Data Structures and Algorithms

(CS210A)

Semester I - 2014-15

Lecture 11:

- Queue : a new data Structure :
- Finding shortest route in a grid in presence of obstacles

Queue: a new data structure

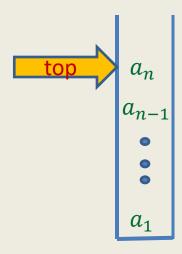
Data Structure Queue:

Mathematical Modeling of Queue

Implementation of Queue using arrays

Stack

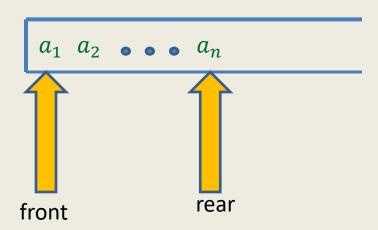
A <u>special kind</u> of list where all operations (insertion, deletion, query) take place at <u>one end</u> only, called the **top**.



Behavior of Stack: Last in First out (LIFO)

Queue: a new data structure

A special kind of list based on "First in First Out (FIFO)" strategy.



Operations on a Queue

Query Operations

- IsEmpty(Q): determine if Q is an empty queue.
- Front(Q): returns the element at the front position of the queue.

```
Example: If Q is a_1, a_2, ..., a_n, then Front(Q) returns a_1
```

Update Operations

- CreateEmptyQueue(Q): Create an empty queue.
- Enqueue(x,Q): insert x at the end of the queue Q.

```
Example: If Q is a_1, a_2,..., a_n, then after Enqueue(x,Q), queue Q becomes
```

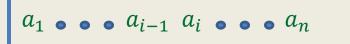
$$a_1, a_2, ..., a_n, \mathbf{x}$$

Dequeue(Q): return element from the front of the queue Q and delete it.

Example: If **Q** is a_1 , a_2 ,..., a_n , then after **Dequeue**(**Q**), queue **Q** becomes

$$a_2$$
,..., a_n

How to access ith element from the front?



To access ith element, we must perform dequeue (hence delete) the first i-1 elements from the queue.

An Important point you must remember for every data structure

You can define any **new** operation only in terms of the primitive operations of the data structures defined during its modeling.

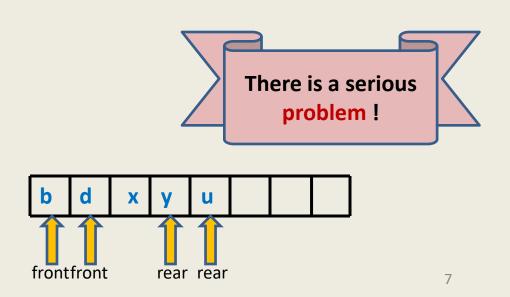
Implementation of Queue using array

Assumption: At any moment of time, the number of elements in queue is n.

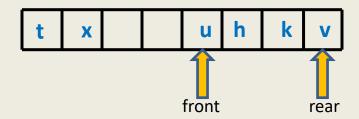
Keep an array of Q size n, and two variables front and rear.

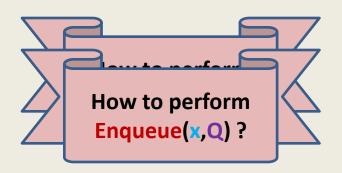
- front: the position of the first element of the queue in the array.
- rear: the position of the last element of the queue in the array.

```
Enqueue(x,Q)
{    rear ← rear+1;
    Q[rear]←x
}
Dequeue(Q)
{    x← Q[front];
    front← front+1;
    return x;}
```



Implementation of Queue using array





Implementation of Queue using array

```
Enqueue(x,Q)
            rear+1 mod n;
 Q[rear] \leftarrow x
Dequeue(Q)
     x \leftarrow Q[front];
  front←
           (front+1) mod n;
  return x;
IsEmpty(Q)
     Do it as an exercise
```

Shortest route in a grid with obstacles

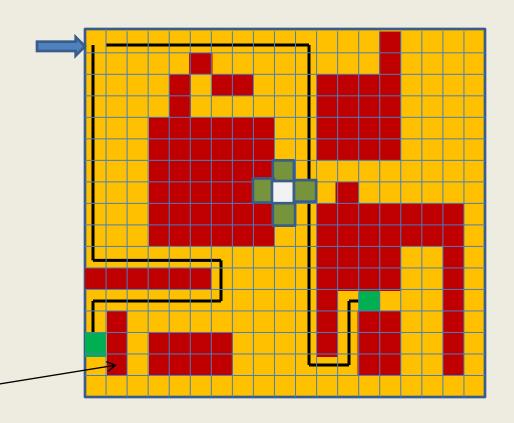
Shortest route in a grid

From a cell in the grid, we can move to any of its <u>neighboring</u> cell in one <u>step</u>.

