Data Structures and Algorithms

(CS210A)

Semester I - 2014-15

Lecture 35

A new algorithm design paradigm: Greedy strategy

part II

Continuing Problem from last class

JOB Scheduling

Largest subset of non-overlapping job

A job scheduling problem Formal Description

INPUT:

- A set J of n jobs $\{j_1, j_2, ..., j_n\}$
- job j_i is specified by two real numbers

```
s(i): start time of job j_i
f(i): finish time of job j_i
```

A single server

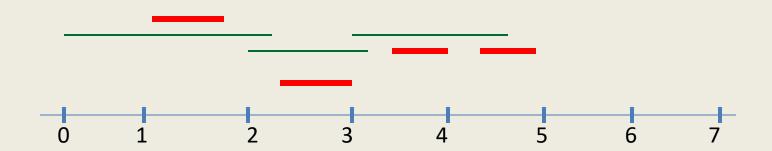
Constraints:

- Server can execute <u>at most one job</u> at any moment of time and a job.
- **Job** j_i , if scheduled, has to be scheduled during[s(i), f(i)] only.

Aim: To select the **largest** subset of **non-overlapping** jobs which can be executed by the server.

Designing algorithm for the problem

Strategy 4: Select the job with earliest finish time



Intuition:

Selecting such a job will **free** the server **earliest**

→ hence more no. of jobs might get scheduled.

Algorithm "earliest finish time"

Algorithm (Input : set **J** of **n** jobs.)

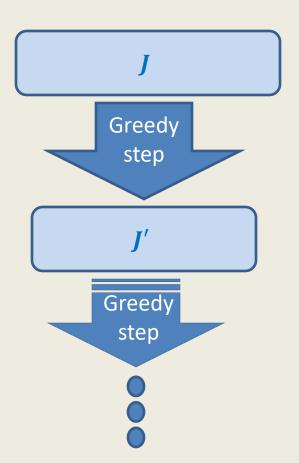
- 1. Define $A \leftarrow \emptyset$;
- 2. While $J <> \emptyset$ do { Let $x \in J$ has earliest finish time; $A \leftarrow A \cup \{x\};$ $J \leftarrow J \setminus Overlap(x);$

3. Return *A*;

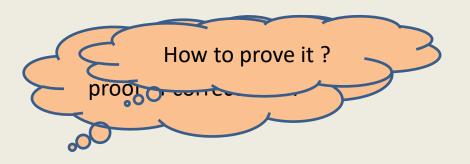
Lemma1 (last class): There exists \underline{an} optimal solution for J in which x is present.

Proof of correctness?

Let $x \in J$ be the job with earliest finish time. Let $J' = J \setminus Overlap(x)$

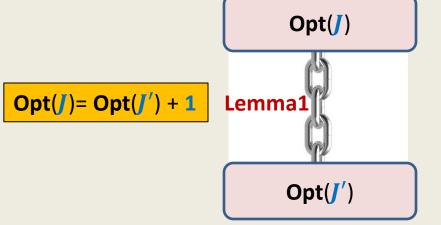


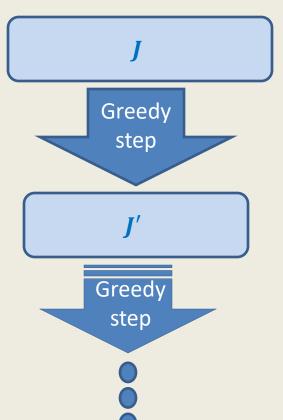
Algorithm "earliest finish time"



Proof of correctness?

Let $x \in J$ be the job with earliest finish time. Let $J' = J \setminus Overlap(x)$

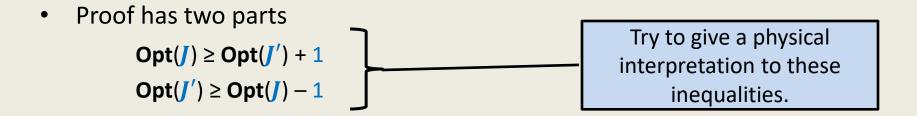




Notation:

Opt(*J***)**: the size of an optimal solution for *J***.**

Theorem:
$$Opt(J) = Opt(J') + 1$$
.



