
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 25
• Depth First Search (DFS) Traversal

• DFS Tree

• Novel application: computing biconnected components of a graph

1

DFS traversal of G

DFS(v)

{ Visited(v) true;

 For each neighbor w of v

 { if (Visited(w) = false)

 { DFS(w) ;

 }

 }

}

DFS-traversal(G)

{

 For each vertex vϵ V { Visited(v) false }

 For each vertex v ϵ V { If (Visited(v) = false) DFS(v) }

}

2

……..;

……..;

DFN[v] dfn ++;

dfn 0;

DFN number

DFN[x] :

The number at which x gets visited during DFS
traversal.

3

z

y

c

d
b

f

g h

u

w

v

r

s

0 1

2
3

4

5

6
7

8

9

10

11 12

 DFS tree

4

DFS(v) computes a tree rooted at v

Question: Is a DFS tree unique ?

Answer: No.

Question:

Can any rooted tree be obtained through DFS ?

Answer: No.

5

z

y

c

d
b

f

g h

u

w

r

s

v

A DFS tree rooted at v

How will an edge appear in DFS traversal ?

• as a tree-edge.

If the edge is a non-tree edge :

• Edge between ancestor and descendant in

 DFS tree.

Question: Is there any other possibility ?

Answer: No.

6

How will an edge appear in DFS traversal ?

7

u

It can never happen

x

y

How will an edge appear in DFS traversal ?

8

x

y

How will an edge appear in DFS traversal ?

9

z

c

d
g

w

s

A

y

f

b
h

v

x

y

Always remember

non-tree edge back edge

This is called DFS representation of the graph.

It plays a key role in the design of every
efficient algorithm.

11

the following picture for DFS traversal

 A novel application of DFS traversal

12

Determining if a graph G is biconnected

Definition: A connected graph is said to be biconnected

if there does not exit any vertex whose removal disconnects the graph.

Motivation: To design robust networks (immune to any single node failure).

13

No.

14

z

y

c

d
b

f

g h

u

w

v

r

s

Is this graph biconnected ?

A trivial algorithms for checking
 bi-connectedness of a graph

• For each vertex v, determine if G\{v} is connected

 (One may use either BFS or DFS traversal here)

 Time complexity of the trivial algorithm : O(𝒎𝒏)

15

An O(𝒎+𝒏) time algorithm

 A single DFS traversal

16

An O(𝒎+𝒏) time algorithm

• A formal characterization of the problem.

 (articulation points)

• Exploring relationship between articulation point & DFS tree.

• Using the relation cleverly to design an efficient algorithm.

17

The removal of any of {v,f,u} can destroy
connectivity.

v,f,u are called the articulation points of G.

18

z

y

c

d
b

f

g h

u

w

v

r

s

This graph is NOT biconnected

A formal definition of articulaton point

Definition: A vertex x is said to be articulation point if there exist two distinct vertices
u and v such that every path between u and v passes through x.

Observation: A graph is biconnected if none of its vertices is an articulation point.

AIM:

Design an algorithm to compute all articulation points in a given graph.

19

v u x

Articulation points and DFS traversal

20

Don’t Focus on the graph. Instead,
focus on the DFS tree representation of the graph.

Some observations

Question: When can a leaf node be an a.p. ?

Answer: Never

Question: When can root be an a.p. ?

21

v

Some observations

Question: When can a leaf node be an a.p. ?

Answer: Never

Question: When can root be an a.p. ?

22

v

Some observations

Question: When can a leaf node be an a.p. ?

Answer: Never

Question: When can root be an a.p. ?

Answer: Iff it has two or more children.

23

v

Some observations

AIM:

To find necessary and sufficient conditions for an internal node to be articulation point.

24

v u x

How will x look like
in DFS tree ?

conditions for an internal node to be articulation
point.

25

x

root

T1

At least one of u and v
must be descendant of x.

Where will u and v
be relative to x ?

Case 1: Exactly one of u and v is a descendant of x in DFS tree

26

x

u

v

root

w

y

No

T1

u—w—y—v :
a u-v path not passing through x Can there be a

back edge from
T1 to ancestor of

x ?

Case 2: both u and v are descendants of x in DFS tree

27

x

root root

u v
Can u and v belong to

T1 simultaneously?

T1

Case 2: both u and v are descendants of x in DFS tree

28

x

root

u v

w q

y

z

T1 T2

At least one of T1 and
T2 have no back edge

to ancestor of x

u—w—z—y—q—v :
a u-v path not passing through x

Necessary condition for x to be articulation point

Necessary condition:

x has at least one child y s.t. there is no back
edge from subtree(y) to ancestor of x.

Question: Is this condition sufficient also?

Answer: yes.

29

x

root

y u

v

Articulation points and DFS

Let G=(V,E) be a connected graph.

Perform DFS traversal from any graph and get a DFS tree T.

• No leaf of T is an articulation point.

• root of T is an articulation point if and only if it has more than one child.

• For any internal node … ??

Theorem1 : An internal node x is articulation point if and only if

 it has a child y such that there is no back edge from subtree(y) to any ancestor of x.

30

Efficient algorithm for Articulation points

31

Use Theorem 1

Exploit recursive nature of DFS

Ponder over it during
Mid-semester break

