, then it follows from Exercise 35 in Chapter 2

that G is Abelian. But then cl(a) = {a} and so n = 2. If m > 2, then cl(a) has at most n — 2
elements since conjugation of a by e, a, and a” each yields a.

Let H be a Sylow 5-subgroup. Since the number of Sylow 5-subgroups is 1 modulo 5 and divides
7-17, the only possibility is 1. So, H is normal in G. Then by the N/C Theorem (Example 15 of
Chapter 10), |G/C(H)! divides both 4 and|GI. Thus C(H) = G.

This follows directly from Theorem 24.1.

Pr(D,) = 5/8, Pr(S,) = 1/2, Pr(A,) = 1/3

Exactly as in the case for a group, we have for aring R = {x,, x,, ..., x,}, Pr(R) = IK| |/n?, where
K = {(x, y)lxy = yx, x,y € R}. Also, IKl = IC(x)I + IC(x,)l + -+ + IC(x)|. From Exercise 28
in the Supplementary Exercises for Chapters 12—14, we know that R/C(R) is not cyclic. Thus,
IR/C(R)l = 4 and so IC(R)!| = IRI/4. So, for at least 3/4 of the elements x of R, we have |C(x)| = |RI/2.
Then starting with the elements in the center and proceeding to the elements not in the center,
we have |K| =< |RI/4 + (1/2)(3/4)IRI = (5/8)IRI.

Chapter 25

Learn to reason forward and backward on both sides of a question.

W

11.

THOMAS BLANDI

. Use the 2 - odd test.
. Use the Index Theorem.
- Suppose G is a simple group of order 525. Let L, be a Sylow 7-subgroup of G. It follows from

Sylow’s theorems that IN(L,)! = 35. Let L be a subgroup of N(L,) of order 5. Since N(L,) is
cyclic (Theorem 24.6), N(L) = N(L.), so that 35 divides IN(L)I. But L is contained in a Sylow
5-subgroup (Theorem 24.4), which is Abelian (see the Corollary to Theorem 24.2). Thus, 25
divides IN(L)| as well. It follows that 175 divides IN(L)I. The Index Theorem now yields a
contradiction.

. n;, = 12. Use the N/C Theorem (Example 15 in Chapter 10) to show that there is an element of

order 22; then use the Embedding Theorem and observe that A, has no element of order 22.
Suppose that there is a simple group of order 396 and L, is a Sylow 11-subgroup. Use the N/C
Theorem given in Example 15 of Chapter 10 to show that C(L,,) has an element of order 33
whereas A |, does not.

If we can find a pair of distinct Sylow 2-subgroups A and B such that IA N Bl = 8, then

N(A N B) = AB, so that N(A N B) = G. Now let H and K be any distinct pair of Sylow 2-subgroups.
Then 16 - 16/IH N K| = |HK| = 112 (Supplementary Exercise 7 for Chapters 5-8), so that



15.
17.

19.

21.

23.

25.
27.

29.

31.
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IH N Klis at least 4. If [H N K| = 8, we are done. So, assume |H N K| = 4. Then N(H N K)
picks up at least 8 elements from H and at least 8 from K (see Exercise 35 in Chapter 24). Thus,
IN(H N K)I = 16 and is divisible by 8. So, IN(H N K)| = 16, 56, or 112. Since the latter two cases
yield normal subgroups, we may assume IN(H N K)l = 16. If N(H N K) = H, then |[H N K| = §,
since N(H N K) contains at least 8 elements from K. So, we may assume that N(H N K) # H.
Then, we may take A = N(H N K) and B = H.

Use the Index Theorem.

ng = 6 and n, = 10 or 40. If there are two Sylow 2-subgroups L, and L,” whose intersection has or-
der 4, show that N(L, N L,") has index at most 5. Now use the Embedding Theorem. If ,= 40, the
union of all the Sylow subgroups has more than 120 elements. If n,= 10, use the N/C Theorem to
show that there is an element of order 6 and then use the Embedding Theorem and observe that A,
has no element of order 6.

Let a be as in the proof of the Generalized Cayley Theorem. Then Ker « = H and IG/Ker «!
divides |G:HI!. Now show IKer al = |HI. A subgroup of index 2 is normal.

If H is a proper normal subgroup of S, then H N A, = A, or {&}. But H N A, = A, implies

H = A,, whereas H N A; = {&} implies H = {&} or |IH| = 2. (See Exercise 19 in Chapter 5.)
Now use Exercise 70 in Chapter 9 and Exercise 48 in Chapter 5.

By direct computation, show that PSL(2, Z,) has more than four Sylow 3-subgroups, more than
one Sylow 7-subgroup, and more than one Sylow 2-subgroup. Hint:

1 4
Observe that {1 5] has order 3. Now use conjugation to find four other subgroups of order 3;

observe that

55
L 4} ‘ = 7 and use conjugation to find another subgroup of order 7;

5
35
antees that more than one Sylow 2-subgroup exists). Now argue as we did to show that A, is
simple. In the cases that the supposed normal subgroup N has order 2 or 4, show that in G/N, the
Sylow 7-subgroup is normal. But then, G has a normal subgroup of order 14 or 28, which were
already ruled out.

Mimic Exercise 24.

Suppose there is a simple group of order 60 that is not isomorphic to A;. The Index Theorem
implies n, # 1 or 3, and the Embedding Theorem implies 7, # 5. Thus, n, = 15. Counting shows
that there must be two Sylow 2-subgroups whose intersection has order 2. Now mimic the argu-
ment used in showing that there is no simple group of order 144 to show that the normalizer of
this intersection has index 5, 3, or 1, but the Embedding Theorem and the Index Theorem rule
these out.