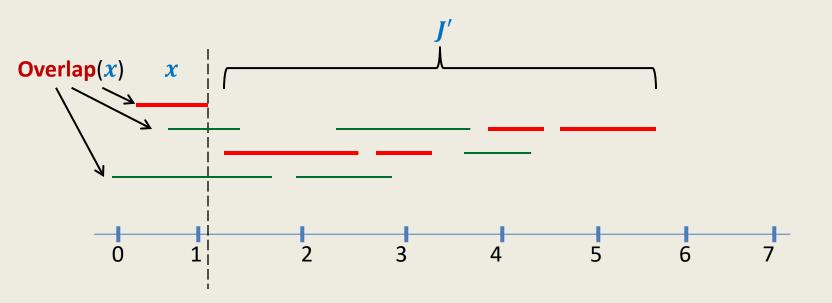
Proof for each part is a proof by construction

Algorithm "earliest finish time" Proving $Opt(J) \ge Opt(J') + 1$

Observation: start time of every job in J' is greater than finish time of x. Let O' be any optimal solution for J'.

None of the jobs in From an **optimal solution** of J' Hence O' U $\{x\}$ is a can you derive a **solution** for J with one extra job?

Therefore $Opt(I) \ge |I| + 1 = Opt(I) + 1$.



Algorithm "earliest finish time"

Proving
$$Opt(J') \ge Opt(J) - 1$$
.

Lemma1 (last class): There exists an optimal solution for J in which x is present.

Let $oldsymbol{O}$ be an optimal solution for $oldsymbol{J}$ containing $oldsymbol{x}$.

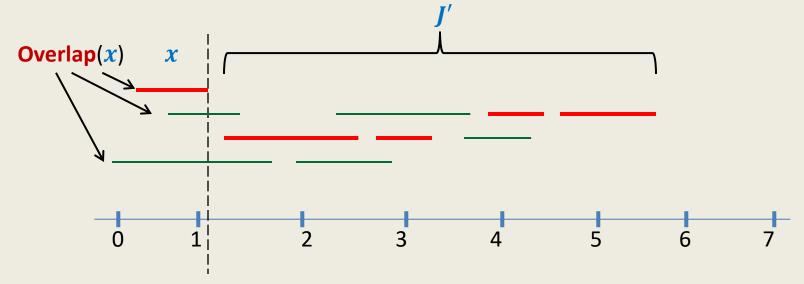
None of the jobs in Coverland with a

→ Every job from **(**

From an **optimal solution** of **J** can you derive a **solution** for **J**' with one job less?

Hence O(x) is a subset of non-overlapping jobs from J.

Therefore $Opt(J') \ge |O| - 1 = Opt(J) - 1$.



Theorem:

Given any set J of n jobs, the algorithm based on "earliest finish time" approach computes the largest subset of non-overlapping job.

$O(n \log n)$ implementation of the Algorithm

```
Algorithm (Input: set J of n jobs.)
Define A ← Ø;
While J <>Ø do

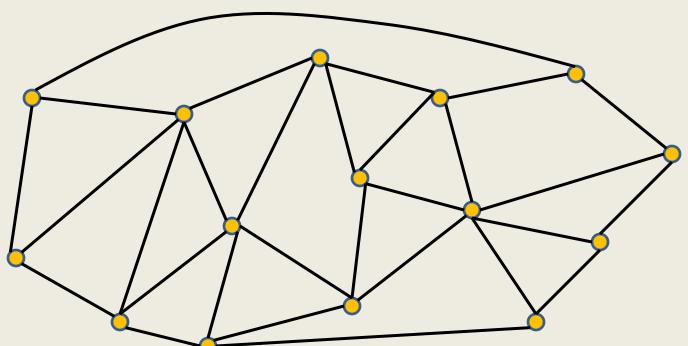
{
    Let x ∈ J have earliest finish time;
    A ← A U {x};
    J ← J \Overlap(x);
}
Return A;
Sort J in increasing order of start time.
→ O(n²) time complexity is obvious
```

Problem 2

First we shall give motivation.

Motivation:

A road or telecommunication network



Suppose there is a collection of possible links/roads that can be laid. But laying down each possible link/road is costly.

Aim: To lay down **least number** of links/roads to ensure **connectivity** between each pair of nodes/cities.

