Data Structures and Algorithms

(CS210A)
Semester | — 2014-15

Lecture 2:
 Model of computation
e Efficient algorithm for F(n) mod m.

An important Lesson from Lecture 1

* Design of efficient algorithm is very important.

(One can learn this lesson in the real sense only after he/she does the
corresponding implementation totally himself/herself. Otherwise it is just one
of those bookish facts which one believes/remembers)

Recall from Lecture 1:
Current-state-of-the-art Desktop

A processor (CPU)
speed = few GHz
(a few nanoseconds to execute an instruction)

Internal memory (RAM)
size = a few GB (Stores few million bytes/words)
speed = a few GHz(a few nanoseconds to read a byte/word)

External Memory (Hard Disk Drive)

size = a few tera bytes
speed : seek time = miliseconds
transfer rate= a billion bytes per second

Models of computation

Why do we need such models?

In order to analyze the efficiency of an algorithm, we need a
model of computation which is simpler and still captures the
essence of the real world computer.

Models :

e Word RAM model
e Bit complexity model

Q)

We shall deal mainly with word-RAM model
- due to its simplicty and higher degree of
* Universal RAM model closeness to the real world computer.

e Cell probe model U

word RAM : a model of computation

N

Processor

RAM

How is an instruction executed?

Decoding instruction
fetching the operands
performing arithmetic/logical operation

> R

storing the result back

into RAM

-/

Processor >

RAM

=>» Each instruction takes a few cycles (click ticks) to get executed.

word RAM model of computation:
Characteristics

Word is the basic storage unit of RAM. Word is a collection of few bytes.

Each input item (number, name) is stored in binary format.

RAM can be viewed as a huge array of words. Any arbitrary location of
RAM can be accessed in the same time irrespective of the location.

Data as well as Program reside fully in RAM.

Each arithmetic or logical operation (+,-,*,/,0r, xor,...) involving a constant
number of words takes a constant number of cycles (steps) by the CPU.

Homework 1 from Lecture 1

Computing F() mod m

Algorithms for Fibonacci numbers

Fibonacci numbers
F(0) = 0;
F(1) = 1;
Fin)=F(n —1)+Fn — 2) forall n >1;

n-2
Exercise 1 : Using induction or otherwise, show that F(n)>2 2

Algorithms you must have implemented for computing F(n) :
* |terative
* recursive

Iterative Algorithm for F(n) mod m

Total number of instructions=
IFib(n,m) RN S

if n=0 return 0;

else if n =1 return 1; ™ 4 instructions
else { a€<0; b< 1

For(= to 1) do

{ temp < b;
b& a+b mod m ; & 3instructions per iteration

a € temp;

return b; the final instruction
Let us calculate the number of instructions executed by IFib(n,m)

10

Recursive algorithm for F(n) mod m

RFib(n,m)

{ ifn=0return 0;
else if n =1 return 1;
else return((RFib(n — 1,m) + RFib(n — 2,m)) mod m)
}
Let G(n) denote the number of instructions executed by RFib(n,m)
* G(0)=1; G(1)=2;
* Forn>1 G(n)=G(n—1)+G(n — 2)+4

Observation 1: G(n)>F(n) for all n;

It follows from Observation 1 and Exercise 1 that G(n)> 2(*=2)/2111

Algorithms for F(n)mod m

n-—-2

e #instructions by Recursive algorithm RFib(n): > 2 2
(exponential in n)
e #instructions by Iterative algorithm IFib(n): 3n
(linearin n)

None of them works for entire range of long long int n and int m

Question: Can we compute F(n)mod m quickly ?

How to compute F(2)mod m quickly ?

... need some better insight ...

A warm-up example

How good are your programming skills ?

14

Compute x"'mod m

Problem: Given three integers x, n, and m, compute x"mod m.
n_ (1 ifn=20
x™ = P _
x x x"* otherwise
Power(x, n, m)

If (n = 0) return 1; B

else {

temp € Power(x,n — 1, m); L 4instructions
excluding the
temp < (temp x x) mod m ; Recursive call

return temp;

15

Compute x"'mod m

Problem: Given three integers x, n, and m, compute x"mod m.

[x" _ { 1 ifn=20 J
x x x™ 1 otherwise

Power(x, n, m)

!

Power(x, n — 1, m);

[No. of instructions executed by Power(x, n, m) = 4n]

Power(x, n — 2, m);

=

Power(x, 0, m)

16

Compute x"'mod m

Problem: Given three integers x, n, and m, compute x"'mod m.

4 :
1 ifn=0
x™ = x™?% x x™? if n is even
. x™MZx x"?x x if n is odd Y
Power(x, n, m)
If (n = 0) return 1; N
else {
temp €< Power(x, n/2, m); | 5instructions
excluding the
temp < (temp x temp) mod m ; Recursive call
if(nmod 2 =1)temp <(temp x x)mod m ;

return temp,

}

17

Compute x"'mod m

Problem: Given three integers x, n, and m, compute x"'mod m.

4 .

1 ifn=0
x™ = ™% x x"2 if n is even
. x™2x x"?x x if n is odd Y

Power(x, n, m)

!

Power(x, n/2, m)

—

Power(x, n/4, m)

[No. of instructions executed by Power(x, n, m) = 5 log, n}

Power

—

x, 0, m)

18

Efficient Algorithm for F(n)mod m

Efficient algorithm for F(12)mod m

Ideal: Can we express F(n) as a™ for some constant a ?

Unfortunately no.

" F(n) ™)

Fin — 1),

" F(n) ™)

(Fin — 1),

Unfolding the RHS of this
equation, we get ...

21

A clever algorithm for F(n)mod m

Clever-algo-Fib(n, m)

1 1]
SR N

B & A" modm:
C éBx(é);

return C[1]; // the first element of vector Cstores F(n)mod m

}

1 1 n-1
Question: How to compute [1 O] efficiently ?

Answer :
Inspiration from Algorithm for x"mod m

22

A clever algorithm for F(n)mod m

Let A be a 2x2 matrix.
e |fniseven, A = AT/ 2 AT/ 2

e Ifnisodd, AV = A2 x A2 x A

Question: How many instructions are required to multiply two 2x2 matrices ?
Answer: 12

1]11—1 ;

Question: Number of instructions for computing [1 0

Answer : 271log, (n — 1)

Question: Number of instructions in New-algo-Fib(n, m)
Answer: 27 log,(n — 1)+ 6

23

Which algorithm is better ?

Algorithm for No. of Instructions

RFib(n,m) > 2(n=2)/2
IterFib(n,m) 3n
Clever_Algo_Fib(n,m) 271log, (n—1)+6

Find out yourself ?

Assignment 1

24