Suppose there is such a simple group G. Smce the number of Sylow g-subgroups is 1 modulo g
and divides P it must be P”. Thus there are P°(¢ — 1) elements of order q in G. These elements,
together with the P’ elements in one Sylow p-subgroup, account for all p ’q elements in G. Thus
there cannot be another Sylow p-subgroup. But then the Sylow p-subgroup is normal in G.
Consider the right regular representation of G. Let g be a generator of the Sylow 2-subgroup and
suppose that |Gl = 2% where n is odd. Then by Exercise 46 in Chapter 6 every cycle of the per-
mutation 7, in the right regular representation of G has length 2%, This means that there are ex-
actly n such cycles. Since each cycle is odd and there is an odd number of them, T, is odd. This
means that the set of even permutations in the regular representations has index 2 and is there-
fore normal. (See Exercise 19 in Chapter 5 and Exercise 7 in Chapter 9).

observe that = 4 and use conjugation to find six more elements of order 4 (which guar-
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Chapter 26

If you make a mistake, make amends.
LOU HOLTZ

1. u < u because u is obtained from itself by no insertions; if v can be obtained from u by insert-
ing or deleting words of the form xx~! or x~'x, then u can be obtained from v by reversing the
procedure; if u can be obtained from v and v can be obtained from w, then u can be obtained
from w by obtaining first v from w and then u from v.

3. b(a*N) = b(aN)a = a’bNa = a’b(aN)

= a*a*bN

= a’bN = a°Nb = a’Nb = a’bN

b(a®N) = b(a*N)a = a’bNa = a*b(aN)

a’a®bN

@’bN = a’Nb = aNb = abN

b(bN) = BN = N
b(abN) = baNb = a*bNb = a’b*N = a’N
b(a*hN) = ba*Nb = a*hNb = a*b*N = a*N
b(a*bN) = ba*Nb = abNb = ab*N = aN

5. Let F be the free group on {a,, a,, .. ., a,}. Let N be the smallest normal group containing
{w, w,, ..., w,} and let M be the smallest normal subgroup containing {w,, w,, ..., w,

W, 1s--->wW,, ). Then F/N =~ G and F/M =~ G. The homomorphism from F/N to F/M given by
aN — aM induces a homomorphism from G onto G.

To prove the corollary, observe that the theorem shows that K is a homomorphic image of G,
so Kl = IGl.

7. Clearly, a and ab belong to {a, b), so {a, ab) C {a, b). Now show that a and b belong to {(a, ab).

. Show that |G| = 2n and that D, satisfies the relations that define G.

11. Since x> = y? = ¢, we have (xy) ! =y 'x ! = yx. Also, xy = 7 'yz,s0 (xy) ' = (g7 lyz) ' =

7y lz=2z"yz=xy.

13. a.b® b.b’a

15. Center is (x?). lxyl = 8.

17. Use the fact that the mapping from G onto G/N given by x — xN is a homomorphism.

19. For H to be a normal subgroup we must have yxy™' € H = {e, %, %, ¥, x, xy°, 1y, xy°}. But

yxy = yay!t = (yay)y'® = xy'0.

21. 6; the given relations imply that > = e. G is isomorphic to Z.

23. 1,2, and

25. ab=c=rabc ' = ¢

cd =a=(abc™Yed=ae=bd =e=d=b"

da = b=>bda = b*>=ea =b>=a=Db>

ab=c=b’=c

So G = (b).

bc=d=bb*=b""=b>=¢.S0IGl =1or5.

But Z, satisfies the defining relations witha = 1,b = 3,c = 4,and d = 2.

27. Z,

o

Chapter 27

If at first you don't succeed—that makes you about average.
BRADENTON, Florida Herald

1. If T'is a distance-preserving function and the distance between points a and b is positive, then
the distance between 7(a) and T(b) is positive.
3. See Figure 1.5.
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11.
13.
15.
17.

19.
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.12

4n

. a.zZ,

b.Z,®Z,

¢. G @ Z,, where G is the plane symmetry group of a circle.

6

An inversion in R? leaves only a single point fixed, whereas a rotation leaves a line fixed.

In R*, a plane is fixed. In R”, a hyperplane of dimension n — 2 is fixed.

Create a coordinate system for the plane. Let 7 be an isometry; p, ¢, and r the three noncollinear
points; and s any other point in the plane. Then the quadrilateral determined by 7(p), T(q), T(r),
and 7(s) is congruent to the one formed by p, ¢, r, and s. Thus, 7(s) is uniquely determined by
T(p), T(q), and T(r).

a rotation

Chapter 28

The thing that counts is not what we know but the ability to use what we know.

LEO L. SPEARS

1. Try xy"™ — (n, m).
3. xy
5. Use Figure 28.9.
7. XPyzxz = xyx =27 ly = xy
xoyz = x i ly = x Yy
9. A subgroup of index 2 is normal.
11. a.V b.I cII d.VI e VII f1I
13. cmm
15. a.pdm b.p3 c.p3lm d.pbm
17. The principal purpose of tire tread design is to carry water away from the tire. Patterns I and III do
not have horizontal reflective symmetry. Thus these designs would not carry water away equally
on both halves of the tire.
19. a.VI b.V ¢l d.II eIV fVII glIV
Chapter 29

With every mistake we must surely be learning.

11.

LN

GEORGE HARRISON, “While My Guitar Gently Weeps,” The White Album

6
30
13
45
126

1
g(n6+2~n+2'n2+n3)

. For the first part, see Exercise 11 in Chapter 6. For the second part, try D,,.
15.

The kernel is {R, R ., H, V}.

180°
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Chapter 30

I am not bound to please thee with my answers.

