
Data Structures and Algorithms 
(CS210A) 

Semester I – 2014-15 

Lecture 19: 
Red Black tree (Final lecture) 

• 9 types of operations, each executed in O(log n) time !  
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Red Black tree  
(Height Balanced BST) 

Operations you already know 
 

1. Search(T,𝒙) 

2. Insert(T,𝒙) 

3. Delete(T,𝒙) 

4. Min(T) 

5. Max(T) 
 

 

 

2 

 

 

Every operation in O(log 𝒏) time. 



Predecessor(T,𝒙) 
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The largest element in T which is smaller than 𝒙 



Predecessor(T,𝒙) 
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  T 

2 

28 

43 

67 

25 

5 

31 41 

35 49 83 

54 

Predecessor of 28 ? Predecessor of 44 ? 

Can you figure out 
the algorithm for 

Predecessor(T,x) ? 
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Predecessor of 25 ? 



Predecessor(T,𝒙) 

Let 𝒗 be the node of T storing value 𝒙. 

 

 

 

 

 

 

 

 

 

 

Case 1:  left(𝒗) <> NULL , then Predecessor(T,𝒙) is    ? 
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Max(left(𝒗))  

non-NULL 

𝒗 



Predecessor(T,𝒙) 

Let 𝒗 be the node of T storing value 𝒙. 

 

 

 

 

 

 

 

 

 

 

Case 2:  left(𝒗) == NULL , then Predecessor(T,𝒙) is   ? 
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𝒗 



Predecessor(T,𝒙) 

Let 𝒗 be the node of T storing value 𝒙. 

 

 

 

 

 

 

 

 

 

 

Case 2:  left(𝒗) == NULL , and 𝒗 is right child of its parent 

                                              then Predecessor(T,𝒙) is   ? 
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𝒗 

parent(𝒗)  



Predecessor(T,𝒙) 

Let 𝒗 be the node of T storing value 𝒙. 

 

 

 

 

 

 

 

 

 

 

Case 3:  left(𝒗) == NULL , and 𝒗 is left child of its parent 

                                              then Predecessor(T,𝒙) is   ? 
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𝒗 

𝒒 



Predecessor(T,𝒙) 

Predecessor(T,𝒙) 

{    Let 𝒗 be the node of T storing value 𝒙. 

     If (left(𝒗) <> NULL)  then return    ? 

     else 

            if (𝒗 = right (parent(𝒗)) return    ? 

            else 

           {          

                 while(𝒗 = left (parent(𝒗))      

  ? 

                 return parent(𝒗); 

           } 

} 
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Max(left(𝒗))  

parent(𝒗)  

𝒗  parent(𝒗); 



Predecessor(T,𝒙) 

Predecessor(T,𝒙) 

{    Let 𝒗 be the node of T storing value 𝒙. 

     If (left(𝒗) <> NULL)  then return    ? 

     else 

     {          while(𝒗 = left (parent(𝒗))      

  ? 

                 return parent(𝒗); 

     } 

} 

 

Homework 1: Modify the code so that it runs even when 𝒙 is minimum element. 

Homework 2: Modify the code so that it runs even when 𝒙 ∉ T . 
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Max(left(𝒗))  

𝒗  parent(𝒗); 



Successor(T,𝒙) 
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The smallest  element in T which is bigger than 𝒙 



Red Black tree  
(Height Balanced BST) 

Operations you already know 

1. Search(T,x) 

2. Insert(T,x) 

3. Delete(T,x) 

4. Min(T) 

5. Max(T) 

6. Predecessor(T,x) 

7. Successor(T,x) 

 

A  NOTATION 

T < T’ : 

every element of T is smaller than every 
element of T’. 

 

 

 

New operations 

8.    SpecialUnion(T, T’):  

Given T and T’ such that T < T’,  

compute T*=TUT’.  

 

NOTE:  T and T’ don’t exist after the union. 

 

 

9.   Split(T, x):  

Split T into  T’ and T’’ such that T’ < x < T’’.  

 

 

 

 
12 Every operation in O(log n) time. 



SpecialUnion(T,T’) 
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Remember:  
every element of T is smaller than every element of T’ 



T’ 

A trivial algorithm that does not work 

 

 

 

 

 

 

 

 

 

 

Time complexity: O(log n) 
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T 

< 
Height balance lost 



Towards an O(log n) time for SpecialUnion(T,T’) … 

 

 

• Simplifying the problem 
 Can we solve some special cases easily ? 

 

• Solving the simpler version efficiently 
 

 

• Extending the solution to generic version 
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Simplifying the problem  

 

 

 

 

 

 

 

 

 

 

Simplified problem:  

Given two trees T, T’ of same black height and a key x, such that T<x<T’, 
transform them into a tree T*=TU{x}UT’ 
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T T’ 

< < 

x 



Solving the simplified problem  

 

 

 

 

 

 

 

 

 

 

Simplified problem:  

Given two trees T, T’ of same black height and a key x, such that T<x<T’, 
transform them into a tree T*=TU{x}UT’ 
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T 

O (1) time 

T’ 

< < 

x 



T’ 

Extending the algorithm to the generic problem 
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T 



T’ 

Extending the algorithm to the generic problem 

 

 

 

 

 

 

 

 

 

 

 

 

19 

T 

< < 
x 



T’ 

Extending the algorithm to the generic problem 
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T 

x 



T’ 

Extending the algorithm to the generic problem 
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T 

x 



T’’ 

Extending the algorithm to the generic problem 
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T 

x 
v 



Extending the algorithm to the generic problem 
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T 

x 

T’’ 

v 



Extending the algorithm to the generic problem 

Algorithm for SpecialUnion(T,T’): 

Let black height of T ≤ black height of T’ 

1. Let x be the node storing smallest element of T’.  

2. Delete the node x from T’. 

3. Keep following left pointer of T’ until we reach a node v such that 

1. left(v) is black 

2. The subtree T” rooted at Left(v) has black height same as that of T 

4. left(x) T;  

5. right(x)  T”; 

6. Color(x) red; 

7. left(v) x;  

8. parent(x) v; 

9. If color(v) is red, remove the color imbalance  

                                    (like in the usual procedure of insertion in a red-black tree)  
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Total time : O(log 𝒏)  



Split(T,x) 
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Achieving O(log n) time for Split(T,x) 

 

 

 

 

 

 

 

 

 
 

• Take a scissor and cut T into trees starting from x 

• Make use of SpecialUnion algorithm. 
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T 
x 



Find-rank(T,x) 
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Return the count of no. of elements in T smaller than x 



A trivial algorithm for Find-rank(T,x) 

 

 

 

 

 

 
       

Repeatedly find predecessors of x 

Time complexity: O (k log n) 

        (where k is rank of  x in T) 
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T 

2 

28 

46 

67 

25 

5 

31 41 

35 49 

53 48 

O(log n) time is possible 
Wait for one more month!! 