Problem: From top left corner, find shortest route to each cell avoiding obstacles.

Input: a Boolean matrix **G** representing the grid such that

G[i,j] = 0 if (i,j) is an obstacle, and 1 otherwise.

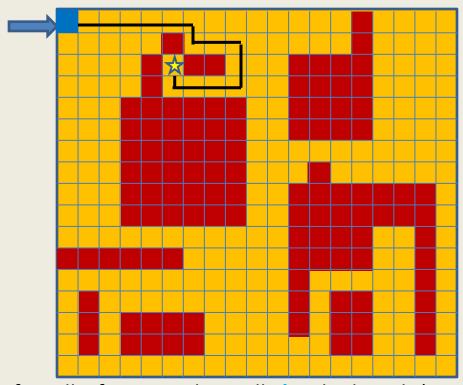


Step 1:

Realizing the nontriviality of the problem

Shortest route in a grid

nontriviality of the problem

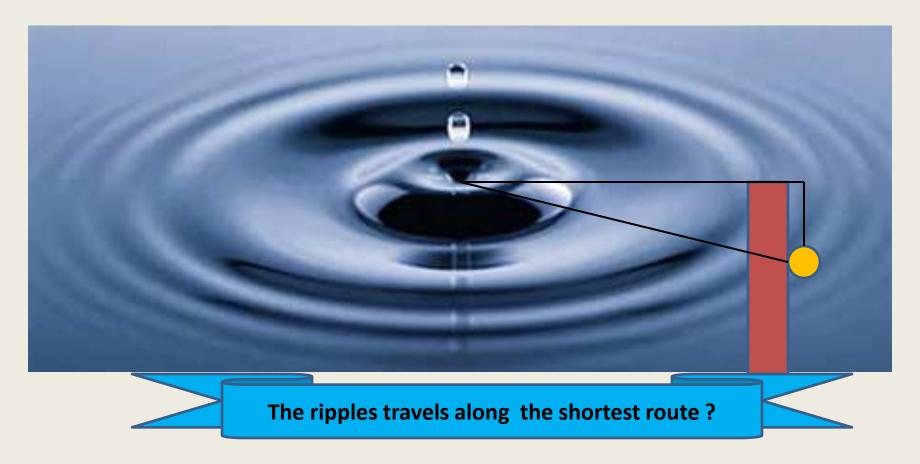


Definition: Distance of a cell c from another cell c' is the length (number of steps) of the shortest route between c and c'.

We shall design algorithm for computing distance of each cell from the start-cell.

As an exercise, you should extend it to a data structure for retrieving shortest route.

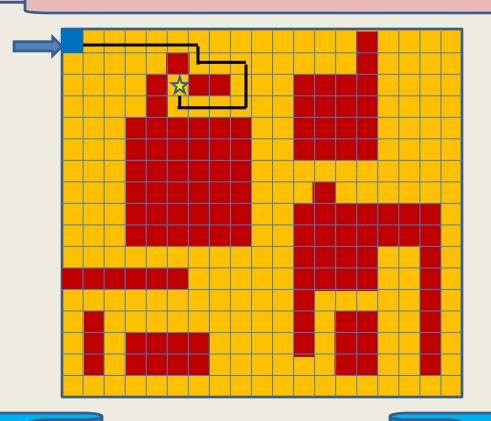
Get inspiration from nature



Shortest route in a grid

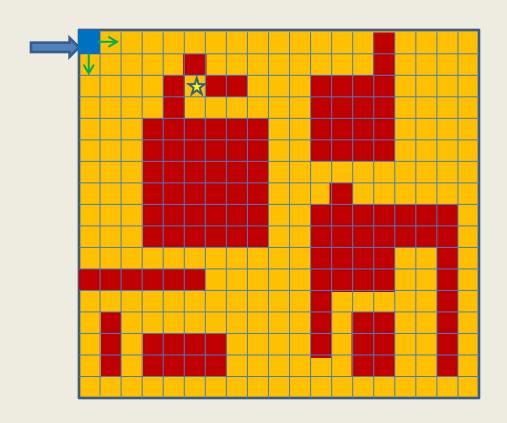
nontriviality of the problem

How to find the shortest route to ★ in the grid?