SHAKESPEARE, The Merchant of Venice

1. 4* (b, a)

3. (m/2) * {3 * [(a, 0), (b, 0)], (a, 0), (e, 1), 3 * (a, 0), (b, 0), 3 * (a, 0), (e, 1)}
5. a*b

7. Both yield paths from e to a’b.

11. Say we start at x. Then we know the vertices x, xs, xs,5,, ..., xs,5, - - = s, _, are distinct and
X = xs,5,*5,. Soif we apply the same sequence beginning at y, then cancellation shows that
Yy VS5 VS Sy - o5 Y88, 005, are distinctand y = ys;s, v S,

13. If there were a Hamiltonian path from (0, 0) to (2, 0), there would be a Hamiltonian circuit in the
digraph, since (2, 0) + (1, 0) = (0, 0).

15. a.If s, s,,...,s,_, traces a Hamiltonian path and 5.5, - - - s =e, then the vertex s;s, - - *s,_,
appears twice. Conversely, if 5,5, | - - 5; # e, then the sequence e, s, 5,55, ..., 88, ""S,_,
yields the n vertices (otherwise, cancellation gives a contradiction).

b. This follows directly from part a.

17. The sequence traces the digraph in a clockwise fashion.

19. Abbreviate (a, 0), (b, 0), and (e, 1) by a, b, and 1, respectively. A circuitis 4 * (4 * 1, a), 3 * a, b,
7*a,1,b,3*a,b,6*a,1,a,b,3*a,b,5*%a,1,a,a,b,3*%a,b,4*a,1,3*a,b,3*a,b,
3%a,b.

21. Abbreviate (Ryy, 0), (H, 0), and (R, 1) by R, H, and 1, respectively. A circuitis 3 * (R, 1, 1), H,
2*(1,R,R),R,1,R,R,1,H, 1, 1.

23. Abbreviate (a, 0), (b, 0), and (e, 1) by a, b, and 1, respectively. A circuitis 2 * (1, 1, a), a, b,
3*%a,1,b,b,a,b,b,1,3*a,b,a,a.

25. Abbreviate (r, 0), (£, 0), and (e, 1) by r, f, and 1, respectively. Then the sequence is r, r, f, r, 1, 1,
Lo, forn L for L frrf, 1.

27. m*((n — 1) *(0, 1), (1, 1))

29. Abbreviate (r, 0), (f, 0), and (e, 1) by r, f, and 1, respectively. A circuitis 1, r, 1, 1,£,r, 1,1, 1, r,
f, L.

31. 5%[3x(1,0), (0, 1)], (1, 0)

33. 12x((1, 0), (0, 1)).

35. In the proof of Theorem 30.3, we used the hypothesis that G is Abelian in two places: We needed
H to satisfy the induction hypothesis, and we needed to form the factor group G/H. Now, if we
assume only that G is Hamiltonian, then H also is Hamiltonian and G/H exists.

Chapter 31

We must view with profound respect the infinite capacity of the human mind to resist the
introduction of useful knowledge.

N=JE IV RIS

THOMAS R. LOUNSBURY

. wt(0001011) = 3; wt(0010111) = 4; wt(0100101) = 3; etc.

. 1000110; 1110100

. 000000, 100011, 010101, 001110, 110110, 101101, 011011, 111000

. Not all single errors can be detected.

. Observe that a vector has even weight if and only if it can be written as a sum of an even number

of vectors of weight 1.

. No, by Theorem 31.3.
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0000000, 1000111, 0100101, 0010110, 0001011, 1100010, 1010001, 1001100, 0110011,
0101110, 0011101, 1110100, 1101001, 1011010, 0111000, 1111111;

Sy
Il
S O = O = = =
S =0 == O -
—_ O O = O = =

yes.

Suppose that « is decoded as v and that x is the coset leader of the row containing u. Coset decod-
ing means v is at the head of the column containing u. So, x + v = u and x = u — v. Now suppose
u — vis a coset leader and u is decoded as y. Then y is at the head of the column containing u.
Since v is a code word, u = u — v + vis in the row containing u — v. Thusu — v +y=u

andy = v.

000000, 100110, 010011, 001101, 110101, 101011, 011110, 111000

S O == O -
S = O O = =
—_0 O = = O

001001 is decoded as 001101 by all four methods.

011000 is decoded as 111000 by all four methods.

000110 is decoded as 100110 by all four methods.

Since there are no code words whose distance from 100001 is 1 and three whose distance is 2,
the nearest-neighbor method will not decode or will arbitrarily choose a code word; parity-check
matrix decoding does not decode 100001; the standard-array and syndrome methods decode
100001 as 000000, 110101, or 101011, depending on which of 100001, 010100, or 001010 is a
coset leader.

For any received word w, there are only eight possibilities for wH. But each of these eight possi-
bilities satisfies condition 2 or the first portion of condition 3’ of the decoding procedure, so
decoding assumes that no error was made or one error was made.

There are 3* code words and 3° possible received words.

No; row 3 is twice row 1.

No. For if so, nonzero code words would be all words with weight at least 5. But this set is not
closed under addition.

Use Exercise 24, together with the fact that the set of code words is closed under addition.

Abbreviate the coset a + (x> + x + 1) with a. The following generating matrix will produce the
desired code:

1 01 1 X
01 x x+1 x+1]
Use Exercise 14.

Let ¢, ¢ € C. Then, ¢ + (v + ¢) = v + ¢ + ¢ €v + Cand (v + ¢) +
v+c)=c+c €C,sotheset CU (v + C)is closed under addition.
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35.

If the ith component of both u and v is O, then so is the ith component of # — v and au, where a is
a scalar.

Chapter 32

Wisdom rises upon the ruins of folly.

[9 I

11.
13.
15.

17.
19.
21.
23.
25.
27.

1.

