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Order notation 
Definition:  Let f(𝑛) and g(𝑛) be any two increasing functions of n. 

 f(𝑛) is said to be of the order of g(𝑛) 

 if there exist constants c and 𝑛0 such that 

f(𝑛)  ≤ c g(𝑛)    for all n > 𝑛0 
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𝑛0 

f(𝑛) 

c g(𝑛)  

f(𝑛) = O(g(𝑛))  



Order notation extended 

Definition:  Let f(𝑛) and g(𝑛) be any two increasing functions of n. 

 f(𝑛) is said to be lower bounded by  g(𝑛) 

 if there exist constants c and 𝑛0 such that 

 f(𝑛)  ≥ c g(𝑛)    for all n > 𝑛0 

 

 

 

 

 

 

 

 

 

𝑛2

100
=  𝛀(10000 𝑛 log 𝑛) 
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𝑛0 

c g(𝑛) 

f(𝑛)  

f(𝑛) = 𝛀(g(𝑛))  



Order notation extended 

Observations:  

• f(𝑛) = O(g(𝑛)) 

 

 

One more Notation:  

If   f(𝑛) = O(g(𝑛)) 

 

 

Examples:  

•
𝑛2

100
=  𝚯(10000 𝑛2) 

 

 

 

if and only if g(𝑛) = 𝛀(f(𝑛)) 

and g(𝑛) = 𝐎(f(𝑛)) ,  then 

g(𝑛) = 𝚯(f(𝑛)) 



 

 

 

• Time complexity of Quick Sort is      ? 

 

 

• Time complexity of Merge sort is  ? 

𝛀(𝑛 log 𝑛) 

𝚯(𝑛 log 𝑛) 



Time complexity of a problem 
 

Example: Sorting 

• Algorithm 1 : Selection Sort with time complexity 
𝐎(𝑛2) 

 

 

• Algorithm 2 : Merge Sort with time complexity 
𝐎(𝑛 log 𝑛) 

 

• Each comparison based sorting algorithm need to 
perform 𝛀(𝑛 log 𝑛) comparisons in the worst case. 

 

• Sorting must takes 𝛀(𝑛) time since it has to read 
each item at least once. 

 

 

 

                  Time complexity of sorting 

 

𝐎(𝑛2) 

 

 
 

𝐎(𝑛 log 𝑛) 

 

𝛀(𝑛 log 𝑛) 

 

 
 

𝛀(𝑛) 

Sorting has time 
complexity of  𝚯(𝑛 log 𝑛) 

Upper bound 

Lower bound 



Time complexity of a problem 
 

Example: All-pairs shortest paths (APSP) 

• Algorithm 1 : Floyd Warshal Algorithm with time 
complexity 𝐎(𝑛3) 

 

 

• Algorithm 2 : Johnson’ algorithm with time 
complexity 𝐎(𝑚𝑛 log 𝑛) 

 

 

 

 

• All-pairs shortest paths must require 𝛀(𝑛2) time 

 

 

 

                  Time complexity of APSP 

 

𝐎(𝑛3) 

 

 
 

𝐎(𝑚𝑛 log 𝑛) 

 

 

 

 
 

𝛀(𝑛2) 

There is still a gap between upper and 
lower bounds for APSP.   

Upper bound 

Lower bound 



Aim of theoretical computer science 

For any given computational problem P 

 

• Get smallest possible upper bound on its time complexity 

 

 

 

 

• Get largest possible lower bound on its time complexity.  

Reduce the GAP 

This requires designing 
better algorithm 

? 



How to establish lower bound 

Two ways: 

 

• Adversarial approach 

 

 

 

• Limitation of the  model of computation 

A gentle introduction today  

CS345 



Adversarial approach 
 

Key aspects 
 

• Algorithm does not have free access to the input. To access any item in the 
input, algorithm has to spend some time. 

 

• The execution of an algorithm at any step is fully determined  only by the 
(partial) input it has seen till now.  

 

• Adversary has access to all possible inputs of a problem. 

 

• The sole aim of adversary is to make an algorithm work really hard. For 
this purpose, adversary discloses the input cleverly. 



Locating 1 problem 

Input: An array A[0. . . 𝒏 − 𝟏] with an unknown 𝒊 s.t.  

• For all 𝒋 ≠ 𝒊, 

•  A[𝒊]= 𝟏 

 

Aim: To locate/search 1 in A. 

