
Data Structures and Algorithms
(CS210A)

Semester I – 2014-15

Lecture 9:
• Stack: A new data structure

• Proof of correctness : Binary search

1

2

Motivating Examples

Finding path in a maze

3

Problem : How to design an algorithm for finding a path in a maze ?

8-Queens Problem

4

Problem: How to efficiently find a way to place 8 queens on a chess board
so that no two of them attack each other ?

Expression Evaluation

• x = 3+4*(5-6*(8+9^2)+3)

Problem:

Can you write a program to evaluate any arithmetic expression ?

5

Stack: a data structure

6

Stack

Data Structure Stack:

• Mathematical Modeling of Stack

• Implementation of Stack

7

will be left as an exercise

9

Revisiting List

List is modeled as a sequence of elements.

we can insert/delete/query element at any arbitrary position in the list.

 L: 𝑎1, 𝑎2, …, 𝑎𝑖−1, 𝑎𝑖, 𝑎𝑖+1, …, 𝑎𝑛

ith element of list L

T
o
p

What if we restrict all these operations to
take place only at one end of the list ?

Stack: a new data structure

A special kind of list

where all operations (insertion, deletion, query) take place at one end only,

called the top.

10

𝑎𝑛

𝑎2

𝑎1 top

Operations on a Stack

Query Operations
• IsEmpty(S): determine if S is an empty stack.

• Top(S): returns the element at the top of the stack.

 Example: If S is 𝑎1, 𝑎2, …, 𝑎𝑛 , then Top(S) returns ?? .

Update Operations
• CreateEmptyStack(S): Create an empty stack.

• Push(x,S): push x at the top of the stack S.

 Example: If S is 𝑎1, 𝑎2,…, 𝑎𝑛, then after Push(x,S), stack S becomes

 ??

• Pop(S): Delete element from top of the stack S.

 Example: If S is 𝑎1, 𝑎2,…, 𝑎𝑛, then after Pop(S), stack S becomes

 ??

11

𝐱, 𝑎1, 𝑎2 ,…, 𝑎𝑛

𝑎2 ,…, 𝑎𝑛

𝑎1

12

An Important point about stack:
How to access ith element from the top ?

• To access ith element, we must pop (hence delete) one by
one the top i-1 elements from the stack.

𝑎𝑛

𝑎𝑖

𝑎𝑖−1

𝑎1

A puzzling question/confusion

• Why do we restrict the functionality of a list ?

• What will be the use of such restriction ?

13

How to evaluate an
arithmetic expression

14

Evaluation of an arithmetic expression

Question: How does a computer/calculator evaluate an arithmetic expression
given in the form of a string of symbols ?

 8 + 3 * 5 ^ 2 – 9

15

Evaluation of an arithmetic expression

Question: How does a computer/calculator evaluate an arithmetic expression
given in the form of a string of symbols?

 8 + 3 * 5 ^ 2 – 9

First it splits the string into tokens which are operators or operands
(numbers). This is not difficult. But how does it evaluate it finally ???

16

operands

operators

Precedence of operators

Precedence: “priority” among different operators

• Operator + has same precedence as –.

• Operator * (as well as /) has higher precedence than +.

• Operator * has same precedence as /.

• Operator ^ has higher precedence than * and /.

17

Associativity of operators

What is 2^3^2 ?

What is 3-4-2 ?

What is 4/2/2 ?

Associativity: “How to group operators of same type ?”

A ● B ● C = ??

 (A ● B) ● C or A ● (B ● C)

18

Left associative Right associative

A trivial way to evaluate an arithmetic
expression

• First perform all ^ operations.

• Then perform all * and / operations.

• Then perform all + and - operations.

Disadvantages:

1. An ugly and case analysis based algorithm

2. Multiple scans of the expression (one for each operator).

3. What about expressions involving parentheses: 3+4*(5-6/(8+9^2)+33)

4. What about associativity of the operators:
– 2^3^2 = 512 and not 64

– 16/4/2 = 2 and not 8.

 19

8 + 5 3 * ^ 2 9 -

Overview of our solution

1. Focusing on a simpler version of the problem:
1. Expressions without parentheses

2. Every operator is left associative

2. Solving the simpler version

3. Transforming the solution of simpler version to generic

20

Step 1

Focusing on a simpler version of the
problem

21

Incorporating precedence of operators
through priority number

Operator Priority

+ , - 1

* , / 2

^ 3

22

Insight into the problem

Let 𝑜𝑖 : the operator at position i in the expression.

Aim: To determine an order in which to execute the operators.
 8 + 3 * 5 ^ 2 – 9 * 67

Question: Under what conditions can we execute operator 𝑜𝑖 immediately?

Answer: if

• priority(𝑜𝑖) ?? priority(𝑜𝑖−1)

• priority(𝑜𝑖) ?? priority(𝑜𝑖+1)

23

Position of an operator does matter

 >

 ≥

Give reasons for ≥
instead of >

Question:
How to evaluate expression in a single scan ?

Expression: 𝑛1𝑜1 𝑛2𝑜2 𝑛3 𝑜3 𝑛4 𝑜4 𝑛5 𝑜5 …

24

𝑜1 𝑜2 𝑜3 𝑜4 𝑜5 Priority no. 𝑜2 𝑜3 𝑜4 𝑜5 𝑜6

We can
execute 𝑜5

𝑛1 𝑛2 𝑛3 𝑛4 𝑛6 𝑛5

Question:
How to evaluate expression in a single scan ?

Expression: 𝑛1𝑜1 𝑛2𝑜2 𝑛3 𝑜3 𝑛4 𝑜4 𝑛5 𝑜5 …

25

𝑜1 𝑜3 𝑜4 Priority no. 𝑜2

𝑛1 𝑛2 𝑛3

𝑜6

We can
execute 𝑜4

𝑛′ 𝑛4

Question:
How to evaluate expression in a single scan ?

Expression: 𝑛1𝑜1 𝑛2𝑜2 𝑛3 𝑜3 𝑛4 𝑜4 𝑛5 𝑜5 …

26

𝑜1 𝑜3 𝑜6 Priority no. 𝑜2

𝑛1 𝑛2 𝑛3

𝑜6

𝑛′′

Homework:

Spend sometime to design an algorithm for evaluation

 of arithmetic expression based on the insight we
developed in the last slides.

(hint: use 2 stacks.)

27

Proof of correctness : Binary search

28

Binary Search

Binary-Search(A[𝟎. . . 𝒏 − 𝟏], 𝒙)

L  𝟎;

R  𝒏 − 𝟏;

Found  false;

While (?)

{ mid  (L+R)/𝟐;

 If (A[mid] = 𝒙) Found  true;

 else if (A[mid] < 𝒙) ? ;

 else ? ;

}

if Found return true;

else return false;

So all we need to prove is that whenever
code returns false , then indeed 𝒙 is not
present in A[].

We proved it interactively in the class.

29

L ≤ R and Found = false

L  mid + 1

R  mid - 1

Observation: If the code returns
true, then indeed output is correct.

This is because Found is set to
true only when 𝒙 is indeed found.

