
Data Structures and Algorithms 
(CS210A) 

Semester I – 2014-15 

Lecture 2: 

• Model of computation  

• Efficient algorithm for F(𝑛) mod 𝑚. 
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An important Lesson from Lecture 1 

 
 

• Design of efficient algorithm is very important. 

 
(One can learn this lesson in the real sense only after he/she does the 

corresponding implementation totally himself/herself. Otherwise it is just one 
of those bookish facts which one believes/remembers) 
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Recall from  Lecture 1: 
Current-state-of-the-art Desktop 
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A processor (CPU)    
speed = few GHz 
(a few nanoseconds to execute an instruction) 

                     External Memory (Hard Disk Drive) 
 size = a few tera bytes 
 speed  :  seek time = miliseconds  
                 transfer rate= a billion bytes per second 

                           Internal memory (RAM)     
size = a few GB  (Stores few million bytes/words) 
speed = a few GHz(a few nanoseconds to read a byte/word) 



Models of computation 

Why do we need such models? 

In order to analyze the efficiency of an algorithm, we need a 
model of computation which is simpler and still captures the 
essence of the real world computer. 

 

Models :  
• Word RAM model 

• Bit complexity model 

• Universal RAM model 

• Cell probe model 

• …. 
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We shall deal mainly with word-RAM model 
due to its simplicty and higher degree of 

closeness to the real world computer. 



word RAM : a model of computation 
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How is an instruction executed? 

 1. Decoding instruction 

2. fetching the operands 

3. performing arithmetic/logical operation 

4. storing the result back  

        into RAM 

 

 

 

 

 

 

 

 

 

 

 Each instruction takes a few cycles (click ticks) to get executed. 
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RAM 

Processor 



word RAM model of computation: 
Characteristics 

• Word is the basic storage unit of RAM. Word is a collection of few bytes.  

 

• Each input item (number, name) is stored in binary format. 

 

• RAM can be viewed as a huge array of words. Any arbitrary location of 
RAM can be accessed in the same time irrespective of the location. 

 

• Data as well as Program reside fully  in RAM.  

 

• Each arithmetic or logical operation (+,-,*,/,or, xor,…) involving a constant 
number of words takes a constant number of cycles (steps) by the CPU.  
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Homework 1 from Lecture 1 

Computing F(𝑛) mod 𝑚 
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Algorithms for Fibonacci numbers  

Fibonacci numbers 
    F(0) = 0; 

    F(1) = 1; 

    F(𝑛) = F(𝑛 − 1 ) + F(𝑛 − 2 )  for all 𝑛 >1; 

Exercise 1 : Using induction or otherwise, show that F(𝑛)>2
𝑛−2
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Algorithms you must have implemented for computing F(𝑛) : 

• Iterative 

• recursive  
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Iterative Algorithm for F(𝑛) mod 𝑚 

IFib(𝑛,𝑚)  
if 𝑛 = 0  return  0; 

      else if 𝑛 =1 return 1; 

              else {          𝑎  0;  𝑏 1; 

                                   For(𝑖 =2 to 𝑛) do 

                                   {      temp  𝑏; 

              𝑏 𝑎 + 𝑏  mod 𝑚 ; 

             𝑎  temp; 

                                    } 

                       } 

   return 𝑏; 
Let us calculate the number of instructions executed by IFib(𝑛,𝑚)  
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4 instructions 

n-2 iterations 

3 instructions per iteration 

the final instruction 

Total number of instructions= 
4+3(𝑛-2)+1 < 3𝑛  



Recursive algorithm for F(n) mod m 

RFib(𝑛,𝑚)  
{    if 𝑛 =0 return 0; 

         else if 𝑛 =1 return 1; 

                 else return((RFib(𝑛 − 1,𝑚) + RFib(𝑛 − 2,𝑚) ) mod 𝑚) 

} 

Let G(𝑛) denote the number of instructions executed by RFib(𝑛,𝑚)  

• G(0) = 1;   G(1) = 2;  

• For 𝑛 >1   G(𝑛) = G(𝑛 − 1 )+G(𝑛 − 2) + 4 

 

Observation 1: G(𝑛 )>F(𝑛) for all 𝑛; 

 

 It follows from Observation 1 and Exercise 1 that G(𝑛)> 2(𝑛−2)/2!!! 

11 



Algorithms for F(𝑛)mod 𝑚  

 

• # instructions by Recursive algorithm RFib(𝑛):     > 2
𝑛−2

2  

(exponential in 𝑛) 

• # instructions by Iterative algorithm IFib(𝑛):     3𝑛 

( linear in 𝑛) 

 

 

 

Question: Can we compute F(𝑛)mod 𝑚 quickly ?               
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None of them works for entire range of long long int 𝑛 and int 𝑚 



How to compute F(𝑛)mod 𝑚 quickly ? 

… need some better insight … 
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A warm-up example 

How good are your programming skills ? 
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Compute 𝑥𝑛𝐦𝐨𝐝 𝑚 
 

Problem: Given three integers 𝑥, 𝑛, and 𝑚,  compute 𝑥𝑛𝐦𝐨𝐝 𝑚. 

 

 

Power(𝑥, 𝑛, 𝑚) 

            If (𝑛 = 0) return 1; 

             else {      

                             𝑡𝑒𝑚𝑝  Power(𝑥, 𝑛 − 1, 𝑚); 

                             𝑡𝑒𝑚𝑝  (𝑡𝑒𝑚𝑝 × 𝑥) 𝐦𝐨𝐝 𝑚 ; 

                              return 𝑡𝑒𝑚𝑝; 

                      } 
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𝑥𝑛 =  
1           if 𝑛 = 0 

𝑥 × 𝑥𝑛−1 otherwise
 

4 instructions 
excluding  the 
Recursive call 



Compute 𝑥𝑛𝐦𝐨𝐝 𝑚 
 

Problem: Given three integers 𝑥, 𝑛, and 𝑚,  compute 𝑥𝑛𝐦𝐨𝐝 𝑚. 

