
Data Structures and Algorithms
(CS210A)

Lecture 17:

Height balanced BST
• Red-black trees

1

Terminologies

Full binary tree:

A binary tree where

2

every internal node has exactly two children.

This node has exactly one child. So
the current tree is not a full binary

tree.

Terminologies

Complete binary tree:

A full binary tree where

3

every leaf node is at the same level.

We shall later extend this definition
when we discuss “Binary heap”.

Binary Search Tree

Definition: A Binary Tree T storing values is said to be Binary Search Tree

if for each node v in T

• If left(v) <> NULL, then

• If right(v)<>NULL, then value(v) < value of every node in subtree(right(v)).
4

root

2

28

46

67

25

5

31 41

35 49

53 48

value(v) > value of every node in subtree(left(v)).

v

Binary Search Tree: a slight change

Henceforth, for each NULL child link of a node in a BST, we create a NULL node.

 1. Each leaf node in a BST will be a NULL node.

 2. the BST will always be a full binary tree.
5

root

2

28

46

67

25

5

31 41

35 49

53 48

This transformation is merely to help us in
the analysis of red-black trees. It does not

cause any extra overhead of space. All
NULL nodes correspond to a single node

in memory.

A fact we noticed in our previous discussion on BSTs
(Lecture 9)

Time complexity of Search(T,x) and Insert(T,x) in a Binary Search Tree T = ??

Height(T):

The maximum number of nodes on any path from root to a leaf node.

6

O(Height(T))

Searching and inserting in a perfectly balanced BST

7

2

28

46

67

96
25

5

31 41

35 49

53 48 73

83

T

O(log 𝑛) time

Searching and inserting in a skewed BST on 𝒏 nodes

8

23

T2

39

48

19

11

14

18

O(𝑛) time !!

Nearly balanced Binary Search Tree

Terminology:

size of a binary tree is the number of nodes present in it.

Definition: A binary search tree T is said to be nearly balanced at node v, if

size(left(v)) ≤
3

4
 size(v)

 and

size(right(v)) ≤
3

4
 size(v)

Definition: A binary search tree T is said to be nearly balanced if

 it is nearly balanced at each node.

9

Nearly balanced Binary Search Tree

• Search(T,x) operation is the same.

• Modify Insert(T,x) operation as follows:

– Carry out normal insert and update the size fields of nodes traversed.

– If BST T is ceases to be nearly imbalanced at any node v,

 transform subtree(v) into perfectly balanced BST.

 O(log 𝑛) time for search

 O(𝑛 log 𝑛) time for 𝑛 insertions

Disadvantages:

• How to handle deletions ?

• ?

10

Some insertions may take O(𝑛) time

This fact will be proved soon in
the next to the next class.

Can we achieve O(log 𝒏) time for
search/insert/delete ?

• AVL Trees [1962]

• Red Black Trees [1978]

11

 Rotation around a node

12

An important tool for balancing trees

Each height balanced BST employs this tool which is derived
from the flexibility which is hidden in the structure of a BST.

This flexibility (pointer manipulation) was inherited from
linked list .

Rotation around a node

13

v

u

x
Right rotation Left rotation

v

u

𝑻𝟏 𝑻𝟐

x

𝑻𝟑

p

Note that the tree T continues to
remain a BST even after rotation

around any node.

𝑻𝟐 𝑻𝟑

𝑻𝟏

 Red Black Tree
A height balanced BST

14

Red Black Tree

Red-Black tree is a binary search tree

satisfying the following properties:

• Each node is colored red or black.

• Each leaf is colored black

• Every red node will have

• No. of black nodes on a path from root to each leaf node is same.

15

black height

and so is the root.

both its children black.

A binary search tree

16

head

2

28

46

67

25

5

31 41

35 49

Can you color the
nodes to make it a

red-black tree ?

A binary search tree

17

head

2

28

46

67

25

5

31 41

35 49

A Red Black Tree

Why is a red black tree height balanced ?

 𝑻 : a red black tree

 ℎ : black height of 𝑻.

Question: What can be height of 𝑻 ?

Answer: ≤ 2ℎ − 1

Homework: Ponder over the above hint to prove that 𝑻 has≥ 2ℎ − 1 elements.

18

𝑻

2ℎ − 1

ℎ
?

What is this “green
structure” ?

Insertion in a Red Black tree

All it involves is

• playing with colors

• and rotations

19

Insertion in a red-black tree

20

 T

2

28

46

67

25

5

31 41

35 49 83

Let us insert 83 into T.