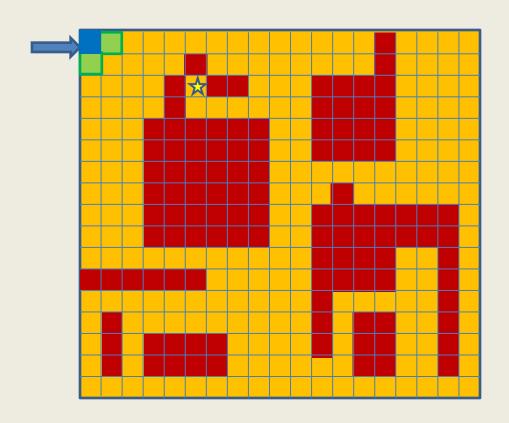


Create a ripple at the start cell and trace the path it takes to ★

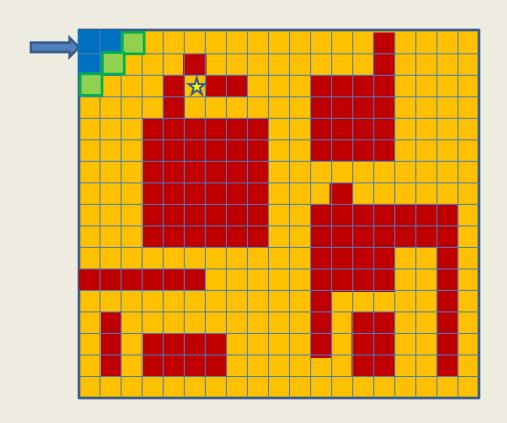
propagation of a ripple from the start cell



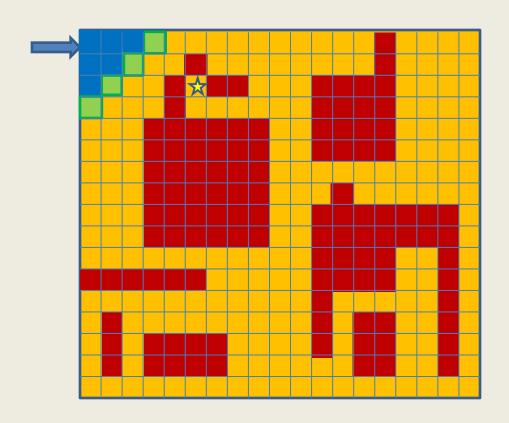
ripple reaches cells at distance 1 in step 1



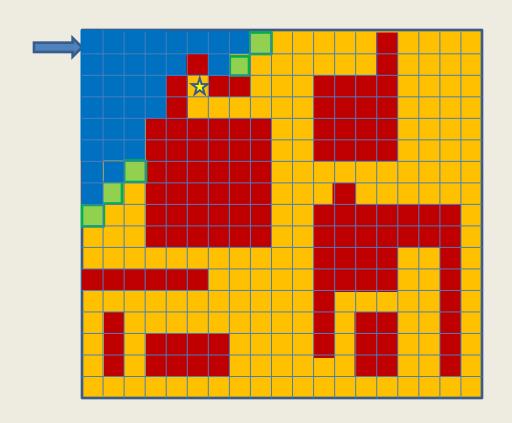
ripple reaches cells at distance 2 in step 2



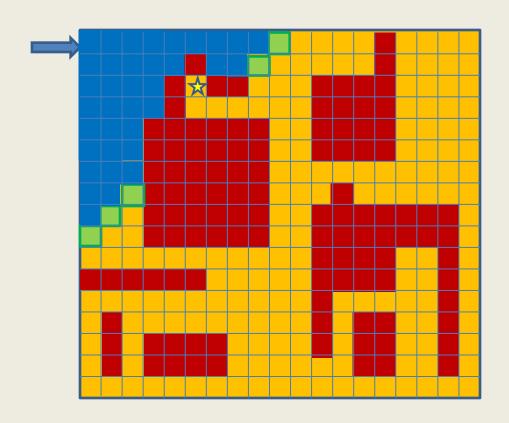
ripple reaches cells at distance 3 in step 3