THOMAS FULLER, Gnomologia

. Note that ¢(1) = 1. Thus ¢p(n) = n. Also, 1 = ¢p(1) = dp(nn~ 1) = p(n)Pp(n~") = ndp(n1), so that

1/n = ¢nh.

. If a and B are automorphisms of E fixing F, so are &' and 3.
. If a and b are fixed by elements of H, so are a + b,a — b, a - b, and a/b.
. It suffices to show that each member of Gal(K/F) defines a permutation on the a;’s. Let

a € Gal(K/F) and write

fo)y=cx"+c,_x""+- -+,

=c(x—a)x—a) - (x—a).

Then fix) = a(f(x)) = ¢,(x — a(a)))x — ala,)) - - - (x = a(a,)). Thus, fla,) = 0 implies
a, = a(aj) for some j, so that & permutes the a;’s.

. P%(w) = 0¥ = w.

Pw+to H=0"+o =0+ o

(@ + @ + 0°) = 0¥ + 0¥ + 0= 0 + 0 + @

Recall that A, has no subgroup of order 6. (See Example 13 in Chapter 9.)

Use Sylow’s Theorem. 3 3 3

Let » be a primitive cube root of 1. Then Q C Q(V/2) C Q(w,V/2 ) and Q(V/2 ) is not the split-
ting field of a polynomial in Q[x].

Use the lattice of Z .

Z, (Be sure you know why the group is cyclic.)

See Exercise 21 in Chapter 25.

Use Exercise 33 in Chapter 24.

Use Exercise 40 in Chapter 10.

Since K/N < G/N, for any x € G and k € K, there is a k' € K such that K'N = (xN)(kN) (xN)~' =
XNkNx—'N = xkx™'N. So, xkx~! = k'n for some n € N. And since N C K, we have k'n € K.

Chapter 33
All wish to posses knowledge, but few, comparatively speaking, are willing to pay the price.
JUVENAL
x2—x+1
OverZ,x® —1=(x— D+ D>+ 1) * + 1).Over Z,, x> + 1 = (x + 1)> and

3.

xt+ 1=+ D% So,overZ,, x® — 1 = (x + 1)% Over Z;, x> + 1 is irreducible, but x* + 1 fac-
tors into irreduciblesas (> + x +2) (x> —x — 1). So, x* — 1 = (x — D(x + 1) (x> + D +
x+2)(* —x—1.0verZ, x>+ 1= (x— 2)(x + 2),x* + 1 = (x> + 2)(x* — 2), and these last
two factors are irreducible. So, x®* — 1 = (x — 1)(x + 1) (x — 2)(x + 2)(x* + 2)(x> — 2).

. Let w be a primitive nth root of unity. We must prove ww? - - - @" = (—1)"*1. Observe that

ww? @' = @""TD2 When n is odd, 0"t 12 = (@)t 1D2 = 10+D2 = 1 When n is even,
(wnIZ)nH — (_1)n+1 = —1.

. If [F: Q] = n and F has infinitely many roots of unity, then there is no finite bound on their

multiplicative orders. Let w be a primitive mth root of unity in F such that ¢(m) > n. Then

[Q(w) : Q] = ¢(m). But F 2 Q(w) 2 Q implies [Q(w) : O] = n.
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. Let2"+ 1 =¢g.Then2 € U(g) and 2" = ¢ — 1 = —1 in U(g) implies that 12| = 2n. So, by

Lagrange’s Theorem, 2n divides |U(g)l = g — 1 = 2".

Let w be a primitive nth root of unity. Then 2nth roots of unity are +1, *w, ..., *w" !. These
are distinct, since —1 = (—w')", whereas 1 = (0 ’)".

First observe that deg ®, (x) = ¢(2n) = ¢(n) and deg ® (—x) = deg D, (x) = ¢(n). Thus, it suf-
fices to show that every zero of ® (—x) is a zero of ®,, (x). But the fact that w is a zero of

® (—x) means that |—w!| = n, which in turn implies that lwl = 2n.

Let G = Gal(Q(w)/Q) and H| be the subgroup of G of order 2 that fixes cos(zf). Then, by
induction, G/H| has a series of subgroups H/H, C H/H, C -+ C H/H, = G/H,, so that

|H, /H, : H/H | = 2. Now observe that |H__/H, : H/H | = |H,_/H.

Instead, prove that CDn(x)(Dpn(x) = ® (x”). Since both sides are monic and have degree p¢(n), it
suffices to show that every zero of (I)n(x)CDPn(x) is a zero of @ (x). If w is a zero of ® (x), then
lwl = n. By Theorem 4.2, lw”| = n also. Thus,  is a zero of ® (x”). If w is a zero of <I>pn(x), then
lwl = pn and therefore lw?l = n.

Use Theorem 33.4 and Theorem 32.1.

wshooswloosw?

Supplementary Exercises for Chapters 24-33

For those who keep trying, failure is temporary.

[S=Y
- o N

15.

17.

19.

21.
23.

FRANK TYGER

V4

6
. Let IGl = 315 and let H be a Sylow 3-subgroup and K a Sylow 5-subgroup. If H <] G, then

HK = 45.1f H is not normal, then by Sylow’s Third Theorem, |G/N(H)! = 7, so that IN(H)| = 45.

. Observe that K C N(H) implies that HK is a group of order 245. Now, use Sylow’s Third Theorem.

Note that gKg~! C gHg ' = H. Now use the corollary to Sylow’s Third Theorem.

. Use the same proof as for Exercise 55 in Chapter 9.
. Since n, = 8, we know by the Embedding Theorem (Chapter 25) that G = A,. But A, does not

have an element of order 21.

