
Data Structures and Algorithms 
(CS210A) 

Semester I – 2014-15 

Lecture 9: 
• Stack: A new data structure 

• Proof of correctness : Binary search  
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Motivating Examples 



Finding path in a maze 
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Problem : How to design an algorithm for finding a path in a maze ? 



8-Queens Problem 
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Problem: How to efficiently find a way to place 8 queens on a chess board  
so that no two of them attack each other ? 



Expression Evaluation 

 

 

• x = 3+4*(5-6*(8+9^2)+3) 

 
Problem: 

Can you write a program to evaluate any arithmetic expression ?  
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Stack:  a data structure 
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Stack 

Data Structure Stack: 

 
• Mathematical Modeling of Stack 

 

• Implementation of Stack  
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will be left as an exercise 
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Revisiting List 

List  is modeled as a sequence of elements. 

we can insert/delete/query element at any arbitrary position in the list. 

 

                    L:        𝑎1, 𝑎2, …, 𝑎𝑖−1, 𝑎𝑖, 𝑎𝑖+1, …, 𝑎𝑛 
 

 

 

 

 

 

ith element of list L   

T
o
p 

What if we restrict all these operations to 
take place only  at one end of the list ? 



Stack: a new data structure 

A special kind of list  

where all operations (insertion, deletion, query) take place at one end only,  

called the top.  
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𝑎𝑛 

𝑎2 

𝑎1 top 



Operations on a Stack 

Query Operations 
• IsEmpty(S): determine if S is an empty stack. 

• Top(S): returns the element at the top of the stack. 

      Example: If S is 𝑎1, 𝑎2, …, 𝑎𝑛 , then Top(S) returns   ??         . 

Update Operations 
• CreateEmptyStack(S): Create an empty stack. 

• Push(x,S): push x at the top of the stack S. 

      Example:  If S is 𝑎1, 𝑎2,…, 𝑎𝑛,  then after Push(x,S), stack S becomes   

                                                                ??         

• Pop(S): Delete element from top of the stack S. 

      Example: If S is 𝑎1, 𝑎2,…, 𝑎𝑛,  then after Pop(S), stack S becomes  

                                                                   ??  
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𝐱, 𝑎1, 𝑎2 ,…, 𝑎𝑛 

𝑎2 ,…, 𝑎𝑛 

𝑎1 
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An Important point about stack: 
How to access ith element from the top ? 

 

 

 

 

 

 

 

 

• To access ith element, we must pop (hence delete) one by 
one the top i-1 elements from the stack. 

𝑎𝑛 

𝑎𝑖 

𝑎𝑖−1 

𝑎1 



A puzzling question/confusion 

 

 

 

• Why do we restrict the functionality of a list ? 

 

• What will be the use of such restriction ? 
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How to evaluate an  
arithmetic expression 
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Evaluation of an arithmetic expression 

Question: How does a computer/calculator evaluate an arithmetic expression 
given in the form of a string of symbols ?                      

 

 

                           8 + 3 * 5 ^ 2 – 9 
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Evaluation of an arithmetic expression 

Question: How does a computer/calculator evaluate an arithmetic expression 
given in the form of a string of symbols?                      

 

 

                           8 + 3 * 5 ^ 2 – 9 

 

 
 

First it splits the string into tokens which are operators or operands 
(numbers). This is not difficult. But how does it evaluate it finally ??? 
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operands 

operators 



Precedence of operators 

 

Precedence:  “priority” among different operators 

 
• Operator + has same precedence as –. 

 

• Operator * (as well as /) has higher precedence than +. 

 

• Operator * has same precedence as /. 

 

• Operator ^ has higher precedence than * and /. 
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Associativity of operators 

What is 2^3^2 ?      

What is 3-4-2 ? 

What is 4/2/2 ?        
 

Associativity:   “How to group operators of same type ?” 

 

A ● B ● C = ?? 

                                 (A ● B) ● C        or          A ● (B ● C)  
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Left associative Right associative 



A trivial way to evaluate an arithmetic 
expression 

 
• First perform all ^ operations. 

