
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 41
• Miscellaneous problems

1

Order notation
Definition: Let f(𝑛) and g(𝑛) be any two increasing functions of n.

 f(𝑛) is said to be of the order of g(𝑛)

 if there exist constants c and 𝑛0 such that

f(𝑛) ≤ c g(𝑛) for all n > 𝑛0

2

𝑛0

f(𝑛)

c g(𝑛)

f(𝑛) = O(g(𝑛))

Order notation extended

Definition: Let f(𝑛) and g(𝑛) be any two increasing functions of n.

 f(𝑛) is said to be lower bounded by g(𝑛)

 if there exist constants c and 𝑛0 such that

 f(𝑛) ≥ c g(𝑛) for all n > 𝑛0

𝑛2

100
= 𝛀(10000 𝑛 log 𝑛)

3

𝑛0

c g(𝑛)

f(𝑛)

f(𝑛) = 𝛀(g(𝑛))

Order notation extended

Observations:

• f(𝑛) = O(g(𝑛))

One more Notation:

If f(𝑛) = O(g(𝑛))

Examples:

•
𝑛2

100
= 𝚯(10000 𝑛2)

if and only if g(𝑛) = 𝛀(f(𝑛))

and g(𝑛) = 𝐎(f(𝑛)) , then

g(𝑛) = 𝚯(f(𝑛))

• Time complexity of Quick Sort is ?

• Time complexity of Merge sort is ?

𝛀(𝑛 log 𝑛)

𝚯(𝑛 log 𝑛)

Time complexity of a problem

Example: Sorting

• Algorithm 1 : Selection Sort with time complexity
𝐎(𝑛2)

• Algorithm 2 : Merge Sort with time complexity
𝐎(𝑛 log 𝑛)

• Each comparison based sorting algorithm need to
perform 𝛀(𝑛 log 𝑛) comparisons in the worst case.

• Sorting must takes 𝛀(𝑛) time since it has to read
each item at least once.

 Time complexity of sorting

𝐎(𝑛2)

𝐎(𝑛 log 𝑛)

𝛀(𝑛 log 𝑛)

𝛀(𝑛)

Sorting has time
complexity of 𝚯(𝑛 log 𝑛)

Upper bound

Lower bound

Time complexity of a problem

Example: All-pairs shortest paths (APSP)

• Algorithm 1 : Floyd Warshal Algorithm with time
complexity 𝐎(𝑛3)

• Algorithm 2 : Johnson’ algorithm with time
complexity 𝐎(𝑚𝑛 log 𝑛)

• All-pairs shortest paths must require 𝛀(𝑛2) time

 Time complexity of APSP

𝐎(𝑛3)

𝐎(𝑚𝑛 log 𝑛)

𝛀(𝑛2)

There is still a gap between upper and
lower bounds for APSP.

Upper bound

Lower bound

Aim of theoretical computer science

For any given computational problem P

• Get smallest possible upper bound on its time complexity

• Get largest possible lower bound on its time complexity.

Reduce the GAP

This requires designing
better algorithm

?

How to establish lower bound

Two ways:

• Adversarial approach

• Limitation of the model of computation

A gentle introduction today

CS345

Adversarial approach

Key aspects

• Algorithm does not have free access to the input. To access any item in the
input, algorithm has to spend some time.

• The execution of an algorithm at any step is fully determined only by the
(partial) input it has seen till now.

• Adversary has access to all possible inputs of a problem.

• The sole aim of adversary is to make an algorithm work really hard. For
this purpose, adversary discloses the input cleverly.

Locating 1 problem

Input: An array A[0. . . 𝒏 − 𝟏] with an unknown 𝒊 s.t.

• For all 𝒋 ≠ 𝒊,

• A[𝒊]= 𝟏

Aim: To locate/search 1 in A.

Upper bound: O(𝒏)

Lower bound: 𝛀(𝒏)

A[𝒋]= 𝟎

Lower bound on Locating 1 problem

Algorithm

Adversary

Input

A

What is A[𝒊]?

𝒊

𝟎 𝟎

𝒋

What is A[𝒋] ?

𝟎

What is A[𝒌] ?

𝒌

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 1

Miscellaneous problems

Problem 1

Input:

Given an array A storing 𝒏 numbers,

there is an 𝒊 < 𝒏 (unknown) s.t.

A[𝟎] < A[𝟏] < …< A[𝒊]

Aim:

 To search efficiently

Answer : O(log 𝒏) is possible

> A[𝒊 + 𝟏] >… >A[𝒏 − 𝟏]

Problem 1
 Input: Given an array A storing 𝒏 numbers,

there is an 𝒊 < 𝒏 (unknown) s.t.

A[𝟎] < A[𝟏] < …< A[𝒊]

Aim:

 To search efficiently

Answer : O(log 𝒏) is possible

> A[𝒊 + 𝟏] >… >A[𝒏 − 𝟏]

 𝟑 𝟕 𝟐𝟒 𝟑𝟏 𝟒𝟐 𝟒𝟕 𝟓𝟗 𝟔𝟑 𝟕𝟏 𝟖𝟓 𝟏𝟗𝟏 𝟏𝟎𝟐 𝟗𝟏 𝟒𝟑 𝟏𝟕

sorted sorted

𝒊

Problem 2

Input:

Given an array A storing 𝒏 numbers,

there is an 𝒊 < 𝒏 (unknown) s.t.

A[𝟎] ≤ A[𝟏] ≤ …≤ A[𝒊]

Aim:

 To search efficiently

Answer : 𝛀(𝒏) time complexity

Locating 1 problem ? Problem 2

≥ A[𝒊 + 𝟏] ≥… ≥ A[𝒏 − 𝟏]

is a special case of

Problem 3

Input:

Given an array A storing 𝒏 numbers,

there are 𝒊 < 𝒋 < 𝒏 (unknown) s.t.

A[𝟎]< A[𝟏]< …< A[𝒊]

Aim:

 To search efficiently

Answer : 𝛀(𝒏) time complexity

> A[𝒊 + 𝟏] >… >A[𝒋] < A[𝒋 + 𝟏] <… <A[𝒏 − 𝟏]

Locating 0 problem

Input: An array A[0. . . 𝒏 − 𝟏] with an unknown 𝒊 s.t.

• For all 𝒋 ≠ 𝒊,

• A[𝒊] = 𝟎

Aim: To locate/search 0 in A.

Upper bound: O(𝒏)

Lower bound: 𝛀(𝒏)

A[𝒋]> 𝟎 A[𝒋] < A[𝒋 + 𝟏] and

Lower bound on Locating 0 problem

Algorithm

Adversary

Input

A

What is A[𝒊]?

𝒊

𝟖𝟎 𝟑𝟏

𝒋

What is A[𝒋] ? What is A[𝒌] ?

𝒌

𝟎 𝟒𝟕 𝟔𝟑

ℓ

What is A[ℓ] ?

𝟏𝟐 𝟓𝟗 𝟏𝟑𝟏 𝟗𝟑 𝟔𝟕

Problem 3

Input:

Given an array A storing 𝒏 numbers,

there are 𝒊 < 𝒋 < 𝒏 (unknown) s.t.

A[𝟎]< A[𝟏]< …< A[𝒊]

Aim:

 To search efficiently

Answer : 𝛀(𝒏) time complexity

Locating 0 problem ? Problem 3

> A[𝒊 + 𝟏] >… >A[𝒋] < A[𝒋 + 𝟏] <… <A[𝒏 − 𝟏]

is a special case of

Final slide

That’s all. I hope you enjoyed this lecture.