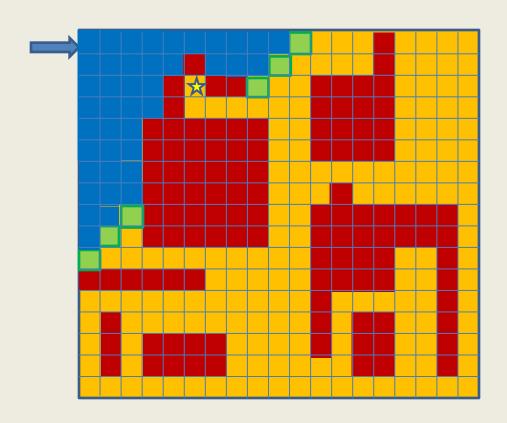
ripple reaches cells at distance 8 in step 8



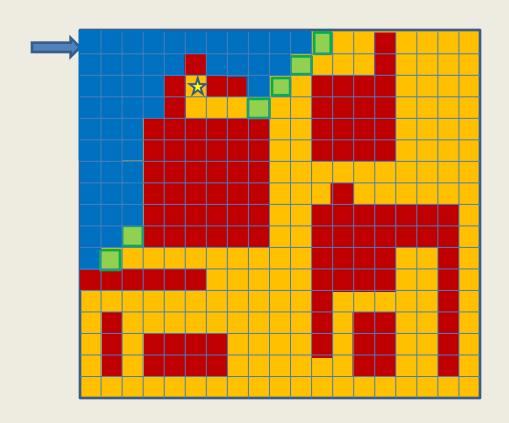
ripple reaches cells at distance 9 in step 9



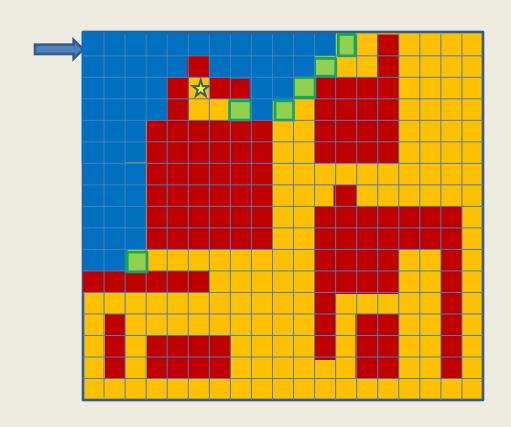
ripple reaches cells at distance 10 in step 10



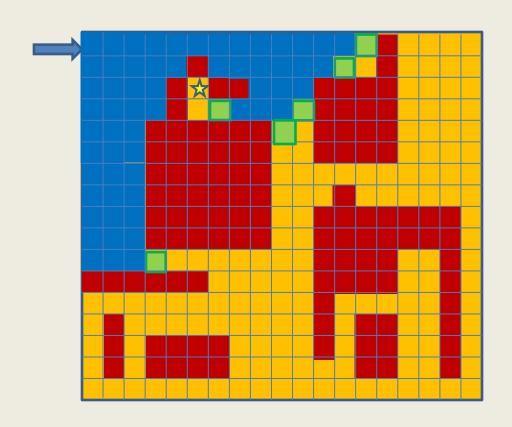
ripple reaches cells at distance 11 in step 11



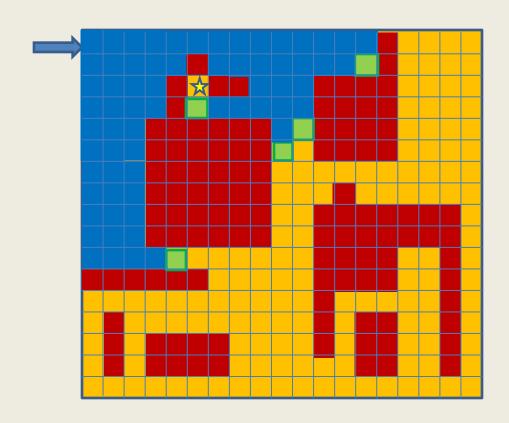
ripple reaches cells at distance 12 in step 12