. Let G be a non-Abelian group of order 105. By Theorem 9.3, G/Z(G) is not cyclic. So IZ(G)! # 3,

7,15, 21, or 35. This leaves only 1 or 5 for IZ(G)I. Let H, K, and L be Sylow 3-, Sylow 5-, and
Sylow 7-subgroups of G, respectively. Now, counting shows that K <I G or L < G. Thus,

IKLI = 35 and KL is a cyclic subgroup of G. But, KL has 24 elements of order 35 (since
IU(Z,5)! = 24). Thus, a counting argument shows that K <I G and L <1 G. Now, |HK| = 15 and
HK is a cyclic subgroup of G. Thus, HK C C(K) and KL C C(K). This means that 105 divides
IC(K)I. So K C Z(G).

o—>0

I

It suffices to show that x travels by a implies xab~! travels by a (for we may successively replace
x by xab™"). If xab~! traveled by b, then the vertex xa would appear twice in the circuit.

a. {00, 11}

b. {000, 111}

c. {0000, 1100, 1010, 1001, 0101, 0110, 0011, 1111}

d. {0000, 1100, 0011, 1111}

The mapping T': F" — {0, 1} given by T' (1) = u - v is an onto homomorphism. So |F"/Ker T'| = 2.
It follows from Exercise 18 that if C is an (n, k) linear code, then C* is an (n, n — k) linear code.
Thus, in this problem, kK = n — k. To prove the second claim, use Exercise 18, Exercise 21, the
definition of C*, and the hypothesis that C* = C.
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Addition modulo n, 7 of aring, 243
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Basis for a vector space, 347 Commutative diagram, 208
Binary Commutative operation, 32
code, 523 Commutator subgroup, 174
operation, 40 Composition of functions, 19
strings, 161 Composition factors, 420
Boolean ring, 245 Conjugacy class, 91, 403
Burnside’s Theorem, 489 Conjugate
elements, 403
Cancellation subgroups, 91, 408
property for groups, 48 Conjugation, 126
property for integral domains, 250 Constant polynomial, 295
Cauchy’s Theorem, 187, 408 Constructible number, 394
Cayley digraph, 498 Constructible regular n-gons, 566
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left, 138

representative, 138

right, 138
Crystallographic groups, 467
Crystallographic restriction, 473
Cube, rotation group of, 147
Cycle

m-, 98

notation, 98
Cyclic

group, 72

rotation group, 34

subgroup, 61
Cyclotomic

extension, 562

polynomial, 310, 562

Decoding

coset, 531

maximum-likelihood, 518

nearest neighbor, 520

parity-check matrix, 528
Degree

of a over F, 372

of an extension, 372

of a polynomial, 295

rule, 301
DeMoivre’s Theorem, 13
Derivative, 362
Determinant, 43
Diagonal of G & G, 168
Digital signatures, 165
Dihedral groups, 31, 32
Dimension of a vector space, 349
Direct product of groups

external, 155

internal, 188, 190
Direct sum

of groups, 192

of rings, 239
Dirichlet’s Theorem, 228
Discrete frieze group, 461
Distance between vectors, 524
Divides, 238, 298
Division algorithm

for F[x], 296

forZ, 3
Divisor, 3

Domain

Euclidean, 331

integral, 249

Noetherian, 330

unique factorization, 328
Doubling the cube, 393, 395
Dual code, 573

Eisenstein’s criterion, 309
Element(s)

algebraic, 370

conjugate, 403

degree of, 372

fixed by ¢, 489

idempotent, 255

identity, 31, 41, 238

inverse, 31, 41

nilpotent, 255

order of, 57

primitive, 376

square, 195

transcendental, 370
Embedding Theorem, 427
Empty word, 438
Equivalence class, 16
Equivalence relation, 16
Equivalent under group action, 487
Euclidean domain, 331
Euclid’s Lemma, 6

generalization of, 23
Euler phi-function, 79
Even permutation, 105
Exponent of a group, 175
Extension

algebraic, 370

cyclotomic, 562

degree, 372

field, 354

finite, 372

infinite, 372

simple, 370

transcendental, 370
External direct product, 155

Factor
group, 180
of a ring element, 238
ring, 263

Factor Theorem, 298



Feit-Thompson Theorem, 421, 423,
436, 497, 553
Fermat prime, 568
Fermat’s Last Theorem, 325-327
Fermat’s Little Theorem, 143
Field
algebraic closure of, 377, 378
algebrically closed, 378
definition of, 250
extension, 354
fixed, 546
Galois, 383
of quotients, 285
perfect, 364
splitting, 356
Fields Medal, 423, 430, 436, 497
Finite dimensional vector space, 349
Finite extension, 372
First Isomorphism Theorem
for groups, 207
for rings, 283
Fixed field, 546
Free group, 439
Frieze pattern, 461
Frobenius map, 289, 389
Function
composition, 19
definition of, 18
domain, 18
image under, 18
one-to-one, 19
onto, 20
range, 18
Fundamental region, 473
Fundamental Theorem
of Algebra, 378
of Arithmetic, 6
of Cyclic Groups, 77
of Field Theory, 354
of Finite Abelian Groups, 218
of Galois Theory, 550
of Group Homomorphisms, 207
of Ring Homomorphisms, 284