• Then perform all * and  / operations. 

• Then perform all + and  - operations. 

Disadvantages:  

1. An ugly and case analysis based algorithm  

2.  Multiple scans of the expression (one for each operator). 

3. What about expressions involving parentheses: 3+4*(5-6/(8+9^2)+33) 

4. What about associativity of the operators:  
– 2^3^2 = 512 and not 64 

– 16/4/2 = 2 and not 8.  
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8 + 5 3 * ^ 2 9 - 



Overview of our solution 

 

1. Focusing on a simpler version of the problem:  
1. Expressions without parentheses 

2. Every operator is left associative 

 

2. Solving the simpler version 

 

3. Transforming the solution of simpler version to generic 
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Step 1 

Focusing on a simpler version of the 
problem 
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Incorporating precedence of operators 
through priority number 

Operator Priority 

+ , -  1 

* , / 2 

^ 3 
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Insight into the problem 

Let 𝑜𝑖 : the operator at position i in the expression. 

Aim: To determine an order in which to execute the operators. 
                                                          8 + 3 * 5 ^ 2 – 9 * 67 

 

       

 

Question: Under what conditions can we execute operator 𝑜𝑖 immediately? 

Answer: if 

• priority(𝑜𝑖)     ??     priority(𝑜𝑖−1) 

• priority(𝑜𝑖)     ??     priority(𝑜𝑖+1) 
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Position of an operator does matter 

 > 

 ≥ 

Give reasons for ≥ 
instead of > 



Question:  
How to evaluate expression in a single scan ? 

Expression:  𝑛1𝑜1 𝑛2𝑜2 𝑛3 𝑜3 𝑛4 𝑜4 𝑛5 𝑜5  … 
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𝑜1 𝑜2 𝑜3 𝑜4 𝑜5 Priority no. 𝑜2 𝑜3 𝑜4 𝑜5 𝑜6 

We can 
execute 𝑜5  

𝑛1      𝑛2     𝑛3 𝑛4  𝑛6  𝑛5 



Question:  
How to evaluate expression in a single scan ? 

Expression:  𝑛1𝑜1 𝑛2𝑜2 𝑛3 𝑜3 𝑛4 𝑜4 𝑛5 𝑜5  … 
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𝑜1 𝑜3 𝑜4 Priority no. 𝑜2 

𝑛1      𝑛2     𝑛3 

𝑜6 

We can 
execute 𝑜4  

𝑛′ 𝑛4 



Question:  
How to evaluate expression in a single scan ? 

Expression:  𝑛1𝑜1 𝑛2𝑜2 𝑛3 𝑜3 𝑛4 𝑜4 𝑛5 𝑜5  … 
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𝑜1 𝑜3 𝑜6 Priority no. 𝑜2 

𝑛1      𝑛2     𝑛3 

𝑜6 

𝑛′′ 



 

 

Homework:  

Spend sometime to design an algorithm for evaluation 

 of arithmetic expression based on the insight we 
developed in the last slides.  

(hint: use 2 stacks.) 
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Proof of correctness : Binary search  
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Binary Search 

Binary-Search(A[𝟎. . . 𝒏 − 𝟏], 𝒙) 

L  𝟎; 

R  𝒏 − 𝟏; 

Found  false; 

While (                 ?                          ) 

{      mid  (L+R)/𝟐; 

       If (A[mid] = 𝒙) Found  true; 

       else if (A[mid] < 𝒙)                   ?        ; 

                  else                 ?           ;   

} 

if Found return true; 

else return false; 

 

 

 

 

 

So all we need to prove is that whenever 
code returns false , then indeed 𝒙 is not 
present in A[]. 

 

 

We proved it interactively in the class. 
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L ≤ R  and Found = false 

L  mid + 1   

R  mid - 1   

Observation: If the code returns 
true, then indeed output is correct.  

This is because Found is set to 
true only when 𝒙 is indeed found. 