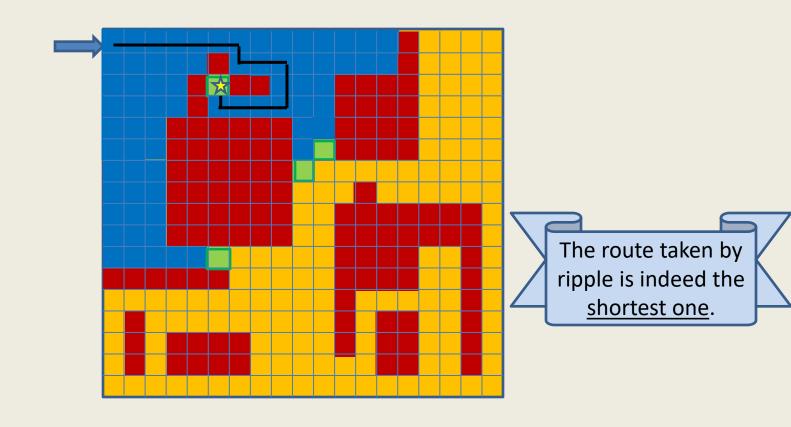
ripple reaches cells at distance 13 in step 13



ripple reaches cells at distance 14 in step 14



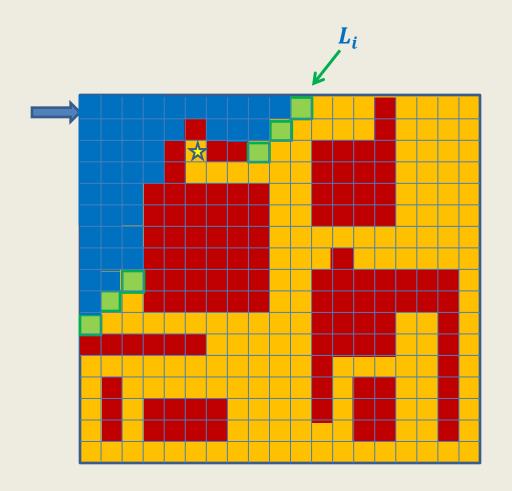
ripple reaches cells at distance 15 in step 15



Step 2: Designing algorithm for distances in grid

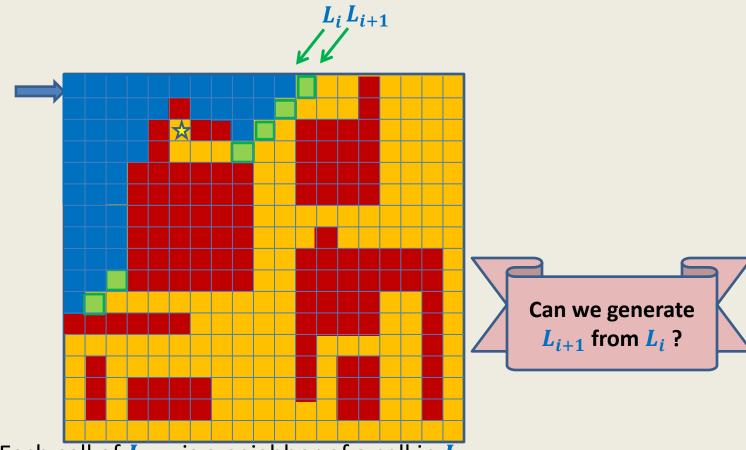
(using an insight into propagation of ripple)

A snapshot of ripple after *i* steps



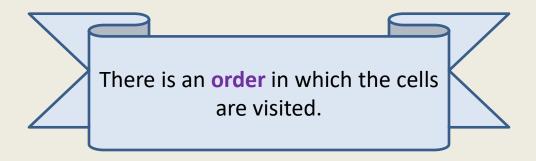
 L_i : the cells of the grid at distance i from the starting cell.

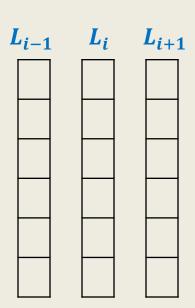
A snapshot of the ripple after i + 1 steps

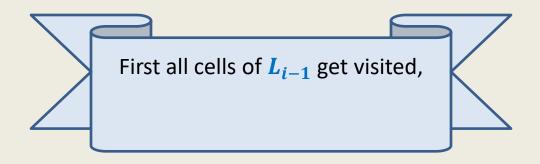


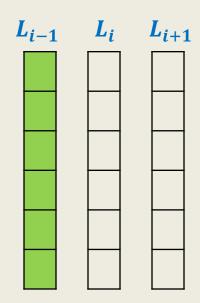
Observation: Each cell of L_{i+1} is a neighbor of a cell in L_i .

