Data Structures and Algorithms (CS210A) Semester I – 2014-15

Lecture 19:

Red Black tree (Final lecture)

• 9 types of operations, each executed in O(log n) time !

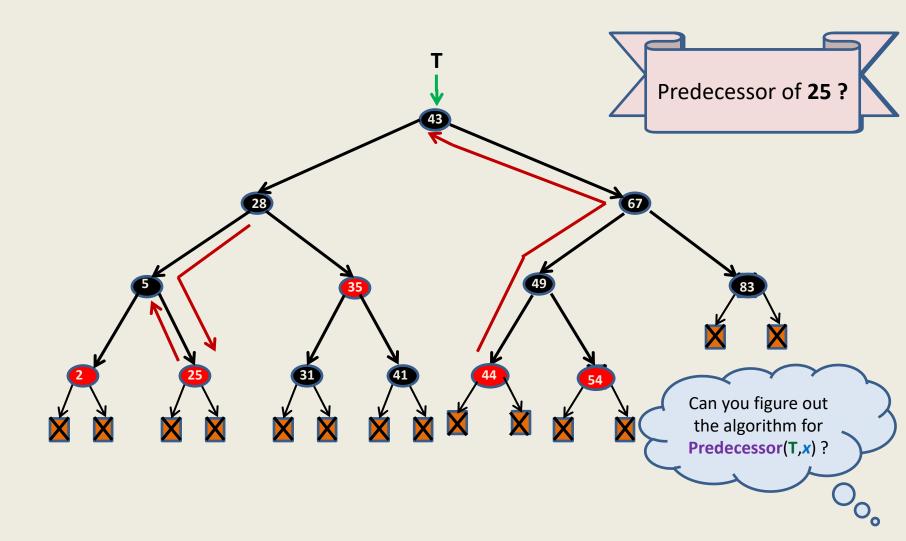
Red Black tree

(Height Balanced BST)

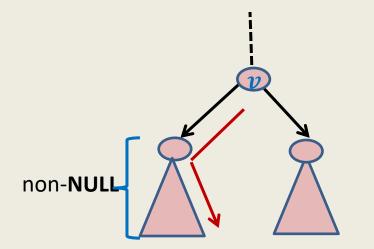
Operations you already know

- **1.** Search(**T**,*x*)
- **2.** Insert(**T**,*x*)
- **3. Delete(T**,*x*)
- 4. Min(T)
- 5. Max(T)

The largest element in **T** which is smaller than x

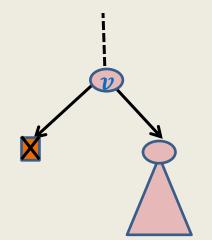


Let \boldsymbol{v} be the **node** of **T** storing value \boldsymbol{x} .



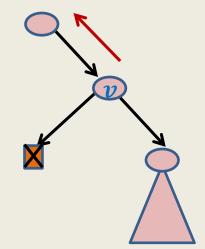
Case 1: left(v) <> NULL, then Predecessor(T,x) is Max(left(v))

Let \boldsymbol{v} be the **node** of **T** storing value \boldsymbol{x} .



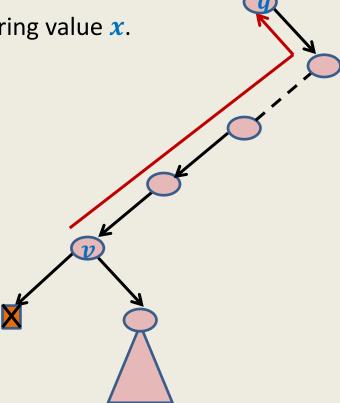
Case 2: left(v) == NULL, then Predecessor(T,x) is ?

Let \boldsymbol{v} be the **node** of **T** storing value \boldsymbol{x} .



Case 2: left(v) == NULL , and v is right child of its parent then Predecessor(T,x) is parent(v)

Let **v** be the **node** of **T** storing value **x**.



Case 3: left(v) == NULL, and v is left child of its parent then Predecessor(T,x) is ?

