
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 4:
• Design of O(𝑛) time algorithm for Maximum sum subarray

• Proof of correctness of an algorithm

• A new problem : Local Minima in a grid

1

Max-sum subarray problem

Given an array A storing 𝑛 numbers,

find its subarray the sum of whose elements is maximum.

2

3 -5 3 8 2 -4 9 -6 3 -2 -8 3 -5 1 7 -9 A

4 7

-2 18

Max-sum subarray problem:
A trivial algorithm

A_trivial_algo(A)
{ max A[0];

 For i=0 to n-1

 For j=i to n-1

 { temp compute_sum(A,i,j);

 if max< temp then max temp;

 }

 return max;

}

compute_sum(A, i,j)

{ sumA[i];

 For k=i+1 to j sum sum+A[k];

 return sum;

} 3

Time complexity = O(𝑛3)

DESIGNING AN O(𝑛) TIME ALGORITHM

4

Focusing on any particular index 𝑖

Let S(𝑖): the sum of the maximum-sum subarray ending at index 𝑖.

Observation:

 In order to solve the problem, it suffices to ………..

5

3 -5 3 8 2 -4 8 -6 3 -2 -8 3 -5 1 7 -9 A

𝑖 =5

-4

 6

-2

 9

 4

 7

S(𝑖)=9 for 𝑖 = 5

compute S(𝑖) for each 0 ≤ 𝑖 < 𝑛.

Focusing on any particular index 𝑖

Observation:

 In order to solve the problem, it suffices to compute S(𝑖) for each 0 ≤ 𝑖 < 𝑛.

Question: If we wish to achieve O(𝑛) time to solve the problem,

how quickly should we be able to compute S(𝑖) for a given index 𝑖 ?

Answer: O(1) time.

Idea: Perhaps we can compute S(𝑖) if we know S(𝑖 − 1) ?

Question: What is the relation between S(𝑖) and S(𝑖 − 1) ?

6

Inspiration from
recent past

Relation between S(𝒊) and S(𝒊 − 𝟏)

Theorem 1:

If S(𝑖 − 1) > 0 then S(𝑖) = S(𝑖 − 1) + A[𝑖]

 else S(𝑖) = A[𝑖]

7

A

𝑖

Subarray corresponding to S(𝒊)

?

Subarray corresponding to S(𝒊 − 𝟏)

An O(𝒏) time Algorithm for Max-sum subarray

Max-sum-subarray-algo(A[0 … 𝒏 − 𝟏])
{ S[0] A[0];

 for 𝑖 = 1 to 𝒏 − 𝟏

 { If S[𝑖 − 1] > 0 then S[𝑖] S[𝑖 − 1] + A[𝑖]

 else S[𝑖] A[𝑖]

 }

 “Scan S to return the maximum entry”

}
Time complexity of the algorithm = O(𝒏)

Homework:

• Refine the algorithm so that it uses only O(1) extra space.

8

𝒏 − 𝟏 repetitions

O(𝟏) time

O(𝒏) time

O(𝟏) time

An O(𝒏) time Algorithm for Max-sum subarray

Max-sum-subarray-algo(A[0 … 𝒏 − 𝟏])
{ S[0] A[0]

 for 𝑖 = 1 to 𝒏 − 𝟏

 { If S[𝑖 − 1] > 0 then S[𝑖] S[𝑖 − 1] + A[𝑖]

 else S[𝑖] A[𝑖]

 }

 “Scan S to return the maximum entry”

}

9

What is the proof of
correctness of the algorithm ?

What does correctness of an algorithm mean ?

For every possible valid input, the algorithm must output correct answer.

10

An O(𝒏) time Algorithm for Max-sum subarray

Max-sum-subarray-algo(A[0 … 𝒏 − 𝟏])
{ S[0] A[0]

 for 𝑖 = 1 to 𝒏 − 𝟏

 { If S[𝑖 − 1] > 0 then S[𝑖] S[𝑖 − 1] + A[𝑖]

 else S[𝑖] A[𝑖]

 }

 “Scan S to return the maximum entry”

}
Question:

What needs to be proved in order to establish the correctness of this algorithm ?

Answer: At the end of 𝑖th iteration,

 “S[𝑖] stores the sum of maximum sum subarray ending at index 𝑖”

11

Proof of correctness of Max-sum-subarray-algo

Assertion:

At the end of iteration 𝑖, S[𝑖] stores the sum of maximum sum subarray ending at A[𝑖].

Question: How to prove the assertion ?

Answer: [By mathematical induction and using Theorem 1]

Homework: Make sincere attempts to write the details of the proof. (it is quite easy).

12

NEW PROBLEM:
LOCAL MINIMA IN A GRID

13

Local minima in a grid

Definition: Given a 𝒏 × 𝒏 grid storing distinct numbers, an entry is local

minima if it is smaller than each of its neighbors.

14

3 𝒊

𝒋

3 10 5

99

31

Yes. After all, global
minima is also a

local minima.

Does a local
minima exist

always ?

Local minima in a grid

Problem: Given a 𝒏 × 𝒏 grid storing distinct numbers, output any local

minima in O(𝒏) time.

15

3 𝒊

𝒋

3 10 5

99

31

Using common sense principles

• There are some simple but very fundamental principles which are not
restricted/confined to a specific stream of science/philosophy.

• These principles, which we usually learn as common sense, can be used in
so many diverse areas of human life.

• For the current problem of local minima, we shall use two such simple
principles.

16

Two simple principles

1. Respect every new idea which solves a problem even partially.

2. Principle of simplification:
If you find a problem difficult,

 try to solve its simpler version, and then

 extend this solution to the original (difficult) version.

17

A new approach

Repeat : if current entry is not local minima, explore the neighbor storing smaller
value.

18

3 i

j

A new approach

Explore()

{ Let c be any entry to start with;

 While(c is not a local minima)

 {

 c a neighbor of c storing smaller value

 }

 return c;

}

Question: What is the proof of correctness of Explore ?

Answer:

It suffices if we can prove that While loop eventually terminates.

Indeed, the loop terminates since we never visit a cell twice.

19

A new approach

Explore()

{ Let c be any entry to start with;

 While(c is not a local minima)

 {

 c a neighbor of c storing smaller value

 }

 return c;

}

Worst case time complexity : O(𝑛2)

20

First principle:
Do not discard Explore()

Second principle:
Simplify the problem

How to apply this
principle ?

Local minima in an array

Theorem 2: A local minima in an array storing 𝑛 distinct elements can be
found in O(log 𝑛) time.

Homework:

• Design the algorithm stated in Theorem 2.

• Spend some time to extend this algorithm for the grid with running time=
O(𝑛).

 Please come prepared in the next class

 21

A