GAP, 109
G/Z Theorem, 186
Galois
field, 383
group, 546, 558
Gaussian integers, 241, 332
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Gauss’s Lemma, 307
Generating region of a pattern, 473
Generator(s)
of a cyclic group, 61, 72
of a group, 47
in a presentation, 441
Geometric constructions, 393
Glide-reflection, 454
nontrivial, 464
trivial, 464
Greatest common divisor, 5
Group
Abelian, 32, 41
action, 493
alternating, 106
automorphism, 131, 509
automorphism of, 130
center of, 62
color graph of a , 499
commutative, 32
composition factors, 420
crystallographic, 467
cyclic 34, 61, 72
definition, 41
dicyclic, 445, 450
dihedral, 31, 32
discrete frieze group, 461
factor, 180
finite, 57
free, 439
frieze, 461
Galois, 546, 558
general linear, 43
generator(s), 47, 61, 72, 441
Hamiltonian, 514
Heisenberg, 54
homomorphism of, 200
icosahedral, 430, 457
infinite dihedral, 446
inner automorphism, 131
integers mod n, 42
isomorphic, 123
isomorphism, 123
non-Abelian, 32, 41
octahedral, 457
order of, 57
p- 404,417
permutation, 95
presentation, 441
quarternions, 91, 196, 442
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quotient, 180
representation, 211
simple, 420
solvable, 553
space, 475

special linear, 45
symmetric, 97
symmetry, 33, 34, 453
tetrahedral, 457

of units, 243
wallpaper, 467

Half-turn, 463
Hamiltonian
circuit, 503
group, 514
path, 503
Hamming
code, 520
distance, 524
weight of a code, 524
weight of a vector, 524
Homomorphism(s)
Fundamental Theorem of, 207, 284
kernel of, 200
of a group, 200
natural, 210, 284
of aring, 280

Ideal
annihilator, 272
definition of, 262
finitely generated, 336
generated by, 263
maximal, 267
nil radical of, 272
prime, 267
principal, 263
product of, 270
proper, 262
sum of, 270
test, 262
trivial, 263
Idempotent, 255
Identity element, 31, 41, 238
Index of a subgroup, 142
Index Theorem, 426
Induction
first principle of, 13
second principle of, 14
Inner automorphism, 130

Integral domain, 249
Internal direct product, 188, 190
International standard book
number, 24
Inverse element, 31, 41
Inverse image, 204
Inversion, 135
Irreducibility tests, 306, 308
Irreducible element, 322
Irreducible polynomial, 305
ISBN, 24
Isometry, 453
Isomorphism(s)
class, 218
First Theorem for groups, 207
First Theorem for rings, 283
of groups, 123
of rings, 280
Second Theorem for
groups, 214
Second Theorem for rings, 341
Third Theorem for groups, 214
Third Theorem for rings, 341

Kernel

of a homomorphism, 200

of a linear transformation, 351
Key, 162
Kronecker’s Theorem, 354

Lagrange’s Theorem 141
Latin square, 53
Lattice
diagram, 80
of points, 473
unit, 473
Leading coefficient, 295
Least common multiple, 6
Left regular representation, 127
Line in F, 394
Linear
code, 523
combination, 347
transformation, 351
Linearly dependent vectors, 347
Linearly independent vectors, 347

Mathematical induction
First Principle, 13
Second Principle, 14

Mapping, 18



Matrix

addition, 42

determinant of, 43

multiplication, 43

standard generator, 526
Maximal,

ideal, 267

subgroup, 232
Maximum-likelihood decoding, 518
Measure, 331
Minimal polynomial, 371
Mirror, 454
Mod p Irreducibility Test, 308
Modular arithmetic, 7
Monic polynomial, 295
Monster, 424, 556
Multiple, 3
Multiple zeros, 363
Multiplication modulo n, 7
Multiplicity of a zero, 298

Natural homomorphism, 210, 281, 284
Natural mapping, 208

N/C Theorem, 209
Nearest-neighbor decoding, 520
Nilpotent element, 255

Nil radical, 272

Noetherian domain, 330

Norm, 323

Normal subgroup, 178

Normal Subgroup Test, 179
Normalizer, 91

0Odd permutation, 105
Operation

associative, 41

binary, 40

commutative, 32

preserving mapping, 123

table, 31
Opposite isometry, 454
Orbit of a point, 145
Orbit-Stabilizer Theorem, 146
Order

or a group, 57

of an element, 57
Orthogonality Relation, 530

PID, 299
Parity-check matrix, 528

INDEX OF TERMS

Partition
of aset, 17
of an integer, 219
Perfect field, 364
Permutation
definition of, 95
even, 105
group, 95
odd, 105
p-group 404, 417
Phi-function, Euler, 79
Plane of F, 394
Plane symmetry, 33
Polynomial(s)
alternating, 106
constant, 295
content of, 306
cyclotomic, 310, 562
degree of, 295
derivative of, 362
Galois group of, 558
irreducible, 305
leading coefficient of, 295
minimal, 371
monic, 295
primitive, 306
reducible, 305
relatively prime, 303
ring of, 293
splits, 356
symmetric, 106
zero of, 298
Prime
element of a domain, 322
ideal, 267
integer, 3
relatively, 5, 303
subfield, 285
Primitive
element, 376
Element Theorem, 375
nth root of unity 299, 562
polynomial, 306
Principal ideal domain
271,299
Principal ideal ring, 290
Projection, 212
Proper ideal, 262
Proper subgroup, 58
Pullback, 204

A49
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Quaternions, 91, 196, 442
Quotient, 4, 297

Quotient group, 180
Quotients, field of, 285

Range, 18
Rational Root Theorem, 318
Reducible polynomial, 305
Reflection, 34, 454
Relation
equivalence, 16
in a presentation, 441
Relatively prime, 5, 303
Remainder, 4, 297
Remainder Theorem, 298
Ring(s)
Boolean, 245
center of, 243
characteristic of, 252
commutative, 238
definition of, 237
direct sum of, 239
factor, 263
homomorphism of, 280
isomorphism of, 280
of polynomials, 293
with unity, 238
RSA public encryption, 164
Rubik’s cube, 110

Scalar, 345

Scalar multiplication, 345
Self dual code, 573
Sicherman dice, 315

Simple extension, 370
Simple group, 420
Socks-Shoes Property, 50
Solvable by radicals, 552
Solvable group, 553
Spanning set, 347

