
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 2:

• Model of computation

• Efficient algorithm for F(𝑛) mod 𝑚.

1

An important Lesson from Lecture 1

• Design of efficient algorithm is very important.

(One can learn this lesson in the real sense only after he/she does the

corresponding implementation totally himself/herself. Otherwise it is just one
of those bookish facts which one believes/remembers)

2

Recall from Lecture 1:
Current-state-of-the-art Desktop

3

A processor (CPU)
speed = few GHz
(a few nanoseconds to execute an instruction)

 External Memory (Hard Disk Drive)
 size = a few tera bytes
 speed : seek time = miliseconds
 transfer rate= a billion bytes per second

 Internal memory (RAM)
size = a few GB (Stores few million bytes/words)
speed = a few GHz(a few nanoseconds to read a byte/word)

Models of computation

Why do we need such models?

In order to analyze the efficiency of an algorithm, we need a
model of computation which is simpler and still captures the
essence of the real world computer.

Models :
• Word RAM model

• Bit complexity model

• Universal RAM model

• Cell probe model

• ….

4

We shall deal mainly with word-RAM model
due to its simplicty and higher degree of

closeness to the real world computer.

word RAM : a model of computation

5

RAM

Data

Program

Processor

How is an instruction executed?

 1. Decoding instruction

2. fetching the operands

3. performing arithmetic/logical operation

4. storing the result back

 into RAM

 Each instruction takes a few cycles (click ticks) to get executed.

6

RAM

Processor

word RAM model of computation:
Characteristics

• Word is the basic storage unit of RAM. Word is a collection of few bytes.

• Each input item (number, name) is stored in binary format.

• RAM can be viewed as a huge array of words. Any arbitrary location of
RAM can be accessed in the same time irrespective of the location.

• Data as well as Program reside fully in RAM.

• Each arithmetic or logical operation (+,-,*,/,or, xor,…) involving a constant
number of words takes a constant number of cycles (steps) by the CPU.

7

Homework 1 from Lecture 1

Computing F(𝑛) mod 𝑚

8

Algorithms for Fibonacci numbers

Fibonacci numbers
 F(0) = 0;

 F(1) = 1;

 F(𝑛) = F(𝑛 − 1) + F(𝑛 − 2) for all 𝑛 >1;

Exercise 1 : Using induction or otherwise, show that F(𝑛)>2
𝑛−2

2

Algorithms you must have implemented for computing F(𝑛) :

• Iterative

• recursive

9

Iterative Algorithm for F(𝑛) mod 𝑚

IFib(𝑛,𝑚)
if 𝑛 = 0 return 0;

 else if 𝑛 =1 return 1;

 else { 𝑎  0; 𝑏 1;

 For(𝑖 =2 to 𝑛) do

 { temp  𝑏;

 𝑏 𝑎 + 𝑏 mod 𝑚 ;

 𝑎  temp;

 }

 }

 return 𝑏;
Let us calculate the number of instructions executed by IFib(𝑛,𝑚)

10

4 instructions

n-2 iterations

3 instructions per iteration

the final instruction

Total number of instructions=
4+3(𝑛-2)+1 < 3𝑛

Recursive algorithm for F(n) mod m

RFib(𝑛,𝑚)
{ if 𝑛 =0 return 0;

 else if 𝑛 =1 return 1;

 else return((RFib(𝑛 − 1,𝑚) + RFib(𝑛 − 2,𝑚)) mod 𝑚)

}

Let G(𝑛) denote the number of instructions executed by RFib(𝑛,𝑚)

• G(0) = 1; G(1) = 2;

• For 𝑛 >1 G(𝑛) = G(𝑛 − 1)+G(𝑛 − 2) + 4

Observation 1: G(𝑛)>F(𝑛) for all 𝑛;

 It follows from Observation 1 and Exercise 1 that G(𝑛)> 2(𝑛−2)/2!!!

11

Algorithms for F(𝑛)mod 𝑚

• # instructions by Recursive algorithm RFib(𝑛): > 2
𝑛−2

2

(exponential in 𝑛)

• # instructions by Iterative algorithm IFib(𝑛): 3𝑛

(linear in 𝑛)

Question: Can we compute F(𝑛)mod 𝑚 quickly ?

12

None of them works for entire range of long long int 𝑛 and int 𝑚

How to compute F(𝑛)mod 𝑚 quickly ?

… need some better insight …

13

A warm-up example

How good are your programming skills ?

14

Compute 𝑥𝑛𝐦𝐨𝐝 𝑚

Problem: Given three integers 𝑥, 𝑛, and 𝑚, compute 𝑥𝑛𝐦𝐨𝐝 𝑚.

Power(𝑥, 𝑛, 𝑚)

 If (𝑛 = 0) return 1;

 else {

 𝑡𝑒𝑚𝑝  Power(𝑥, 𝑛 − 1, 𝑚);

 𝑡𝑒𝑚𝑝  (𝑡𝑒𝑚𝑝 × 𝑥) 𝐦𝐨𝐝 𝑚 ;

 return 𝑡𝑒𝑚𝑝;

 }

15

𝑥𝑛 =
1 if 𝑛 = 0

𝑥 × 𝑥𝑛−1 otherwise

4 instructions
excluding the
Recursive call

Compute 𝑥𝑛𝐦𝐨𝐝 𝑚

Problem: Given three integers 𝑥, 𝑛, and 𝑚, compute 𝑥𝑛𝐦𝐨𝐝 𝑚.

