Data Structures and Algorithms (CS210A) Semester I – 2014-15

Lecture 26

- Quick revision of Depth First Search (DFS) Traversal
- An O(m + n): algorithm for biconnected components of a graph
- Quick Sort: Average time complexity analysis

Quick revision of Depth First Search (DFS) Traversal

DFS traversal of *G*

DFS(v)

DFS-traversal(G)

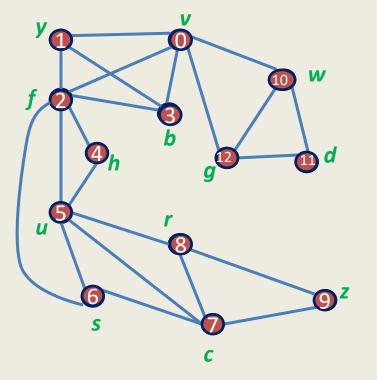
}

{ dfn ← 0; For each vertex v∈ V { Visited(v) ← false } For each vertex v ∈ V { If (Visited(v) = false) DFS(v) }

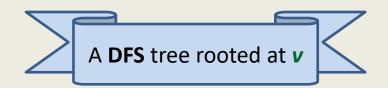
DFN number

DFN[**x**] :

The number at which **x** gets visited during DFS traversal.



DFS(v) computes a tree rooted at v



If x is ancestor of y then DFN[x] < DFN[y]

Question: Is a DFS tree unique ? Answer: No.

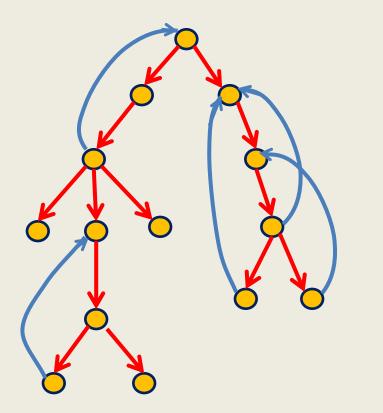
Question:

Can any rooted tree be obtained through DFS ?

Answer: No.

Always remember

Instead of looking at a graph, look at its picture in terms of any of its DFS traversal



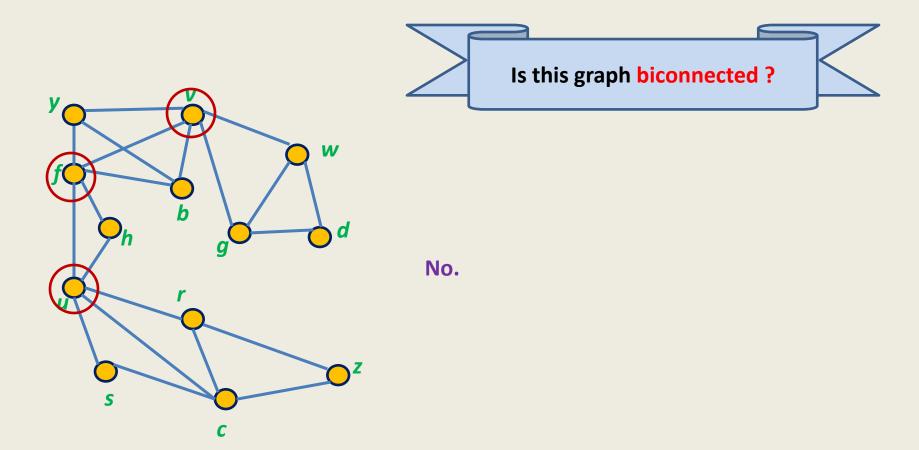
non-tree edge \rightarrow back edge

A novel application of DFS traversal

Definition: A connected graph is said to be biconnected

if there does not exit any vertex whose removal disconnects the graph.

Motivation: To design robust networks (immune to any single node failure).



A trivial algorithms for checking bi-connectedness of a graph

For each vertex v, determine if G\{v} is connected
 (One may use either BFS or DFS traversal here)

Time complexity of the trivial algorithm : O(mn)

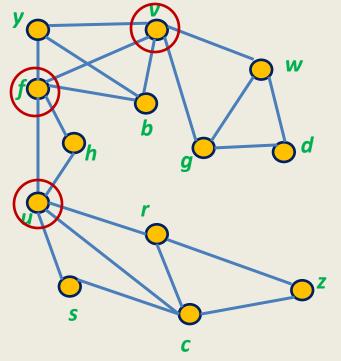
An O(m + n) time algorithm

A single **DFS** traversal

An O(m + n) time algorithm

- A formal characterization of the problem. (articulation points)
- Exploring <u>relationship</u> between articulation point & DFS tree.