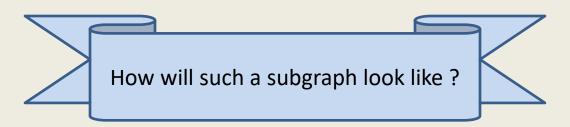
Motivation

Formal description of the problem

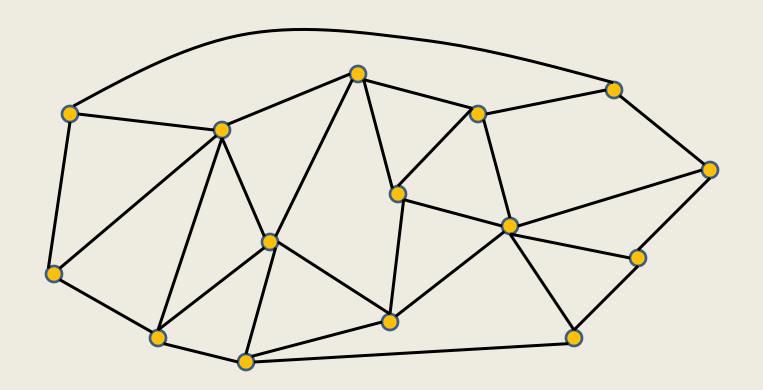
Input: an undirected graph G=(V,E).

Aim: compute a subgraph (V,E'), $E' \subseteq E$ such that

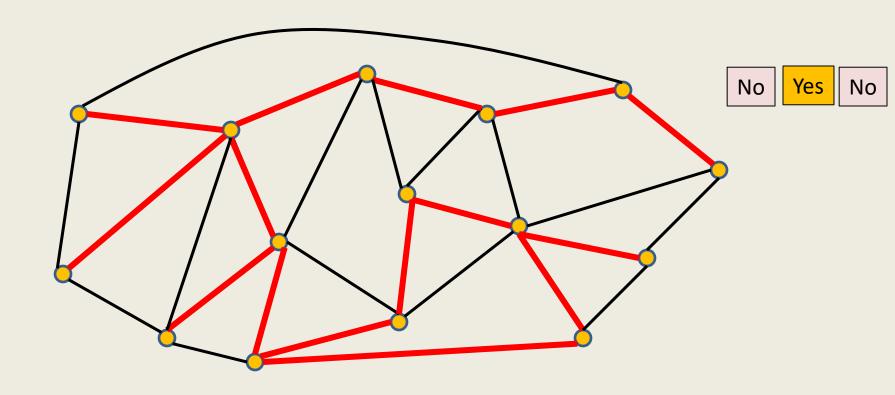
- Connectivity among all V is guaranteed in the subgraph.
- |E'| is minimum.



A road or telecommunication network



A road or telecommunication network



Is this subgraph meeting our requirement?

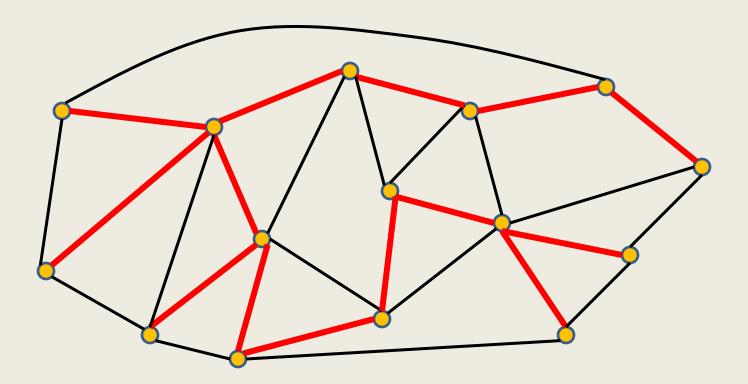
A tree

The following definitions are **equivalent**.

- An undirected graph which is connected but does not have any cycle.
- An undirected graph where each pair of vertices has a unique path between them.
- An undirected connected graph on n vertices and n-1 edges.
- An undirected graph on n vertices and n-1 edges and without any cycle.