 

 

Power(𝑥, 𝑛, 𝑚) 

 

Power(𝑥, 𝑛 − 1, 𝑚); 

 

Power(𝑥, 𝑛 − 2, 𝑚); 

 

 

 

Power(𝑥, 0, 𝑚)                        
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𝑥𝑛 =  
1           if 𝑛 = 0 

𝑥 × 𝑥𝑛−1 otherwise
 

No. of instructions  executed by Power(𝑥, 𝑛, 𝑚) =      ?    4𝑛 



Compute 𝑥𝑛𝐦𝐨𝐝 𝑚 
 

Problem: Given three integers 𝑥, 𝑛, and 𝑚,  compute 𝑥𝑛𝐦𝐨𝐝 𝑚. 

 

 

 

Power(𝑥, 𝑛, 𝑚) 

     If (𝑛 = 0) return 1;  

     else {       

                  𝑡𝑒𝑚𝑝  Power(𝑥, 𝑛/2, 𝑚); 

                  𝑡𝑒𝑚𝑝  (𝑡𝑒𝑚𝑝 × 𝑡𝑒𝑚𝑝) 𝐦𝐨𝐝 𝑚 ; 

                  if (𝑛 𝐦𝐨𝐝 2 = 1 ) 𝑡𝑒𝑚𝑝 (𝑡𝑒𝑚𝑝 × 𝑥)𝐦𝐨𝐝 𝑚 ; 

                 return 𝑡𝑒𝑚𝑝; 

              } 
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𝑥𝑛 =  
     1              if 𝑛 = 0 

                ?            if  𝑛  is 𝐞𝐯𝐞𝐧
              ?            if  𝑛  is  𝐨𝐝𝐝

 𝑥𝑛/2 × 𝑥𝑛/2 

𝑥𝑛/2 × 𝑥𝑛/2× 𝑥 

5 instructions 
excluding  the 
Recursive call 



Compute 𝑥𝑛𝐦𝐨𝐝 𝑚 
 

Problem: Given three integers 𝑥, 𝑛, and 𝑚,  compute 𝑥𝑛𝐦𝐨𝐝 𝑚. 

 

 

 

Power(𝑥, 𝑛, 𝑚) 

  

Power(𝑥, 𝑛/2, 𝑚) 

 

Power(𝑥, 𝑛/4, 𝑚)            

 
 

Power(𝑥, 0, 𝑚)            
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𝑥𝑛 =  
     1              if 𝑛 = 0 

                ?            if  𝑛  is 𝐞𝐯𝐞𝐧
              ?            if  𝑛  is  𝐨𝐝𝐝

 𝑥𝑛/2 × 𝑥𝑛/2 

𝑥𝑛/2 × 𝑥𝑛/2× 𝑥 

No. of instructions  executed by Power(𝑥, 𝑛, 𝑚) =            ?         5 log2 𝑛 



Efficient Algorithm for F(𝑛)mod 𝑚  
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Efficient algorithm for F(𝑛)mod 𝑚  

 

 

Idea1 :  Can we express F(𝑛) as 𝑎𝑛 for some constant 𝑎 ? 

 

Unfortunately no. 
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Idea 2 
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F(𝑛 − 1) 
 
 
 
F(𝑛 − 2) 

   F(𝑛) 
 
 
 
F(𝑛 − 1) 

1          1 
 
 

1              0 

1          1 
 
 

1              0 

    1 
 
 
 
     0 

   F(𝑛) 
 
 
 
F(𝑛 − 1) 

𝑛 − 1 

? 
Unfolding the RHS of this 

equation, we get … 



A clever algorithm for F(𝑛)mod 𝑚   

Clever-algo-Fib(𝑛, 𝑚) 

{         A   
1 1
1 0

; 

         B     A𝑛−1 mod 𝑚; 

         C    B  × 1
0

; 

          return C[1];        //   the first element of vector C stores F(𝑛)mod 𝑚  

} 

Question: How to compute 
1 1
1 0

𝑛−1

efficiently ? 

Answer : 
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Inspiration from Algorithm for 𝑥𝑛𝐦𝐨𝐝 𝑚 



A clever algorithm for F(𝑛)mod 𝑚  

Let A  be a 2×2 matrix.  

• If 𝑛 is even,                  𝑨𝑛
 = 𝑨𝑛/2

 × 𝑨𝑛/2 

• If 𝑛 is odd,               𝑨𝑛 = 𝑨𝑛/2 × 𝑨𝑛/2 × A 

 
Question: How many instructions are required to multiply two 2×2 matrices ? 

Answer: 12   

Question: Number of instructions for computing  
1 1
1 0

𝑛−1

 ? 

Answer :  27 𝐥𝐨𝐠2 (𝑛 − 1)  

 

Question: Number of instructions in New-algo-Fib(𝑛, 𝑚) 

Answer: 27 𝐥𝐨𝐠2(𝑛 − 1)+ 6 
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Which algorithm is better ? 

 

 

 

 

 

Find out yourself ? 

 

Assignment 1 
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Algorithm for  F(𝑛)mod 𝑚  No. of Instructions 

RFib(𝑛,𝑚)  > 2(𝑛−2)/2 

IterFib(𝑛,𝑚)  3𝑛 

Clever_Algo_Fib(𝑛,𝑚)  27 𝐥𝐨𝐠2 (𝑛 − 1) + 6 