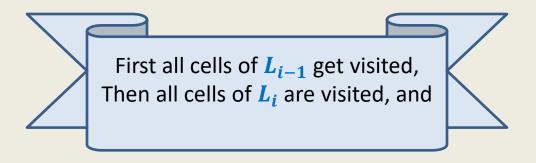
But every neighbor of L_i may be a cell of L_{i-1} or L_i or L_{i+1} .

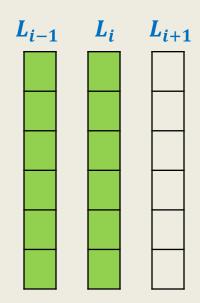


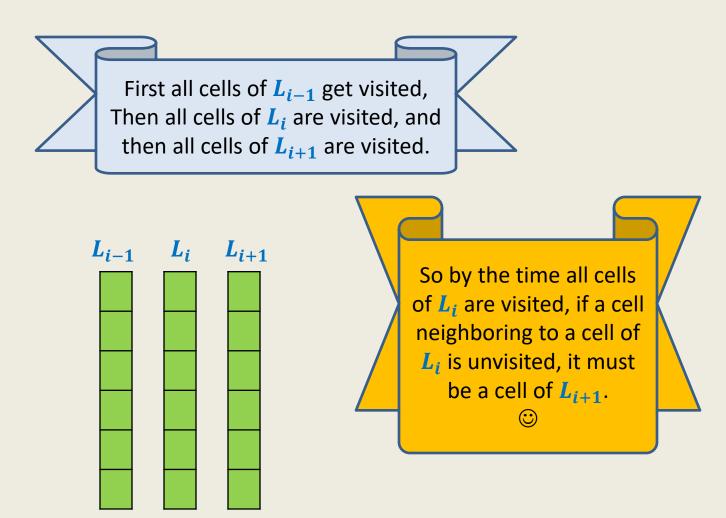












Algorithm to compute L_{i+1} if we know L_i

```
Compute-next-layer(G, L_i)
  CreateEmptyList(L_{i+1});
  For each cell c in L<sub>i</sub>
       For each neighbor b of c which is <u>not</u> an obstacle
             if (Distance[b] = \infty)
                    Insert(b, L_{i+1});
                    Distance[b] \leftarrow i+1;
  return L_{i+1};
```

The first (not so elegant) algorithm

(to compute distance to all cells in the grid)

```
Distance-to-all-cells(G, c_0)  
{ L_0 \leftarrow \{c_0\};  
For(i = 0 to ??)  
L_{i+1} \leftarrow \text{Compute-next-layer}(G, L_i); }
```

The algorithm is not elegant because of

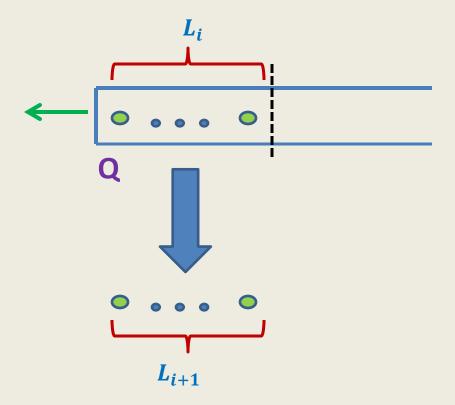
So many temporary lists that get created.

How to transform the algorithm to an elegant algorithm?

Key points we have observed:

- We can compute cells at distance i+1 if we know all cells up to distance i.
- Therefore, we need a mechanism to enumerate the cells of the grid in non-decreasing order of <u>distances</u> from the start cell.

Keep a queue Q



An elegant algorithm

(to compute distance to all cells in the grid)

```
Distance-to-all-cells(G, C_0)
  CreateEmptyQueue(Q);
  Distance(\mathbf{c}_0) \leftarrow 0;
  Enqueue(c_0,Q);
  While(
             Not IsEmptyQueue(Q)
           c ← Dequeue(Q);
           For each neighbor b of c which is not an obstacle
                  if (Distance(b) = \infty)
                         Distance(b) ←
                                              Distance(c) +1
                         Enqueue(b, Q);
```

Proof of correctness of algorithm

Question: What is to be proved?

Answer: At the end of the algorithm,

Distance[c] = the distance of cell c from the starting cell in the grid.

Question: How to prove?

Answer: By the principle of mathematical induction on

the distance from the starting cell.

Inductive assertion:

P(i): The algorithm correctly computes distance to all cells at distance *i* from the starting cell.

As an exercise, try to prove **P(i)** by induction on *i*.