
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 19:
Red Black tree (Final lecture)

• 9 types of operations, each executed in O(log n) time !

1

Red Black tree
(Height Balanced BST)

Operations you already know

1. Search(T,𝒙)

2. Insert(T,𝒙)

3. Delete(T,𝒙)

4. Min(T)

5. Max(T)

2

Every operation in O(log 𝒏) time.

Predecessor(T,𝒙)

3

The largest element in T which is smaller than 𝒙

Predecessor(T,𝒙)

4

 T

2

28

43

67

25

5

31 41

35 49 83

54

Predecessor of 28 ? Predecessor of 44 ?

Can you figure out
the algorithm for

Predecessor(T,x) ?

44

Predecessor of 25 ?

Predecessor(T,𝒙)

Let 𝒗 be the node of T storing value 𝒙.

Case 1: left(𝒗) <> NULL , then Predecessor(T,𝒙) is ?

5

Max(left(𝒗))

non-NULL

𝒗

Predecessor(T,𝒙)

Let 𝒗 be the node of T storing value 𝒙.

Case 2: left(𝒗) == NULL , then Predecessor(T,𝒙) is ?

6

𝒗

Predecessor(T,𝒙)

Let 𝒗 be the node of T storing value 𝒙.

Case 2: left(𝒗) == NULL , and 𝒗 is right child of its parent

 then Predecessor(T,𝒙) is ?
7

𝒗

parent(𝒗)

Predecessor(T,𝒙)

Let 𝒗 be the node of T storing value 𝒙.

Case 3: left(𝒗) == NULL , and 𝒗 is left child of its parent

 then Predecessor(T,𝒙) is ?
8

𝒗

𝒒

Predecessor(T,𝒙)

Predecessor(T,𝒙)

{ Let 𝒗 be the node of T storing value 𝒙.

 If (left(𝒗) <> NULL) then return ?

 else

 if (𝒗 = right (parent(𝒗)) return ?

 else

 {

 while(𝒗 = left (parent(𝒗))

 ?

 return parent(𝒗);

 }

}

9

Max(left(𝒗))

parent(𝒗)

𝒗  parent(𝒗);

Predecessor(T,𝒙)

Predecessor(T,𝒙)

{ Let 𝒗 be the node of T storing value 𝒙.

 If (left(𝒗) <> NULL) then return ?

 else

 { while(𝒗 = left (parent(𝒗))

 ?

 return parent(𝒗);

 }

}

Homework 1: Modify the code so that it runs even when 𝒙 is minimum element.

Homework 2: Modify the code so that it runs even when 𝒙 ∉ T .

10

Max(left(𝒗))

𝒗  parent(𝒗);

Successor(T,𝒙)

11

The smallest element in T which is bigger than 𝒙

Red Black tree
(Height Balanced BST)

Operations you already know

1. Search(T,x)

2. Insert(T,x)

3. Delete(T,x)

4. Min(T)

5. Max(T)

6. Predecessor(T,x)

7. Successor(T,x)

A NOTATION

T < T’ :

every element of T is smaller than every
element of T’.

New operations

8. SpecialUnion(T, T’):

Given T and T’ such that T < T’,

compute T*=TUT’.

NOTE: T and T’ don’t exist after the union.

9. Split(T, x):

Split T into T’ and T’’ such that T’ < x < T’’.

12 Every operation in O(log n) time.

SpecialUnion(T,T’)

13

Remember:
every element of T is smaller than every element of T’

T’

A trivial algorithm that does not work

Time complexity: O(log n)

14

T

<
Height balance lost

Towards an O(log n) time for SpecialUnion(T,T’) …

• Simplifying the problem
 Can we solve some special cases easily ?

• Solving the simpler version efficiently

• Extending the solution to generic version

15

Simplifying the problem

Simplified problem:

Given two trees T, T’ of same black height and a key x, such that T<x<T’,
transform them into a tree T*=TU{x}UT’

 16

T T’

< <

x

Solving the simplified problem

Simplified problem:

Given two trees T, T’ of same black height and a key x, such that T<x<T’,
transform them into a tree T*=TU{x}UT’

 17

T

O (1) time

T’

< <

x

T’

Extending the algorithm to the generic problem

18

T

T’

Extending the algorithm to the generic problem

19

T

< <
x

T’

Extending the algorithm to the generic problem

20

T

x

T’

Extending the algorithm to the generic problem

21

T

x

T’’

Extending the algorithm to the generic problem

22

T

x
v

Extending the algorithm to the generic problem

23

T

x

T’’

v

Extending the algorithm to the generic problem

Algorithm for SpecialUnion(T,T’):

Let black height of T ≤ black height of T’

1. Let x be the node storing smallest element of T’.

2. Delete the node x from T’.

3. Keep following left pointer of T’ until we reach a node v such that

1. left(v) is black

2. The subtree T” rooted at Left(v) has black height same as that of T

4. left(x) T;

5. right(x)  T”;

6. Color(x) red;

7. left(v) x;

8. parent(x) v;

9. If color(v) is red, remove the color imbalance

 (like in the usual procedure of insertion in a red-black tree)

 24

Total time : O(log 𝒏)

Split(T,x)

25

Achieving O(log n) time for Split(T,x)

• Take a scissor and cut T into trees starting from x

• Make use of SpecialUnion algorithm.

26

T
x

Find-rank(T,x)

27

Return the count of no. of elements in T smaller than x

A trivial algorithm for Find-rank(T,x)

Repeatedly find predecessors of x

Time complexity: O (k log n)

 (where k is rank of x in T)
28

T

2

28

46

67

25

5

31 41

35 49

53 48

O(log n) time is possible
Wait for one more month!!