 

 

Upper bound: O(𝒏) 

Lower bound: 𝛀(𝒏) 

 

 

A[𝒋]= 𝟎 



Lower bound on Locating 1 problem 

Algorithm 

Adversary 

Input 

A 

What is A[𝒊]? 

𝒊 

𝟎 𝟎 

𝒋 

What is A[𝒋] ? 

𝟎 

What is A[𝒌] ? 

𝒌 

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 1 



Miscellaneous problems 



Problem 1 

Input:  

Given an array A storing 𝒏 numbers, 

there is an 𝒊 < 𝒏 (unknown) s.t. 

A[𝟎] < A[𝟏] < …< A[𝒊] 

 

Aim:  

  To search efficiently 

 

Answer : O(log 𝒏) is possible  

                   

 

 

> A[𝒊 + 𝟏] >… >A[𝒏 − 𝟏] 



Problem 1 
 Input: Given an array A storing 𝒏 numbers, 

there is an 𝒊 < 𝒏 (unknown) s.t. 

A[𝟎] < A[𝟏] < …< A[𝒊] 

Aim:  

  To search efficiently 

Answer : O(log 𝒏) is possible  

                   

 

 

> A[𝒊 + 𝟏] >… >A[𝒏 − 𝟏] 

  𝟑      𝟕     𝟐𝟒   𝟑𝟏    𝟒𝟐    𝟒𝟕    𝟓𝟗   𝟔𝟑    𝟕𝟏    𝟖𝟓   𝟏𝟗𝟏   𝟏𝟎𝟐   𝟗𝟏   𝟒𝟑     𝟏𝟕   

sorted sorted 

𝒊 



Problem 2 

Input:  

Given an array A storing 𝒏 numbers, 

there is an 𝒊 < 𝒏 (unknown) s.t. 

A[𝟎] ≤ A[𝟏] ≤ …≤ A[𝒊] 

 

Aim:  

         To search efficiently 

 

Answer : 𝛀(𝒏) time complexity  

 

Locating 1 problem                                       ?                                  Problem 2             

 

 

≥ A[𝒊 + 𝟏] ≥… ≥ A[𝒏 − 𝟏] 

is a special case of 



Problem 3 

Input:  

Given an array A storing 𝒏 numbers, 

there are  𝒊 < 𝒋 < 𝒏 (unknown) s.t. 

A[𝟎]< A[𝟏]< …< A[𝒊] 

 

Aim:  

  To search efficiently 

 

Answer : 𝛀(𝒏) time complexity  

 

 

                   

 

 

> A[𝒊 + 𝟏] >… >A[𝒋] < A[𝒋 + 𝟏] <… <A[𝒏 − 𝟏] 



Locating 0 problem 

Input: An array A[0. . . 𝒏 − 𝟏] with an unknown 𝒊 s.t.  

• For all 𝒋 ≠ 𝒊, 

• A[𝒊] = 𝟎 

 

Aim: To locate/search 0 in A. 

 

 

Upper bound: O(𝒏) 

Lower bound: 𝛀(𝒏) 

 

 

A[𝒋]> 𝟎 A[𝒋] < A[𝒋 + 𝟏]  and 



Lower bound on Locating 0 problem 

Algorithm 

Adversary 

Input 

A 

What is A[𝒊]? 

𝒊 

𝟖𝟎 𝟑𝟏 

𝒋 

What is A[𝒋] ? What is A[𝒌] ? 

𝒌 

𝟎 𝟒𝟕 𝟔𝟑 

ℓ 

What is A[ℓ] ? 

𝟏𝟐 𝟓𝟗 𝟏𝟑𝟏 𝟗𝟑 𝟔𝟕 



Problem 3 

Input:  

Given an array A storing 𝒏 numbers, 

there are  𝒊 < 𝒋 < 𝒏 (unknown) s.t. 

A[𝟎]< A[𝟏]< …< A[𝒊] 

 

Aim:  

  To search efficiently 

 

Answer : 𝛀(𝒏) time complexity  

 

Locating 0 problem                                       ?                                  Problem 3             

               

 

 

> A[𝒊 + 𝟏] >… >A[𝒋] < A[𝒋 + 𝟏] <… <A[𝒏 − 𝟏] 

is a special case of 



Final slide 

 

That’s all. I hope you enjoyed this lecture. 