• Using the relation **cleverly** to design an efficient algorithm.



The removal of any of {*v*,*f*,*u*} can destroy connectivity.

v,**f**,**u** are called the **articulation points** of **G**.

A formal definition of articulaton point

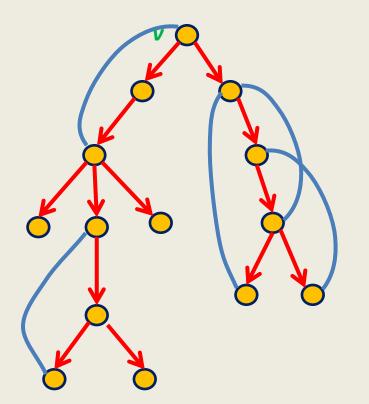
Definition: A vertex **x** is said to be **articulation point** if there exist two distinct vertices **u** and **v** such that every path between **u** and **v** passes through **x**.

Observation: A graph is biconnected if none of its vertices is an articulation point.

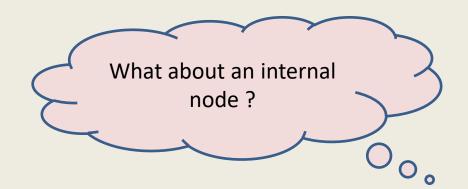
AIM:

Design an **algorithm** to compute all **articulation points** in a given graph.

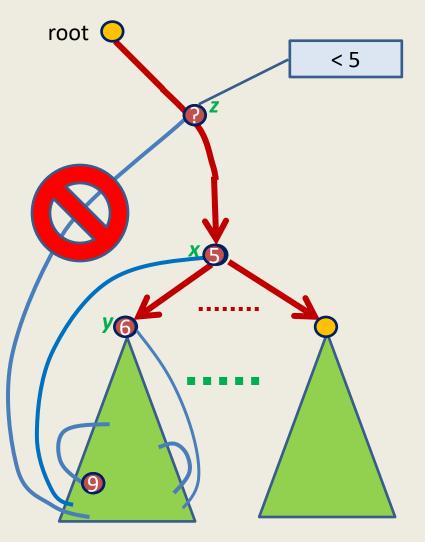
Some observations



- A leaf node can never be an a.p. ?
- **Root** is an **a.p**. iff it has two or more children.



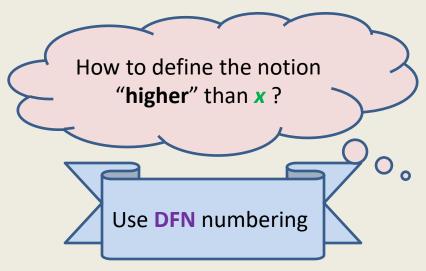
Necessary and **Sufficient** condition for **x** to be articulation point



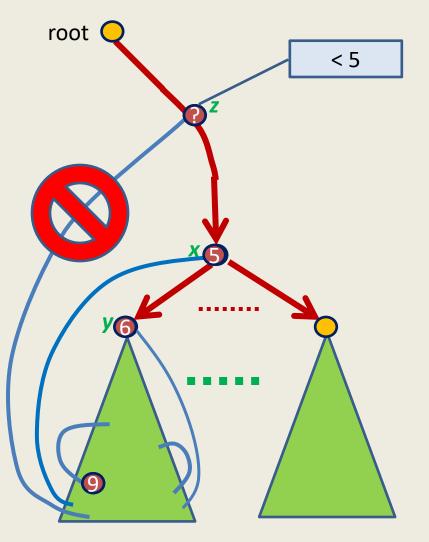
Theorem1:

An internal node *x* is **articulation point** iff *x* has <u>**at least</u>** one child *y* s.t. there is **no** back edge from **subtree(y)** to **ancestor** of *x*.</u>

→ No back edge from subtree(y) going to a vertex "higher" than x.

