
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 26
• Quick revision of Depth First Search (DFS) Traversal

• An O(𝒎 + 𝒏):algorithm for biconnected components of a graph

• Quick Sort: Average time complexity analysis

1

Quick revision of
Depth First Search (DFS) Traversal

2

DFS traversal of G

DFS(v)

{ Visited(v)  true;

 For each neighbor w of v

 { if (Visited(w) = false)

 { DFS(w) ;

 }

 }

}

DFS-traversal(G)

{

 For each vertex vϵ V { Visited(v) false }

 For each vertex v ϵ V { If (Visited(v) = false) DFS(v) }

}

3

……..;

……..;

DFN[v]  dfn ++;

dfn  0;

DFN number

DFN[x] :

The number at which x gets visited during DFS
traversal.

4

z

y

c

d
b

f

g h

u

w

v

r

s

0 1

2
3

4

5

6
7

8

9

10

11 12

DFS(v) computes a tree rooted at v

If x is ancestor of y then

 DFN[x] ? DFN[y]

Question: Is a DFS tree unique ?

Answer: No.

Question:

Can any rooted tree be obtained through
DFS ?

Answer: No.

5

z

y

c

d
b

f

g h

u

w

r

s

v

A DFS tree rooted at v

<

Always remember

non-tree edge  back edge

6

Instead of looking at a graph,
look at its picture in terms of any of its DFS traversal

A novel application of DFS traversal

Definition: A connected graph is said to be biconnected

if there does not exit any vertex whose removal disconnects the graph.

Motivation: To design robust networks (immune to any single node failure).

7

Determining if a graph
G is biconnected

No.

8

z

y

c

d
b

f

g h

u

w

v

r

s

Is this graph biconnected ?

A trivial algorithms for checking
 bi-connectedness of a graph

• For each vertex v, determine if G\{v} is connected

 (One may use either BFS or DFS traversal here)

 Time complexity of the trivial algorithm : O(𝒎𝒏)

9

An O(𝒎 + 𝒏) time algorithm

 A single DFS traversal

10

An O(𝒎 + 𝒏) time algorithm

• A formal characterization of the problem.

 (articulation points)

• Exploring relationship between articulation point & DFS tree.

• Using the relation cleverly to design an efficient algorithm.

11

The removal of any of {v,f,u} can destroy
connectivity.

v,f,u are called the articulation points of G.

12

z

y

c

d
b

f

g h

u

w

v

r

s

This graph is NOT biconnected

A formal definition of articulaton point

Definition: A vertex x is said to be articulation point if there exist two distinct vertices
u and v such that every path between u and v passes through x.

Observation: A graph is biconnected if none of its vertices is an articulation point.

AIM:

Design an algorithm to compute all articulation points in a given graph.

13

v u x

Some observations

• A leaf node can never be an a.p. ?

• Root is an a.p. iff it has two or more
children.

14

v

What about an internal
node ?

Necessary and Sufficient condition
for x to be articulation point

Theorem1:

An internal node x is articulation point iff

x has at least one child y s.t. there is no back
edge from subtree(y) to ancestor of x.

 No back edge from subtree(y) going to a
vertex “higher” than x.

15

x

root

y

z

Use DFN numbering 9

6

5

?

How to define the notion
“higher” than x ?

< 5

Necessary and Sufficient condition
for x to be articulation point

Theorem1:

An internal node x is articulation point iff

x has at least one child y s.t. there is no back
edge from subtree(y) to ancestor of x.

High_pt(v):

DFN of the highest ancestor of v to which
there is a back edge from subtree(v).

Theorem2:

An internal node x is articulation point iff

it has a child, say y, in DFS tree such that

 High_pt(y) ? DFN(x).

 16

x

root

y

z

9

6

5

?

Invent a new
function

< 5

≥

Theorem2:

An internal node x is articulation point iff it has a child, say y, in DFS tree such that

 High_pt(y) ≥ DFN(x).

In order to compute High_pt(v) of a vertex v,

we have to traverse the adjacency lists of all vertices of subtree T(v).

 O(𝒎) time in the worst case to compute High_pt(v) of a vertex v.

 O(𝒎𝒏) time algorithm 

17

Good !
But how to transform this Theorem

into an efficient algorithm for
articulation points ?

How to compute High_pt(v) efficiently ?

Question: Can we express High_pt(v) in terms of
its children and proper ancestors?

18

v

root

Exploit recursive structure
of DFS tree.