Predecessor(T,x)

}

```
{
   Let \boldsymbol{v} be the node of T storing value \boldsymbol{x}.
   If (left(v) <> NULL) then return Max(left(v))
   else
         if (v = right (parent(v)) return
                                                      parent(v)
         else
             while(\boldsymbol{v} = \text{left}(\text{parent}(\boldsymbol{v}))
                    v \leftarrow parent(v);
             return parent(v);
        }
```

Predecessor(T,x)

}

```
{ Let v be the node of T storing value x.
    If (left(v) <> NULL) then return Max(left(v))
    else
    { while(v = left (parent(v))
```

```
\frac{v \leftarrow \mathsf{parent}(v)}{v \leftarrow \mathsf{parent}(v)};
return \mathsf{parent}(v);
```

Homework 1: Modify the code so that it runs even when x is minimum element. Homework 2: Modify the code so that it runs even when $x \notin T$.

Successor(T,x)

The **smallest** element in **T** which is **bigger than x**

Red Black tree (Height Balanced BST)

Operations you already know

- 1. Search(T,x)
- 2. Insert(T,x)
- 3. Delete(T,x)
- 4. Min(T)
- 5. Max(T)
- 6. Predecessor(T,x)
- 7. Successor(T,x)

A NOTATION

T < T' :

every element of **T** is <u>smaller</u> than every element of **T'**.

Every operation in O(log n) time.

New operations

8. SpecialUnion(T, T'):
Given T and T' such that T < T',
compute T*=TUT'.

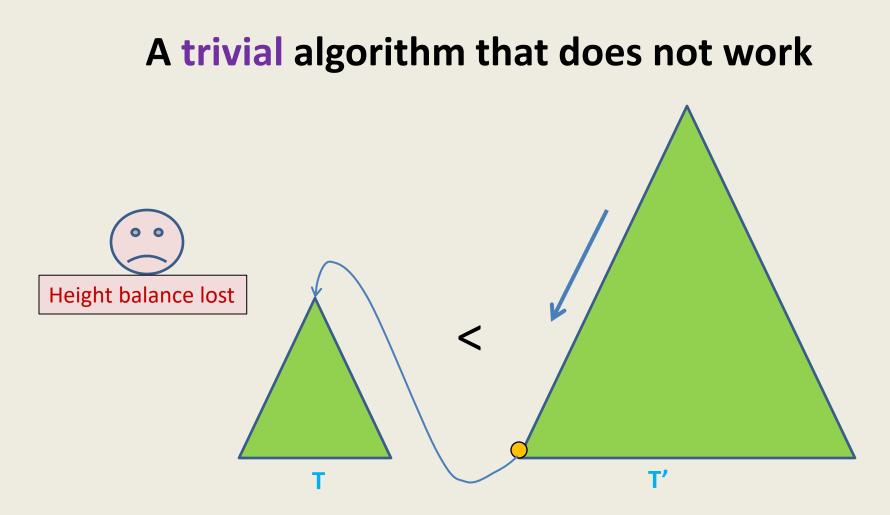
NOTE: T and **T'** don't exist after the union.

9. Split(T, x):
Split T into T' and T" such that T' < x < T".

SpecialUnion(T,T')

Remember:

every element of T is smaller than every element of T'



Time complexity: O(log n)

Towards an O(log n) time for SpecialUnion(T,T') ...

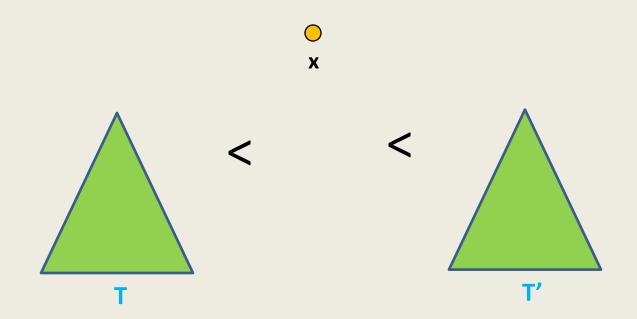
Simplifying the problem

Can we solve some special cases easily ?