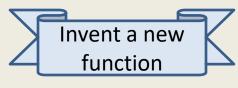


Necessary and **Sufficient** condition for **x** to be articulation point



Theorem1:

An internal node *x* is **articulation point** iff *x* has <u>**at least</u>** one child *y* s.t. there is **no** back edge from **subtree(y)** to **ancestor** of *x*.</u>



High_pt(v):

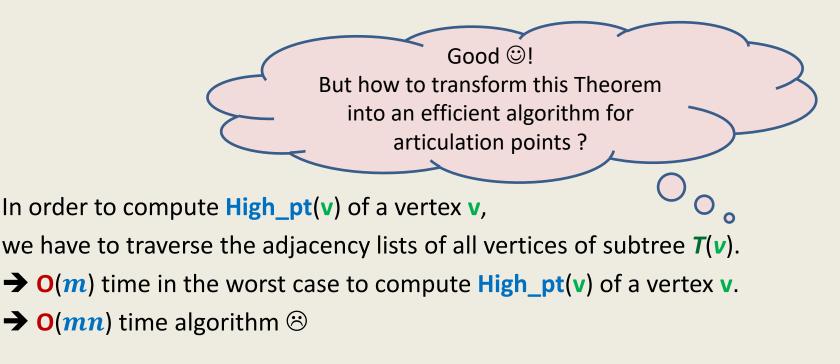
DFN of the <u>highest ancestor</u> of v to which there is a back edge from **subtree**(v).

Theorem2:

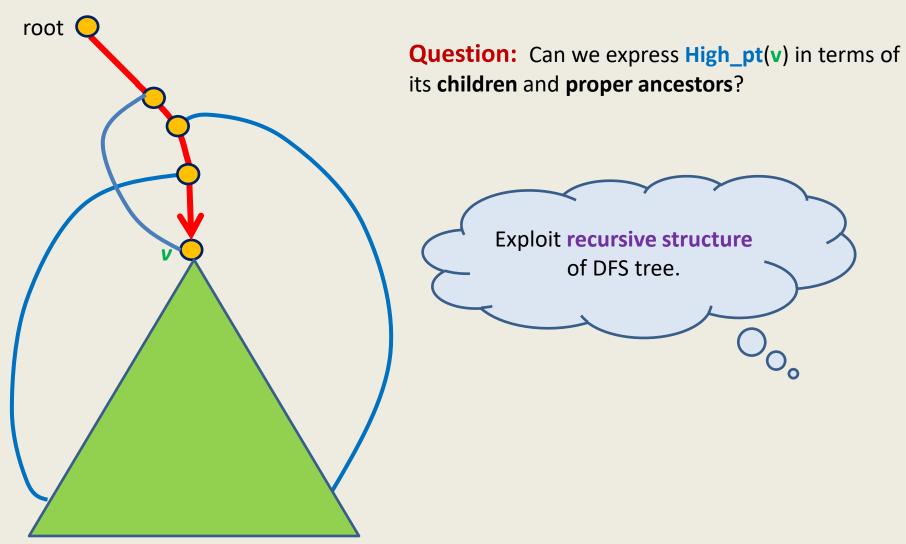
An internal node x is articulation point iff it has a child, say y, in DFS tree such that $High_pt(y) \ge DFN(x).$

Theorem2:

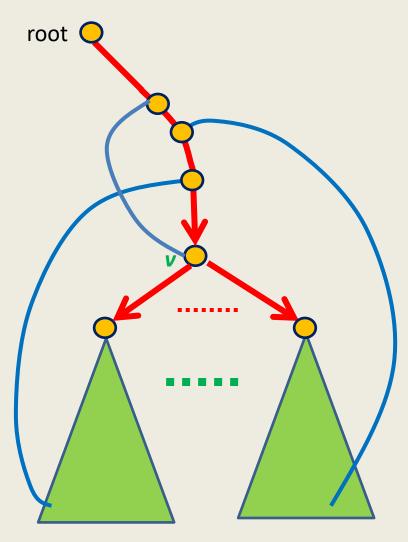
An internal node x is **articulation point iff** it has a child, say y, in **DFS** tree such that $High_pt(y) \ge DFN(x).$



How to compute **High_pt(v)** efficiently ?



How to compute **High_pt(v)** efficiently ?



Question: Can we express **High_pt(v)** in terms of its **children** and **proper ancestors**?

High_pt(v) =

If **w**=child(**v**)

If **w** = **proper**

ancestor of v

The novel algorithm

The algorithm will output an array **AP[]** such that **AP[v]**= **true** if and only if **v** is an articulation point.