What color should
we assign to the

new node ?

We shall assign every
newly inserted node a
red color. (give reason)

Insertion in a red-black tree

21

 T

2

28

46

67

25

5

31 41

35 49 83

Let us insert 54 into T.

54

Color imbalance

We have again a red
black tree.

In order to remove the color
imbalance try flipping the colors
of parent (and uncle) of the new

node with the grandparent

Insertion in a red-black tree

22

 T

2

28

46

67

25

5

31 41

35 49 83

54

Insertion in a red-black tree

23

 T

2

28

46

67

25

5

31 41

35 49 83

54

Let us insert 44 into T.

44

Color imbalance

In order to remove the color
imbalance try flipping the colors

of parent (and uncle) of the
new node with the grandparent

Insertion in a red-black tree

24

 T

2

28

46

67

25

5

31 41

35 49 83

54

44

Color imbalance

Do the same
trick again.

Insertion in a red-black tree

25

 T

2

28

46

67

25

5

31 41

35 49 83

54

44

Color imbalance is removed. But the
root is red now.

We can color
it black.

Insertion in a red-black tree

26

 T

2

28

46

67

25

5

31 41

35 49 83

54

44

Insertion in a red-black tree
summary till now …

Let p be the newly inserted node. Assign red color to p.

Case 1: parent(p) is black

 nothing needs to be done.

Case 2: parent(p) is red and uncle(p) is red,

 Swap colors of parent (and uncle) with grandparent(p).

 This balances the color at p but may lead to imbalance of color at

 grandparent of p. So p grandparent(p), and proceed upwards similarly.

 If in this manner p becomes root, then we color it black.

Case 3: parent(p) is red and uncle(p) is black.

 This is a nontrivial case. So we need some more tools ….

27

 Handling case 3

28

Description of Case 3

• p is a red colored node.

• parent(p) is also red.

• uncle(p) is black.

Without loss of generality assume: parent(p) is left child of grandparent(p).

(The case when parent(p) is right child of grandparent(p) is handled similarly.)

29

Handling the case 3
two cases arise depending upon whether p is left/right child of its parent

30

g

d

x

b

k p

g

d

x

k

f

p

Case 3.1:
p is left child of its parent

Case 3.2:
p is right child of its parent

Can you transform
Case 3.2 to
 Case 3.1 ?

Handling the case 3
two cases arise depending upon whether p is left/right child of its parent

31

Case 3.2:
p is right child of its parent

g

f

x

k

d

2 1

3

Vow!
This is exactly Case 3.1

g

d

x

k

f

2

1

3

left rotation

 We need to handle only case 3.1

32

Handling the case 3.1

33

g

d

x

b

k

2 1

3

f

p
Can we say

anything about
color of node f ?

black

Handling the case 3.1

34

g

d

x

b

k

2 1

3

f

p

Handling the case 3.1

35

Right rotation

g

d

x

b

k

2 1

3

f

Now every node in tree 1 has one
less black node on the path to root !

We must restore it. Moreover, the
color imbalance exists even now.

What to do ?

Change color of
node d to black

p g

2

d

x

b

k f 1

3

p

Handling the case 3.1

36

g

d

x

b

k

2 1

3

f

g

2

d

x

b

k f 1

3

The number of black nodes on the path to root are
restored for tree 1. Color imbalance is also removed.

But the number of black nodes on the path to root has
increased by one for trees 2 and 3. What to do now ?

Color node g red

p

p

Handling the case 3.1

37

g

d

x

b

k

2 1

3

f

g

2

d

x

b

k f 1

3

The black height is
restored for all trees.

 This completes Case 3.1

p

p

Theorem:

We can maintain red-black trees under insertion of nodes in O(log 𝑛) time

per insert/search operation where 𝑛 is the number of the nodes in the tree.

I hope you enjoyed the real fun in handling insertion in a red black tree.

The following are the natural questions to ask.

• Why we are handling insertions in “this particular way” ?

• Are there alternative and simpler ways to handle insertions ?

You are encouraged to explore the answer to both these questions.

You are welcome to discuss them with me.

38

• Please solve the problem on the following slide.

39

How to insert 4 ?

40

11

14

1

2

7 15

8 5

How do will we handle deletion ?

This is going to be a bit more complex.

So please try on your own first before coming to the next class.

 It will still involve playing with colors and rotations

41

Do not miss the next class