• Solving the simpler version efficiently

• Extending the solution to generic version

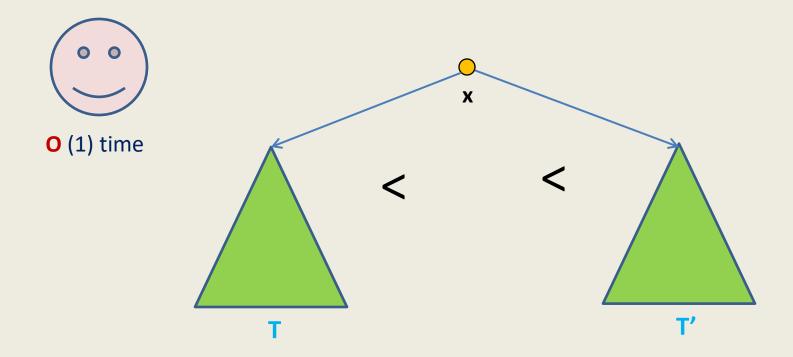
Simplifying the problem



Simplified problem:

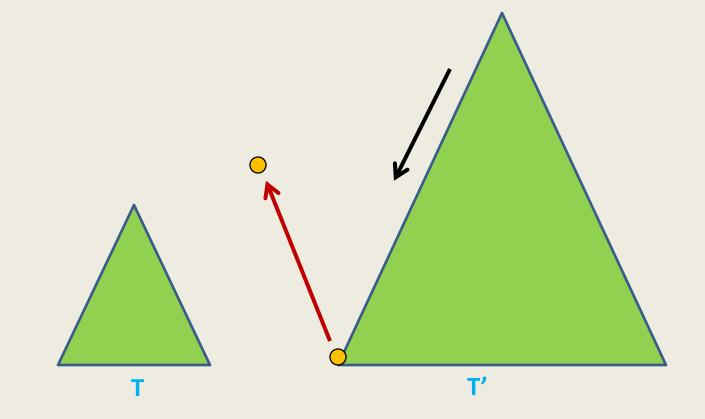
Given two trees **T**, **T'** of <u>same</u> **black height** and a key **x**, such that **T**<**x**<**T'**, transform them into a tree **T***=**T**U{**x**}U**T'**

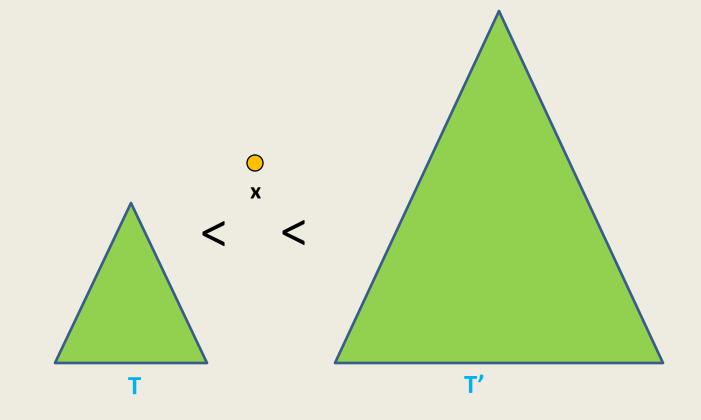
Solving the simplified problem

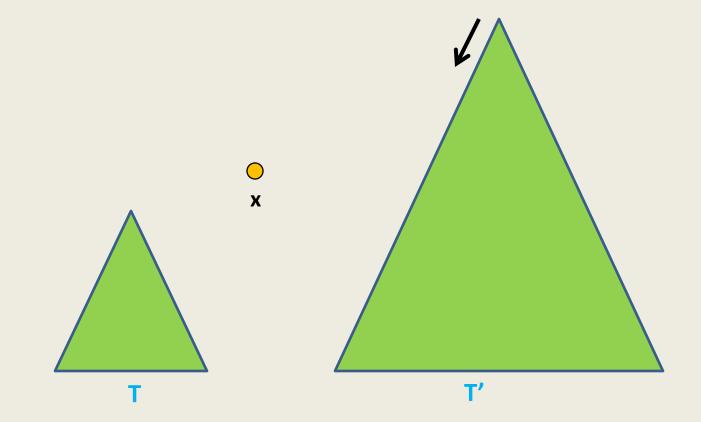


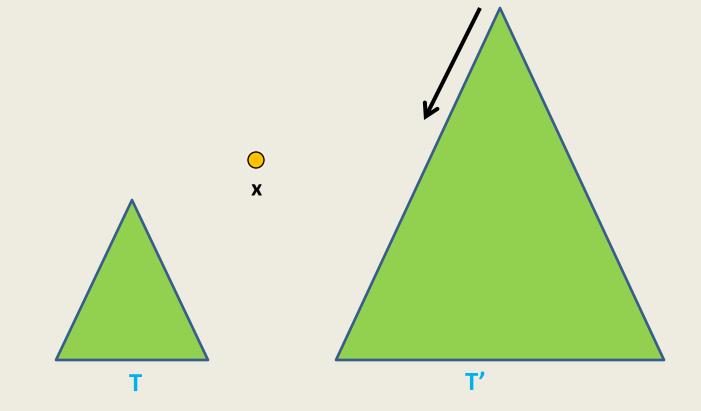
Simplified problem:

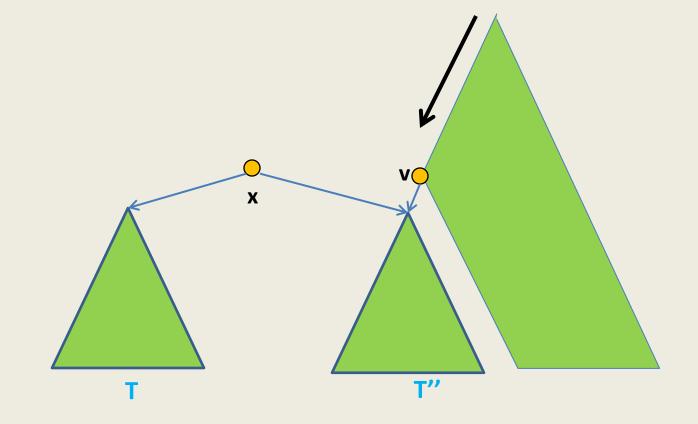
Given two trees T, T' of <u>same</u> **black height** and a key x, such that T < x < T', transform them into a tree $T^* = TU\{x\}UT'$

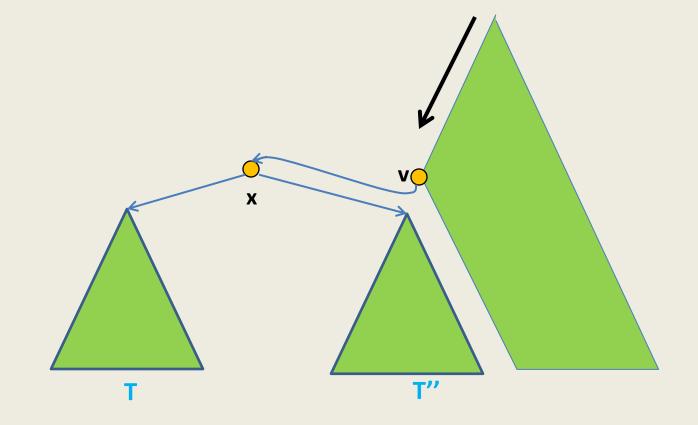












Algorithm for SpecialUnion(T,T'):

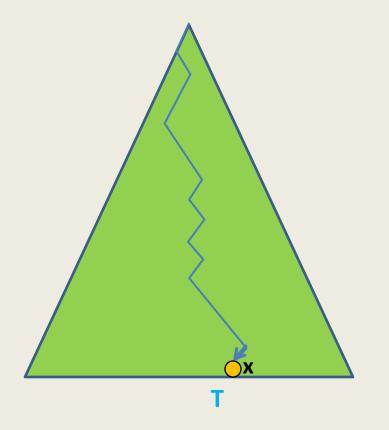
Let **black height** of **T** ≤ **black height** of **T**′

- 1. Let **x** be the node storing smallest element of **T'**.
- 2. Delete the node x from T'.
- 3. Keep following left pointer of **T'** until we reach a node **v** such that
 - 1. left(v) is black
 - 2. The subtree **T**" rooted at **Left(v)** has black height same as that of **T**
- 4. left(x) ← T;
- 5. right(x) \leftarrow T";
- 6. Color(x) ← red;
- 7. left(<mark>v) ← x</mark>;
- 8. parent(x) \leftarrow v;
- 9. If **color(v)** is **red**, remove the color imbalance

(like in the usual procedure of insertion in a **red-black** tree)

Split(T,x)

Achieving O(log n) time for Split(T,x)



- Take a scissor and cut **T** into trees starting from **x**
- Make use of **SpecialUnion** algorithm.

Find-rank(T,x)

Return the count of no. of elements in T smaller than x

A trivial algorithm for Find-rank(T,x)