A Spanning tree

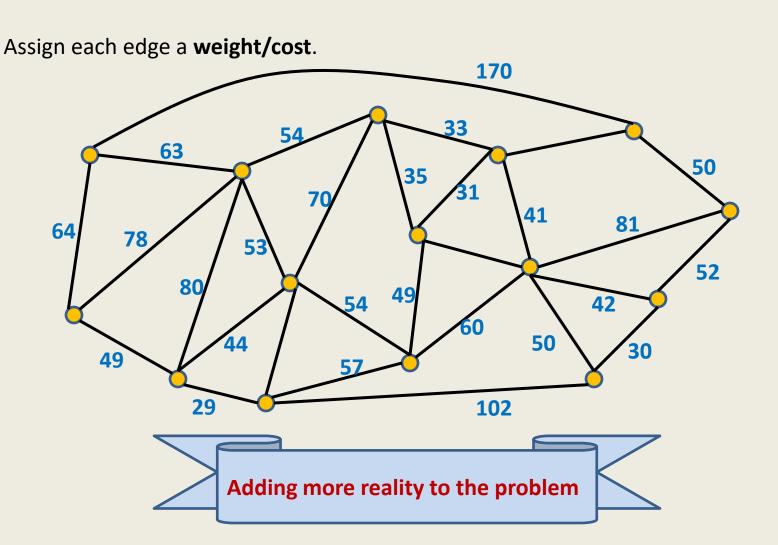
Definition: For an undirected graph (V,E), spanning tree is a **subgraph** (V,E'), $E' \subseteq E$ which is a tree.



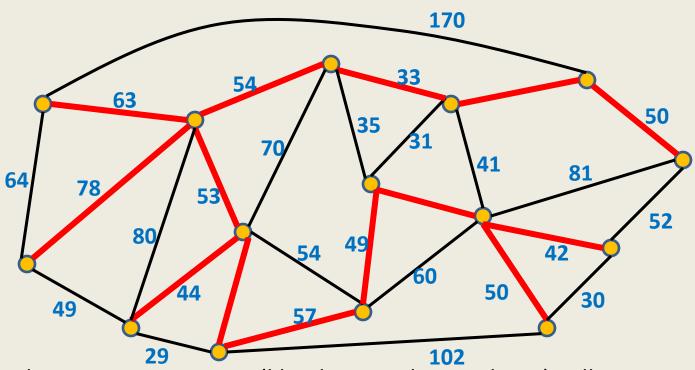
Observation: Given a spanning tree T of a graph G, adding a nontree edge e to T creates a unique cycle.

There will be total m - n + 1 such cycles. These are called **fundamental cycles** in **G** induced by the spanning tree **T**.

A road or telecommunication network



A road or telecommunication network



Any arbitrary spanning tree (like the one shown above) will not serve our goal.

We need to select the spanning tree with **least weight/cost**.

Problem 2

Minimum spanning tree

Problem Description

Input: an undirected graph G=(V,E) with $w:E \rightarrow \mathbb{R}$,

Aim: compute a spanning tree (V,E'), $E' \subseteq E$ such that $\sum_{e \in E'} w(e)$ is minimum.

How to compute a MST? The least weight edge should be in MST. But why? Is there any edge for which you feel Look a strongly to be present in MST?

Let $e_0 \in E$ be the edge of least weight in the given graph.

Lemma2: There is a **MST** T containing e_0 .

Proof: Consider any **MST** T. Let $e_0 \notin T$.

Consider the fundamental cycle \mathcal{C} defined by e_0 in \mathcal{T} .

Swap e_0 with any edge $e \in T$ present in C.



Let $e_0 \in E$ be the edge of least weight in the given graph.

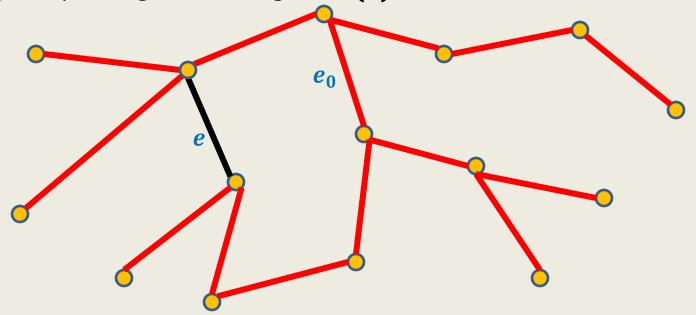
Lemma2: There is a **MST** T containing e_0 .

Proof: Consider any **MST** T. Let $e_0 \notin T$.

Consider the fundamental cycle C defined by e_0 in T.

Swap e_0 with any edge $e \in T$ present in C.

We get a spanning tree of weight $\leq \mathbf{w}(T)$.



Try to translate Lemma2 to an algorithm for MST?

with **inspiration** from the job scheduling problem ©