Splitting field, 356

Squaring the circle, 393, 396
Stabilizer of a point, 115, 145
Standard array, 531

Standard generator matrix, 526

Subcode, 537

Subfield Test, 256

Subgroup(s)
centralizer, 66
characteristic, 174

commutator, 174

conjugate, 91, 408

cyclic, 61

definition of, 58

diagonal, 168

Finite Test, 61

generated by a, 61

index of, 142

lattice, 80

maximal, 232

nontrivial, 58

normal, 178

One-Step Test, 59

proper, 58

Sylow p-, 407

torsion, 92

trivial, 58

Two-Step Test, 60
Subring

definition of, 240

Test, 240

Trivial, 241
Subspace, 346
Subspace spanned by vectors, 347
Subspace Test, 349
Sylow p-subgroup, 407
Sylow test for nonsimplicity, 425
Sylow Theorems, 406, 408, 409
Symmetric group, 97
Symmetries of a square, 29
Symmetry group, 33, 34, 453
Syndrome of a vector, 533
Systematic code, 526

Torsion subgroup, 92
Transcendental element, 370
Transcendental extension, 370
Translation, 45, 454
Transposition, 103

Trisecting an angle, 393, 396

UFD, 328
Unique factorization domain, 328
Unique factorization theorem

for a PID, 329

for D[x], 334

for F[x], 331

for Z, 6

for Z[x], 313

in a Euclidean domain, 333



Unity, 238

Universal Factor Group Property,
440

Universal Mapping Property, 439

Universal Product Code, 9

Vector, 345

Vector space
basis of, 347
definition of, 345
dimension of, 349
finite dimensional, 349
infinite dimensional, 349
spanned by a set, 347
trivial, 349

Vertex of a graph, 498
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Wallpaper groups, 467
Weight of a vector, 524
Weighting vector, 10
Weird dice, 315
Well-defined function, 201
Well-ordering principle, 3
Word

code, 520, 523

empty, 438

in a group, 438

Zero
multiple, 363
multiplicity of, 298
of a polynomial, 298
Zero-divisor, 249
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Essential Theorems in Abstract Algebra

Theorem 3.1 One-Step Subgroup Test
A nonempty subset H of a group G is a subgroup of G if ab~! is in H whenever a and b are in H.

Theorem 4.3 Fundamental Theorem of Cyclic Groups
Every subgroup of a cyclic group is cyclic. If [{a)| = n, then for each positive divisor k of n, {a) has
exactly one subgroup of order k and no others.

Theorem 7.1 Lagrange’s Theorem
In a finite group the order of a subgroup divides the order of the group.

Theorem 9.1 Normal Subgroup Test
A subgroup H of G is normal in G if and only if xHx ' C H for all x in G.

Theorem 10.3 First Isomorphism Theorem
If ¢ is a group homomorphism from G to a group, then G/Ker ¢ =~ ¢(G).

Theorem 11.1 Fundamental Theorem of Finite Abelian Groups
Every finite Abelian group is a direct product of cyclic groups of prime-power order.

Theorem 12.3 Subring Test
A nonempty subset S of aring R is a subring if @ — b and ab are in S whenever a and b are in S.

Theorem 13.4 Characteristic of an Integral Domain
The characteristic of an integral domain is O or prime.

Theorem 14.1 Ideal Test
A nonempty subset A of aring R is an ideal if « — b € A whenever a and b are in A; and ra and ar
are in A whenevera € A and r ER.

Theorem 14.4 R/A is a Field if and only if A is Maximal
Let R be a communitive ring with unity and let A be an ideal of R. Then R/A is a field if and only if
A is maximal.

Theorem 15.3 First Isomorphism Theorem for Rings
If ¢ is a ring homomorphism from R to a ring, then R/Ker ¢ =~ ¢(R).

Corollary 1 of Theorem 17.5 F[x]/(p(x)) Is a Field
Let F be a field and p(x) an irreducible polynomial over F. Then F[x]/{p(x)) is a field.

Theorem 21.5[K: F] = [K: E]|[E : F]

If K is a finite extension field of the field E and E is a finite extension field of the field F, then
[K:F]=[K:E|E:F].

Theorem 22.2 Structure of Finite Fields

The set of nonzero elements of a finite field is a cyclic group under multiplication.

Theorem 24.3 Sylow’s First Theorem
Let G be a finite group and p a prime. If p* divides |G|, then G has a subgroup of order p*.

Theorem 24.5 Sylow’s Third Theorem
The number of Sylow p-subgroups of G is equal to 1 modulo p and divides |G|. Furthermore, any
two Sylow p-subgroups of G are conjugate.



Cayley Tables

Cayley Table for the Dihedral Group of Order 6

Ry Riz Roso F F' F"
Ry Ry Ry Rago F F' F"
Ry Ry Ry Ry F' F" F
Royo Royo Ry Ry F" F F
F F F" F' Ry Roso Ry
F' F' F F" Ring Ry Ry
F" F" F F Ry Ry Ry

Ry Ryg Rigo Ry7o H v D D'
Ry Ry Rqo Rigo Ra70 H 14 D D’
Rqo Rqo Rigo Ra70 Ry D’ D H 14
Rigo Rigo Ra70 Ry Ry 14 H D’ D
Ry70 Ry70 Ry Ry Rigo D D’ 14 H
H H D 1% D’ Ry Rigo Ry Ra70
% 1% D’ H D Ry Ry Ry70 Ryg
D D 14 2 H Ry Ry Ry Rig0
D' D’ H D 14 Rogg R>79 Rigo Ry
D v D,
S S B
/ | N



Notations

(The number after the item indicates the page where the notation is defined.)