How to compute High_pt(v) efficiently ?

Question: Can we express High_pt(v) in terms of
its children and proper ancestors?

High_pt(v) =

 min
 ?
 ?

19

v

root

If w=child(v)

If w = proper
ancestor of v

(v,w) ϵ E

High_pt(w)

DFN(w)

The novel algorithm

The algorithm will output an array AP[] such that

AP[v]= true if and only if v is an articulation point.

20

Algorithm for articulation points in a graph G

DFS(v)

{ Visited(v)  true; DFN[v]  dfn ++;

 For each neighbor w of v

 { if (Visited(w) = false)

 { DFS(w) ;

 }

 }

}

DFS-traversal(G)

{ dfn  0;

 For each vertex vϵ V { Visited(v) false; }

 For each vertex v ϵ V { If (Visited(v) = false) DFS(v) }

}

21

……..;

……..;

Parent(w)  v;

AP[v] false

High_pt[v]∞ ;

……..;

Algorithm for articulation points in a graph G

DFS(v)

{ Visited(v)  true; DFN[v]  dfn ++;

 For each neighbor w of v

 { if (Visited(w) = false)

 {

 }

 }

}

DFS-traversal(G)

{ dfn  0;

 For each vertex vϵ V { Visited(v) false; }

 For each vertex v ϵ V { If (Visited(v) = false) DFS(v) }

}

22

……..;

……..;

Else if (Parent(v) ≠ w)
 High_pt(v)  min(DFN(w), High_pt(v))

High_pt(v)  min(High_pt(v), High_pt(w));

AP[v] false

High_pt[v]∞ ;

……..; If High_pt(w) ≥ DFN[v] AP[v]  true

Parent(w) v; DFS(w);

Conclusion

Theorem2 : For a given graph G=(V,E), all articulation points can be

computed in O(𝒎 + 𝒏) time.

23

QuickSort

24

Average time complexity = O(𝒏 𝐥𝐨𝐠 𝒏)

Pseudocode for QuickSort(𝑺)

QuickSort(𝑺)

{ If (|𝑺|>1)

 Pick and remove an element 𝒙 from 𝑺;

 (𝑺<𝒙, 𝑺>𝒙) Partition(𝑺,𝒙);

 return(Concatenate(QuickSort(𝑺<𝒙), 𝒙, QuickSort(𝑺>𝒙))

}

25

Pseudocode for QuickSort(𝑺)
When the input 𝑺 is stored in an array

QuickSort(𝑨,𝒍, 𝒓)

{ If (𝒍 < 𝒓)

 𝒊 Partition(𝑨,𝒍,𝒓);

 QuickSort(𝑨,𝒍, 𝒊 − 𝟏);

 QuickSort(𝑨,𝒊 + 𝟏, 𝒓)

}

Partition :

𝒙𝑨[𝒍] as a pivot element,

permutes the subarray 𝑨[𝒍…𝒓] such that

elements preceding 𝒙 are smaller than 𝒙,

𝑨[𝒊]= 𝒙,

and elements succeeding 𝒙 are greater than 𝒙.
26

 0 1 2 3 4 5 6 7 8

Example: Partition(𝑨,𝟎,𝟖)

27

x
<x

>x

What happens after
Partition(𝑨,𝟎,𝟖)

 0 1 2 3 4 5 6 7 8

Example: Partition(𝑨,𝟎,𝟖)

28

 0 1 2 3 4 5 6 7 8

<x >x

Analyzing average time complexity of
QuickSort

29

Part 1

Deriving the recurrence

Analyzing average time complexity of QuickSort

Let 𝑒𝑖 : 𝑖th smallest element of 𝑨.

Observation: the running time of Quick sort depends upon the permutation of 𝑒𝑖’s and not
on the values taken by 𝑒𝑖’s.

𝑻(𝒏) : Average running time for Quick sort on input of size 𝒏.

Question: average over what ?

Answer: average over all possible permutations of {𝑒1, 𝑒2,… ,𝑒𝑛}

 Hence, 𝑻(𝒏)=
1

𝒏!
 𝑸(𝜋)𝜋 ,

where 𝑸(𝜋) :the time complexity (or no. of comparisons) when the input is permutation 𝜋.

30

Calculating 𝑻(𝒏) from definition/scratch is
impractical, if not impossible.

Think for at least 5-10 minutes to find
alternate way to calculate 𝑻(𝒏).

We shall give discuss two such ways tomorrow.

