Data Structures and Algorithms

(CS210A)
Semester | — 2014-15

Lecture 4.
Design of O(n) time algorithm for Maximum sum subarray
Proof of correctness of an algorithm
A new problem : Local Minima in a grid




Max-sum subarray problem

Given an array A storing n numbers,
find its subarray the sum of whose elements is maximum.

—
~




Max-sum subarray problem:
A trivial algorithm

A_trivial_algo(A)
{ max< A[O];
For i=0 to n-1
For j=ito n-1

{ temp < compute_sum(A,i,j);

if max< temp then max< temp;

}
return max; '
} Time complexity = O(n°>)
compute_sum(A, i,j)
{ sum<A]Ji];
Fork=i+1toj sum< sum+A[k];
return sum;



DESIGNING AN O(n) TIME ALGORITHM



Focusing on any particular index i

Let S(i): the sum of the maximum-sum subarray ending at index i.

_ 5(i)=9 for i = 5

Observation:
In order to solve the problem, it suffices to compute S(i) foreach 0 < i < n.



Focusing on any particular index i

Observation:

In order to solve the problem, it suffices to compute S(i) foreach 0 < i < n.

¥

Question: If we wish to achieve O(n) time to solve the problem,
how quickly should we be able to compute S(i) for a given index i ?

% Inspiration from %
recent past

Idea: Perhaps we can compute S(i) if we know S(i — 1) ?

¥

Question: What is the relation between S(i) and S(i — 1) ?

Answer: O(1) time.




Relation between S(i) and S(i — 1)

Subarray corresponding to S(i — 1)
/
4

Subarray corresponding to S(i)

Theorem 1:
IfS(i —1)>0 thenS(i)=S(i — 1)+ A[i]
else S(i) = A[(]



An O(n) time Algorithm for Max-sum subarray

Max-sum-subarray-algo(A[0 ... n — 1])
{ S[0] € A[0]; 2 ] O(1) time

fori=1ton—1 ] n — 1 repetitions

{ IfS[i—1]>0 thenS[i] € S[i — 1] +A[(]
else S[i] € A[i] O(1) time
}

“Scan S to return the maximum entry”< ] O(n) time

)

Time complexity of the algorithm = O(n)

Homework:
e Refine the algorithm so that it uses only O(1) extra space.



An O(n) time Algorithm for Max-sum subarray

Max-sum-subarray-algo(A[0 ... n — 1])
{ S[0] € A[0]
fori=1ton—1
{ IfS[i —1]>0 thenS[i] € S[i — 1] +A[{]
else S[i] € A[(]

)

“Scan S to return the maximum entry”

— —
What is the proof of
correctness of the algorithm ?




What does correctness of an algorithm mean ?

For every possible valid input, the algorithm must output correct answer.

10



An O(n) time Algorithm for Max-sum subarray

Max-sum-subarray-algo(A[0 ... n — 1])
{ S[0] € A[0]
fori=1ton—1
{ IfS[i —1]>0 thenS[i] € S[i — 1] +A[{]
else S[i] € A[(]

)

“Scan S to return the maximum entry”

)

Question:
What needs to be proved in order to establish the correctness of this algorithm ?

Answer: At the end of ith iteration,
“S[i] stores the sum of maximum sum subarray ending at index (”



Proof of correctness of Max-sum-subarray-algo

Assertion:

At the end of iteration i, S[i] stores the sum of maximum sum subarray ending at A[i].

Question: How to prove the assertion ?
Answer: [By mathematical induction and using Theorem 1]

Homework: Make sincere attempts to write the details of the proof. (it is quite easy).



NEW PROBLEM:
LOCAL MINIMA IN A GRID



Local minima in a grid

Definition: Given a n x n grid storing distinct numbers, an entry is local

minima if it is smaller than eac]h of its neighbors.

Does a local
minima exist
always ?

Oo

o

local minima.

Yes. After all, global
minima is also a

14



Local minima in a grid

Problem: Given a n x n grid storing distinct numbers, output any local
minima in O(n) time. j

s

15



Using common sense principles

There are some simple but very fundamental principles which are not
restricted/confined to a specific stream of science/philosophy.

These principles, which we usually learn as common sense, can be used in
so many diverse areas of human life.

For the current problem of local minima, we shall use two such simple
principles.



Two simple principles

1. Respect every new idea which solves a problem even partially.

2. Principle of simplification:
If you find a problem difficult,
=>» try to solve its simpler version, and then

=>» extend this solution to the original (difficult) version.

17



A new approach

Repeat : if current entry is not local minima, explore the neighbor storing smaller
value.

j

18



A new approach

Explore()
{ Letc beany entry to start with;
While(c is not a local minima)

{

c € a neighbor of c storing smaller value

}

return c;

Question: What is the proof of correctness of Explore ?

Answer:

=> It suffices if we can prove that While loop eventually terminates.
=»Indeed, the loop terminates since we never visit a cell twice.



A new approach

Explore()
{ Letc be any entry to start with;
While(c is not a local minima)

{

c € a neighbor of c storing smaller value How to apply this
) principle ?
return c;

}

Worst case time complexity : O(n?)
E First principle: E E Second principle: E
Do not discard Explore() Simplify the problem

20



Local minima in an array

A

Theorem 2: A local minima in an array storing n distinct elements can be
found in O(log n) time.

Homework:
* Design the algorithm stated in Theorem 2.

* Spend some time to extend this algorithm for the grid with running time=
O(n).

Please come prepared in the next class ©

21



