
Data Structures and Algorithms 
(CS210A) 

Semester I – 2014-15 

Lecture 26 
• Quick revision of Depth First Search (DFS) Traversal 

• An O(𝒎 + 𝒏):algorithm for biconnected components of a graph 

• Quick Sort: Average time complexity analysis 
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Quick revision of  
Depth First Search (DFS) Traversal 
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DFS traversal of G  

DFS(v)   

{  Visited(v)  true;    

    For each neighbor w of v  

    {          if (Visited(w)  = false)                         

               {    DFS(w) ;                           

                

               } 

      

    } 

} 

 

DFS-traversal(G) 

{    

    For each vertex vϵ V  {       Visited(v)  false                        } 

    For each vertex v ϵ V {       If (Visited(v ) = false)    DFS(v)   } 

} 
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……..; 

……..; 

DFN[v]  dfn ++; 

dfn  0; 



DFN number 

 

 

 

 

 

 

 

 

 

DFN[x] : 

The number at which x gets visited during DFS 
traversal. 
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DFS(v) computes a tree rooted at v 

 

 

 

 

 

 

 

 

 

If x is ancestor of y then 

                   DFN[x]    ?   DFN[y]   

 

Question: Is a DFS tree unique ? 

Answer: No. 

 

Question:  

Can any rooted tree be obtained through 
DFS ? 

Answer: No.  
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Always remember 
 

  
 

 

 

 

non-tree edge  back edge 
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Instead of looking at a graph, 
look at its picture in terms of  any of its DFS traversal 



A novel application of DFS traversal 

 

 

 

Definition: A connected graph is said to be biconnected  

if there does not exit any vertex whose removal disconnects the graph.  

 

Motivation: To design robust networks (immune to any single node failure). 
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Determining if a graph 
G is biconnected 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No. 
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A trivial algorithms for checking 
 bi-connectedness of a graph 

 
 

• For each vertex v, determine if G\{v} is connected 

                          (One may use either BFS or DFS traversal here) 

  

      Time complexity of the trivial algorithm : O(𝒎𝒏)  
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An O(𝒎 + 𝒏) time algorithm 

  A single DFS traversal 
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An O(𝒎 + 𝒏) time algorithm 

 

• A formal characterization of the problem. 

                                     (articulation points) 

 

• Exploring relationship between articulation point & DFS tree. 

 

 

• Using the relation cleverly to design an efficient algorithm.  

 

 

11 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The removal of any of {v,f,u} can destroy 
connectivity. 

 

v,f,u are called the articulation points of G. 
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This graph is NOT biconnected 



A formal definition of articulaton point 

Definition: A vertex x is said to be articulation point if there exist two distinct vertices 
u and v such that every path between u and v passes through x. 

 

 

 

 

 

 

 

Observation: A graph is biconnected if none of its vertices is an articulation point. 

 

AIM:  

Design an algorithm to compute all articulation points in a given graph.  
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v u x 



Some observations 

  

• A leaf node can never be an a.p. ?  

 

• Root is an a.p. iff it has two or more 
children. 
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v 

What about an internal 
node ? 



Necessary and Sufficient condition  
for x to be articulation point 

 

 

 

 

 

 

 

 

 

 

Theorem1:   

An internal node x  is articulation point iff 

x has at least one child y s.t. there is no back 
edge from subtree(y) to ancestor of x. 

 

 No back edge from subtree(y) going to a 
vertex “higher” than x. 
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Necessary and Sufficient condition  
for x to be articulation point 

 

 

 

 

 

 

 

 

 

 

Theorem1:   

An internal node x  is articulation point iff 

x has at least one child y s.t. there is no back 
edge from subtree(y) to ancestor of x. 

 

 

High_pt(v):  

DFN of the highest ancestor of v to which 
there is a back edge from subtree(v). 

 

Theorem2:  

An internal node x is articulation point iff  

it has a child, say y, in DFS tree such that 

 High_pt(y)   ?    DFN(x). 
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Theorem2:  

An internal node x is articulation point iff it has a child, say y, in DFS tree such that 

 High_pt(y)  ≥ DFN(x). 

 

 

 

 

 

In order to compute High_pt(v) of a vertex v,  

we have to traverse the adjacency lists of all vertices of subtree T(v). 

 O(𝒎) time in the worst case to compute High_pt(v) of a vertex v. 

 O(𝒎𝒏) time algorithm   
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Good !  
But how to transform this Theorem 

into an efficient algorithm for 
articulation points ? 



How to compute High_pt(v) efficiently ? 

 

 

 

 

 

 

 

 

 

 

Question:  Can we express High_pt(v) in terms of  
its children and proper ancestors? 
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Exploit recursive structure 
of DFS tree. 