Algorithm for articulation points in a graph G

DFS(v)

```
{ Visited(v) \leftarrow true; DFN[v] \leftarrow dfn ++; High_pt[v] \leftarrow \infty;
  For each neighbor w of v
          if (Visited(w) = false)
  {
         { DFS(w); Parent(w) \leftarrow v;
              .....;
              }
          ........
  }
DFS-traversal(G)
{ dfn \leftarrow 0;
  For each vertex v \in V { Visited(v) \leftarrow false; AP[v] \leftarrow false }
  For each vertex v \in V {
                                  If (Visited(v) = false) DFS(v)
                                                                             }
}
```

Algorithm for articulation points in a graph G

}

DFS(v)

```
{ Visited(v) \leftarrow true; DFN[v] \leftarrow dfn ++; High_pt[v] \leftarrow \infty;
  For each neighbor w of v
  {
          if (Visited(w) = false)
          {
              Parent(w) \leftarrow v; DFS(w);
                High_pt(v) \leftarrow min(High_pt(v), High_pt(w));
                If High_pt(w) \geq DFN[v] AP[v] \leftarrow true
          Else if (Parent(v) \neq w)
```

 $High_pt(v) \leftarrow min(DFN(w), High_pt(v))$

DFS-traversal(G)

}

```
{ dfn \leftarrow 0;
  For each vertex v \in V { Visited(v) \leftarrow false; AP[v] \leftarrow false }
  For each vertex v \in V {
                                  If (Visited(v) = false) DFS(v)
}
```

Conclusion

Theorem2: For a given graph G=(V,E), all articulation points can be computed in O(m + n) time.

QuickSort

Average time complexity = $O(n \log n)$

Pseudocode for QuickSort(S)

QuickSort(S)

}

{ If (|<mark>S</mark>|>1)

Pick and remove an element x from S; $(S_{<x}, S_{>x}) \leftarrow Partition(S, x)$; return(Concatenate(QuickSort($S_{<x}$), x, QuickSort($S_{>x}$))

Pseudocode for QuickSort(S)

When the input **S** is stored in an array

```
QuickSort(A, l, r)
{ If (l < r)
i \leftarrow Partition(A, l, r);
QuickSort(A, l, i - 1);
QuickSort(A, i + 1, r)
}
```

Partition :

 $x \leftarrow A[l]$ as a pivot element,

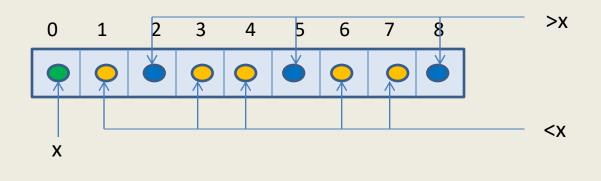
permutes the subarray A[l ... r] such that

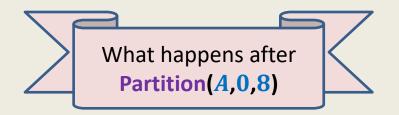
elements preceding x are smaller than x,

 $\boldsymbol{A[\boldsymbol{i}]=\boldsymbol{x},}$

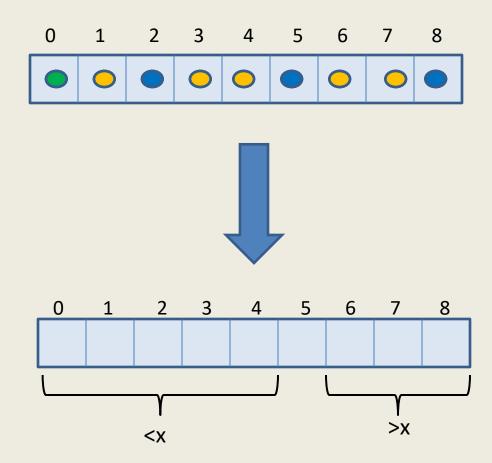
and elements succeeding x are greater than x.

Example: Partition(A,0,8)





Example: Partition(A,0,8)



Analyzing average time complexity of QuickSort

Part 1

Deriving the recurrence

Analyzing average time complexity of QuickSort

Let e_i : *i*th **smallest** element of *A*.

Observation: the running time of **Quick sort** depends upon the permutation of e_i 's and not on the values taken by e_i 's.

T(n): Average running time for **Quick sort** on input of size n.

Question: average over what?

Answer: average over all possible permutations of $\{e_1, e_2, \dots, e_n\}$

Hence,
$$T(n) = \frac{1}{n!} \sum_{\pi} Q(\pi)$$
,

where $Q(\pi)$: the time complexity (or no. of comparisons) when the input is permutation π .