SET THEORY NiesSi
UierSi
[a]

sl

SPECIAL SETS z

FUNCTIONS

AND ARITHMETIC tls
tts

gcd(a, b)

lem(a, b)
P(a)

¢:A—>B

g ap

ALGEBRAIC SYSTEMS D,

D,
e
Zy

detA
U(n)

intersection of sets S;, i € 1

union of sets S;, i € [

{x € S| x ~ a}, equivalence class of S containing a, 16
number of elements in the set of S

integers, additive groups of integers, ring of integers
rational numbers, field of rational numbers
multiplicative group of positive rational numbers
set of nonzero elements of F'

real numbers, field of real numbers

multiplicative group of positive real numbers
complex numbers

the inverse of the function f

tdivides s, 3

t does not divide s, 3

greatest common divisor of the integers a and b, 5
least common multiple of the integers a and b, 6
image of a under ¢, 18

mapping of A to B, 18

composite function, 19

group of symmetries of a square, dihedral group of
order 8, 31

dihedral group of order 2n, 32

identity element, 41

group {0, 1,...,n — 1} under addition modulo 7, 42
the determinant of A, 43

group of units modulo n (that is, the set of integers
less than n and relatively prime to n under multiplica-
tion modulo n), 44

{(ay,ay,...,a,) |ay,ay,...,a, ER} 45

group of 2 X 2 matrices over F with

determinant 1, 46

2 X 2 matrices of nonzero determinants with coeffi-
cients from the field F (the general linear group), 46
multiplicative inverse of g, 49

additive inverse of g, 49

order of the group G, 57

order of the element g, 57

subgroup inclusion, 58

subgroup H # G, 58

{a" | n € Z}, cyclic group generated by a, 61

{a € G| ax = xa for all x in G}, the center of G, 62



G=G
bq
Aut(G)
Inn(G)
aH
aHa™!
|G:H|
stabg (i)

orbg(7)

GDG,D---DG,
Uin)

G

HG

G/H

HK

HXK

H X HyX -~ XH,
Ker ¢

$7'(g")

¢ (K)

Z|x]

M2)

RI®R,D--- DR,
nZ

Z[i]

U(R)

7,li]

char R

(@)
,ay)
RIA
A+ B
AB
Ann(A)
N(A)
F(x)
R[x]

(ay,a, . ..

{g € G| ga = ag}, the centralizer of a in G, 64

{x € G|xh = hxforall h € H}, the centralizer

of H, 66

Euler phi function of n, 79

{x € G|xHx"! = H} = {x € G| Hx = xH}, the nor-
malizer of H in G, 91

conjugacy class of a, 91

(¢"|gE€G},92

group of one-to-one functions from
{1,2,...,n}toitself, 97

alternating group of degree n, 106

G and G are isomorphic, 123

mapping given by ¢,(x) = axa~! for all x, 130
group of automorphisms of the group G, 131

group of inner automorphisms of G, 131

{ah|h € H}, 138

{aha™'1h € H}, 138

the index of Hin G, 142

{¢ € G| ¢(i) = i}, the stabilizer of i under the per-
mutation group G, 145

{¢d(i) | ¢ € G}, the orbit of i under the
permutation group G, 145

external direct product of groups Gy, G, . .
{x€ Um)|xmod k = 1}, 159
commutator subgroup, 174

H is a normal subgroup of G, 178

factor group, 180

{hk|h € H,k € K}, 188

internal direct product of H and K, 188
internal direct product of Hy, . . ., H,, 190
kernel of the homomorphism ¢, 200
inverse image of g’ under ¢, 202

.,G,, 155

inverse image of K under ¢, 203

ring of polynomials with integer coefficients, 238
ring of all 2 X 2 matrices with integer entries, 238
direct sum of rings, 239

ring of multiples of n, 241

ring of Gaussian integers, 241

group of units of the ring R, 243

ring of Gaussian integers modulo 7, 245
characteristic of R, 252

principal ideal generated by a, 263

ideal generated by ay, ay, . . ., a,, 263

factor ring, 263

sum of ideals A and B, 270

product of ideals A and B, 270

annihilator of A, 272

nil radical of A, 272

field of quotients of F[x], 286

ring of polynomials over R, 293



deg f(x)

D,(x)

M5(Q)

<V17 Vv Vn>

F(al, az, ... ,a”)

£

[E:F]

GE(p")

GF(p™*

cl(a)

Pr(G)

”p

W(S)

<al,(12,...,an wy :sz...:Wt>
0,

O
D,
fix(¢h)
Cay(S:G)

k*(a,b,...,c)
(n, k)
F”l

d(u, v)
wt(u)

Gal(E/F)

degree of the polynomial, 295

pth cyclotomic polynomial, 310

ring of 2 X 2 matrices over Q, 346

subspace spanned by v, v,, ..., v,, 347

extension of F by a,, ay, . . ., a,, 357

the derivative of f(x), 362

degree of E over F, 372

Galois field of order p", 383

nonzero elements of GF(p"), 384

{xax~'| x € G}, the conjugacy class of a, 403
probability that two elements from G commute, 405
the number of Sylow p-subgroups of a group, 410
set of all words from S, 438
group with generators ay, ay, . . .
=w, =" =w,,441
quarternions, 445

dicyclic group of order 12, 445
infinite dihedral group, 446

{i € §| (i) = i}, elements fixed by ¢, 489
Cayley digraph of the group G with generating set S,
498

concatenation of k copies of (a, b, . . ., ¢), 506
linear code, k-dimensional subspace of F", 523
FOF® - - - ®F, direct product of n copies of the
field F, 523

Hamming distance between vectors u and v, 524
the number of nonzero components of the vector u
(the Hamming weight of u), 524

the automorphism group of E fixing F, 546

fixed field of H, 546

nth cyclotomic polynomial, 562

dual code of a code C, 573

, a, and relations w
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