How to compute High_pt(v) efficiently ? 

 

 

 

 

 

 

 

 

 

 

Question:  Can we express High_pt(v) in terms of  
its children and proper ancestors? 

 

High_pt(v) =  

            min     
      ?
     ?
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High_pt(w) 

DFN(w) 



The novel algorithm 

The algorithm will output an array AP[] such that  

AP[v]= true if and only if v is an articulation point. 
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Algorithm for articulation points in a graph G  

DFS(v)   

{  Visited(v)  true; DFN[v]  dfn ++;   

    For each neighbor w of v  

    {          if (Visited(w)  = false)                         

               {    DFS(w) ;                           

                

                

 

               } 

          

     

    } 

} 

DFS-traversal(G) 

{   dfn  0; 

    For each vertex vϵ V  {       Visited(v)  false;                              } 

    For each vertex v ϵ V {       If (Visited(v ) = false)    DFS(v)          } 

} 
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……..; 

……..; 

Parent(w)  v; 

AP[v] false 

High_pt[v]∞ ; 

……..; 



Algorithm for articulation points in a graph G  

DFS(v)   

{  Visited(v)  true; DFN[v]  dfn ++;   

    For each neighbor w of v  

    {          if (Visited(w)  = false)                         

               {     

                

                

 

               } 

          

     

    } 

} 

DFS-traversal(G) 

{   dfn  0; 

    For each vertex vϵ V  {       Visited(v)  false;                              } 

    For each vertex v ϵ V {       If (Visited(v ) = false)    DFS(v)          } 

} 
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……..; 

……..; 

Else if (Parent(v) ≠  w)  
                       High_pt(v)  min(DFN(w), High_pt(v)) 

High_pt(v)  min(High_pt(v), High_pt(w)); 

AP[v] false 

High_pt[v]∞ ; 

……..; If  High_pt(w) ≥ DFN[v]   AP[v]  true 

Parent(w) v;   DFS(w); 



Conclusion 

 

 

 

 

Theorem2 : For a given graph G=(V,E), all articulation points can be 

computed in O(𝒎 + 𝒏) time. 
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QuickSort  
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Average time complexity = O(𝒏 𝐥𝐨𝐠 𝒏) 
  



Pseudocode for QuickSort(𝑺) 
 

 

 

 

QuickSort(𝑺) 

{        If (|𝑺|>1)  

                      Pick and remove an element 𝒙 from 𝑺; 

                      (𝑺<𝒙, 𝑺>𝒙) Partition(𝑺,𝒙);  

                      return( Concatenate(QuickSort(𝑺<𝒙), 𝒙, QuickSort(𝑺>𝒙)) 

} 
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Pseudocode for QuickSort(𝑺) 
When the input 𝑺 is stored in an array 

 

QuickSort(𝑨,𝒍, 𝒓) 

{        If (𝒍 < 𝒓) 

                         𝒊 Partition(𝑨,𝒍,𝒓);  

                        QuickSort(𝑨,𝒍, 𝒊 − 𝟏); 

                        QuickSort(𝑨,𝒊 + 𝟏, 𝒓) 

} 

 

Partition : 

𝒙𝑨[𝒍] as a pivot element,  

permutes the subarray 𝑨[𝒍…𝒓] such that   

elements preceding 𝒙 are smaller than 𝒙,  

𝑨[𝒊]= 𝒙, 

and elements succeeding 𝒙 are greater than 𝒙.  
26 



 0        1         2       3        4        5       6       7        8 

Example: Partition(𝑨,𝟎,𝟖) 
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Partition(𝑨,𝟎,𝟖) 
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Example: Partition(𝑨,𝟎,𝟖) 
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Analyzing average time complexity of 
QuickSort  
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Part 1 

Deriving the recurrence 



Analyzing average time complexity of QuickSort 
 

 

Let 𝑒𝑖 : 𝑖th smallest element of 𝑨. 

 

Observation: the running time of Quick sort depends upon the permutation of 𝑒𝑖’s and not 
on the values taken by 𝑒𝑖’s. 

 

𝑻(𝒏) : Average running time for Quick sort on input of size 𝒏. 

Question: average over what ? 

Answer: average over all possible permutations of {𝑒1, 𝑒2,… ,𝑒𝑛} 

                                           Hence,  𝑻(𝒏)= 
1

𝒏!
 𝑸(𝜋)𝜋 ,  

where 𝑸(𝜋) :the time complexity (or no. of comparisons) when the input is permutation 𝜋. 
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Calculating 𝑻(𝒏) from definition/scratch is 
impractical, if not impossible. 

Think for at least 5-10 minutes to find 
alternate way to calculate 𝑻(𝒏). 

We shall give discuss two such ways tomorrow. 