Power(𝑥, 𝑛, 𝑚)

Power(𝑥, 𝑛 − 1, 𝑚);

Power(𝑥, 𝑛 − 2, 𝑚);

Power(𝑥, 0, 𝑚)
16

𝑥𝑛 =
1 if 𝑛 = 0

𝑥 × 𝑥𝑛−1 otherwise

No. of instructions executed by Power(𝑥, 𝑛, 𝑚) = ? 4𝑛

Compute 𝑥𝑛𝐦𝐨𝐝 𝑚

Problem: Given three integers 𝑥, 𝑛, and 𝑚, compute 𝑥𝑛𝐦𝐨𝐝 𝑚.

Power(𝑥, 𝑛, 𝑚)

 If (𝑛 = 0) return 1;

 else {

 𝑡𝑒𝑚𝑝  Power(𝑥, 𝑛/2, 𝑚);

 𝑡𝑒𝑚𝑝  (𝑡𝑒𝑚𝑝 × 𝑡𝑒𝑚𝑝) 𝐦𝐨𝐝 𝑚 ;

 if (𝑛 𝐦𝐨𝐝 2 = 1) 𝑡𝑒𝑚𝑝 (𝑡𝑒𝑚𝑝 × 𝑥)𝐦𝐨𝐝 𝑚 ;

 return 𝑡𝑒𝑚𝑝;

 }
17

𝑥𝑛 =
 1 if 𝑛 = 0

 ? if 𝑛 is 𝐞𝐯𝐞𝐧
 ? if 𝑛 is 𝐨𝐝𝐝

 𝑥𝑛/2 × 𝑥𝑛/2

𝑥𝑛/2 × 𝑥𝑛/2× 𝑥

5 instructions
excluding the
Recursive call

Compute 𝑥𝑛𝐦𝐨𝐝 𝑚

Problem: Given three integers 𝑥, 𝑛, and 𝑚, compute 𝑥𝑛𝐦𝐨𝐝 𝑚.

Power(𝑥, 𝑛, 𝑚)

Power(𝑥, 𝑛/2, 𝑚)

Power(𝑥, 𝑛/4, 𝑚)

Power(𝑥, 0, 𝑚)

18

𝑥𝑛 =
 1 if 𝑛 = 0

 ? if 𝑛 is 𝐞𝐯𝐞𝐧
 ? if 𝑛 is 𝐨𝐝𝐝

 𝑥𝑛/2 × 𝑥𝑛/2

𝑥𝑛/2 × 𝑥𝑛/2× 𝑥

No. of instructions executed by Power(𝑥, 𝑛, 𝑚) = ? 5 log2 𝑛

Efficient Algorithm for F(𝑛)mod 𝑚

19

Efficient algorithm for F(𝑛)mod 𝑚

Idea1 : Can we express F(𝑛) as 𝑎𝑛 for some constant 𝑎 ?

Unfortunately no.

20

Idea 2

21

F(𝑛 − 1)

F(𝑛 − 2)

 F(𝑛)

F(𝑛 − 1)

1 1

1 0

1 1

1 0

 1

 0

 F(𝑛)

F(𝑛 − 1)

𝑛 − 1

?
Unfolding the RHS of this

equation, we get …

A clever algorithm for F(𝑛)mod 𝑚

Clever-algo-Fib(𝑛, 𝑚)

{ A 
1 1
1 0

;

 B  A𝑛−1 mod 𝑚;

 C  B × 1
0

;

 return C[1]; // the first element of vector C stores F(𝑛)mod 𝑚

}

Question: How to compute
1 1
1 0

𝑛−1

efficiently ?

Answer :

22

Inspiration from Algorithm for 𝑥𝑛𝐦𝐨𝐝 𝑚

A clever algorithm for F(𝑛)mod 𝑚

Let A be a 2×2 matrix.

• If 𝑛 is even, 𝑨𝑛
 = 𝑨𝑛/2

 × 𝑨𝑛/2

• If 𝑛 is odd, 𝑨𝑛 = 𝑨𝑛/2 × 𝑨𝑛/2 × A

Question: How many instructions are required to multiply two 2×2 matrices ?

Answer: 12

Question: Number of instructions for computing
1 1
1 0

𝑛−1

 ?

Answer : 27 𝐥𝐨𝐠2 (𝑛 − 1)

Question: Number of instructions in New-algo-Fib(𝑛, 𝑚)

Answer: 27 𝐥𝐨𝐠2(𝑛 − 1)+ 6

23

Which algorithm is better ?

Find out yourself ?

Assignment 1

24

Algorithm for F(𝑛)mod 𝑚 No. of Instructions

RFib(𝑛,𝑚) > 2(𝑛−2)/2

IterFib(𝑛,𝑚) 3𝑛

Clever_Algo_Fib(𝑛,𝑚) 27 𝐥𝐨𝐠2 (𝑛 − 1) + 6

