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(CS210A)
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Lecture 16:

Height balanced BST
* Red-black trees




Terminologies

Full binary tree:

A binary tree where every internal node has exactly two children.

This node has exactly one child. So
the current tree is not a full binary

tree.

This is now a full
binary tree.




Binary Search Tree

Definition: A Binary Tree T storing values is said to be Binary Search Tree

if foreach nodevinT

e Ifleft(v) <> NULL, then value(v) > value of every node in subtree(left(v)).
* Ifright(v)<>NULL, then value(v) < value of every node in subtree(right(v)).



Binary Search Tree: a slight change

This transformation is merely to help us in

root the analysis of red-black trees. It does not
l' cause any extra overhead of space. All
NULL nodes correspond to a single node

in memory.

% %
Henceforth, for each NULL child link of a node in a BST, we create a NULL nod}

= 1. Each leaf node in a BST will be a NULL node.
2. the BST will always be a full binary tree.




A fact we noticed in our previous discussion on
BSTs (Lecture 8)

Time complexity of Search(T,x) and Insert(T,x) in a Binary Search Tree T = O(Height(T))

Height(T):

The maximum number of nodes on any path from root to a leaf node.



Searching and inserting in a perfectly balanced BST

T
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Searching and inserting in a skewed BST on 1 nodes

T2

E O(n) time !! g




Nearly balanced Binary Search Tree

Terminology:

size of a binary tree is the number of nodes present in it.

Definition: A binary search tree T is said to be nearly balanced at node v, if

size(left(v)) SZ size(v)
and

size(right(v)) SZ size(v)

Definition: A binary search tree T is said to be nearly balanced if
it is nearly balanced at each node.




Nearly balanced Binary Search Tree

e Search(T,x) operation is the same.

* Modify Insert(T,x) operation as follows:

— Carry out normal insert and update the size fields of nodes traversed.
— If BST T is ceases to be nearly imbalanced at any node v,

transform subtree(v) into perfectly balanced BST.

=» O(log n) time for search

= O(n log n) time for n insertions
Disadvantages:

 How to handle deletions ?

* Some insertions may take O(n) time ®

This fact will be proved soon.
However, you would have
verified it experimentally

through Assignment 2




Can we achieve O(log ) time for
search/insert/delete ?

e AVLTrees [1962]

Red Black Trees [1978] _



Rotation around a node
An important tool for balancing trees

Each height balanced BST employs this tool which
is derived from the flexibility which is hidden in the
structure of a BST.

This flexibility (pointer manipulation) was
inherited from linked list ©.



Rotation around a node

Note that the tree T continues to
remain a BST even after rotation
around any node.
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Red Black Tree
A height balanced BST
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Red Black Tree

Red-Black tree is a binary search tree satisfying the following properties:

Each node is colored red or black.

Each leaf is colored black and so is the root.

Every red node will have both its children black.

[No. of black nodes on a path from root to each Ieaﬂnode is same.

black height




A binary search tree
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Can you color the
nodes to make it a
red-black tree ?
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A binary search tree
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E A Red Black Tree g
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Why is a red black tree height balanced ?

T : ared black tree
h : black height of T

What is its size ?

Question: What can be height of T ?

Answer: < 2h — 1

2h —1

Homework: Ponder over the above hint to prove that T has> 2" elements.
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Insertion in a Red Black tree

All it involves is
playing with colors ©
and rotations ©



Insertion in a red-black tree

25

Let us insert 83 into T.
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What color should
we assign to the
new node ?

We hall assign every
newly inserted node a
red color. (give reason)
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Insertion in a red-black tree

28

25 31

In order to remove the color
imbalance try flipping the colors
of parent (and uncle) of the new
node with the grandparent
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Let usinserts4a into T.
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Color imbalance

We have again are
black tree.

X
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Insertion in a red-black tree
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Insertion in a red-black tree

28

25

In order to remove the color
imbalance try flipping the colors
of parent (and uncle) of the
new node with the grandparent
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Let usinsert44a into T.

,

Color imbalance
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Insertion in a red-black tree
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Color imbalance

Do the same
trick again.

Oo
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Insertion in a red-black tree

We can color

it black.

Color imbalance is removed. But the
root is red now.

28 67
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Insertion in a red-black tree

5 po——
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Insertion in a red-black tree
summary till now ...

Let p be the newly inserted node. Assign red color to p.

Case 1: parent(p) is black
nothing needs to be done.

Case 2: parent(p) is red and uncle(p) is red,
Swap colors of parent (and uncle) with grandparent(p).
This balances the color at p but may lead to imbalance of color at

grandparent of p. So p< grandparent(p), and proceed upwards similarly.
If in this manner p becomes root, then we color it black.

Case 3: parent(p) is red and uncle(p) is black.
This is a nontrivial case. So we need some more tools ....
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Handling case 3
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Description of Case 3

* pisared colored node.
e parent(p) is also red.
* uncle(p) is black.

Without loss of generality assume: parent(p) is left child of grandparent(p).

(The case when parent(p) is right child of grandparent(p) is handled similarly.)
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Handling the case 3

two cases arise depending upon whether p is left/right child of its parent

Can you transform
Case 3.2 to
Case 3.17?

Case 3.1: % Case 3.2:
p is left child of its parent p is right child of its parent
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two cases arise depending upon whether p is left/right child of its parent

Handling the case 3

Vow!

E This is exactly Case 3.1 E

Case 3.2:
p is right child of its parent
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We need to handle only case 3.1



Handling the case 3.1

’

It has to be
black.

Canwesay O
anything about
color of node f?




Handling the case 3.1
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Handling the case 3.1

’ P

Now every node in tree 1 has one
less black node on the path to root !
We must restore it. Moreover, the
color imbalance exists even now.
What to do ?

Change color of
node d to black




Handling the case 3.1

’ P

The number of black nodes on the p
restored for tree 1. Color imbalance is
But the number of black nodes on the p

increased by one for trees 2 and 3. What to do now - ()Oo
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Color node g red




Handling the case 3.1

’

The black height is
restored for all trees.
This completes Case 3.1
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Theorem:

We can maintain red-black trees under insertion of nodes in O(log 1) time
per insert/search operation where n is the number of the nodes in the tree.

| hope you enjoyed the real fun in handling insertion in a red black tree.
How do will we handle deletion ?
This is going to be a bit more complex.
So please try on your own first before coming to the next class.
It will still involve playing with colors and rotations ©



