Data Structures and Algorithms (CS210A)

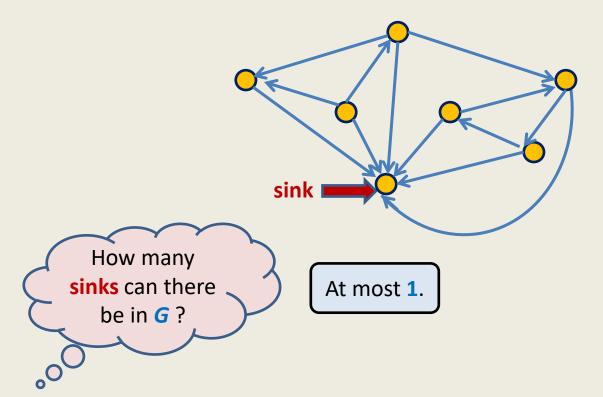
Lecture 23

- Finding a sink in a directed graph
- Graph Traversal
 - Breadth First Search Traversal and its simple applications

An interesting problem (Finding a sink)

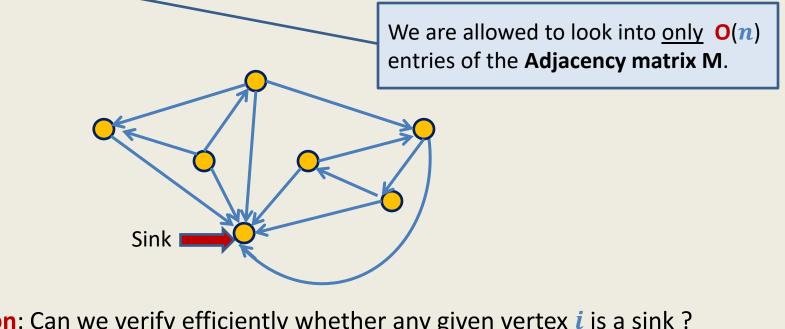
Definition: A vertex **x** in a given directed graph is said to be a **sink** if

- There is no edge **emanating from** (leaving) **x**
- Every other vertex has an edge into x.



An interesting problem (Finding a sink)

Problem: Given a directed graph G = (V, E) in an adjacency matrix representation, design an O(n) time algorithm to determine if there is any sink in G.

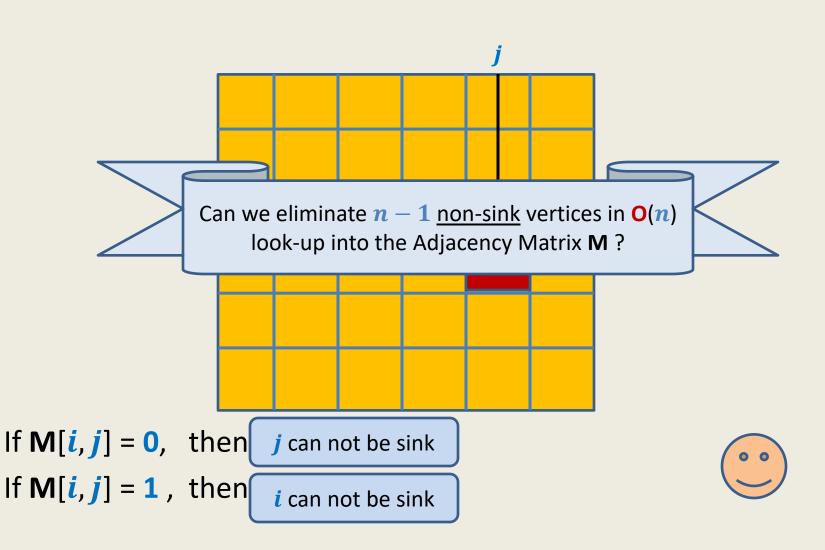


Question: Can we verify efficiently whether any given vertex *i* is a sink?

Answer: Yes, in O(n) time only \bigcirc

Look at *i*th **row** and *i*th **column** of **M**.

Key idea



Algorithm to find a sink in a graph

Key ideas:

- Looking at a single entry in **M** allows us to discard one vertex from being a sink.
- It takes **O**(*n*) time to verify if a vertex *i* is a sink.

Verify if s is a sink and output accordingly.

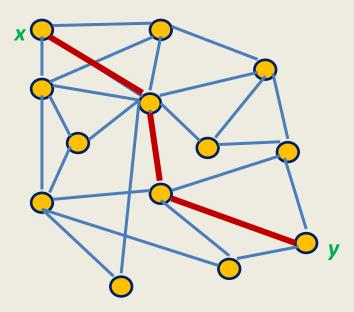
(Fill in the details of this pseudo code as a Homework.)

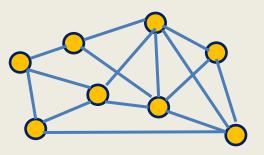
What is Graph traversal ?

Graph traversal

Definition:

A vertex **y** is said to be reachable from **x** if there is a **path** from **x** to **y**.





Graph traversal from vertex x:

Starting from a given vertex *x*, the aim is to visit all vertices which are reachable from *x*.

Non-triviality of graph traversal

• Avoiding loop:

How to avoid visiting a vertex multiple times ? (keeping track of vertices already visited)

• Finite number of steps :

The traversal **must stop** in finite number of steps.

• Completeness :

We must visit **all** vertices reachable from the start vertex **x**.

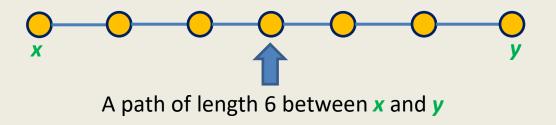
Breadth First Search traversal

We shall introduce this traversal technique through an interesting problem.

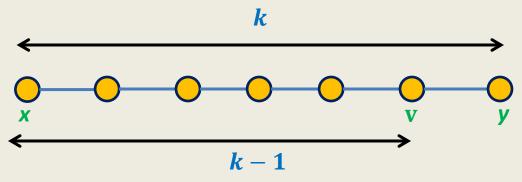
computing distances from a vertex.

Notations and Observations

Length of a path: the <u>number of edges</u> on the path.



Notations and Observations



Observation:

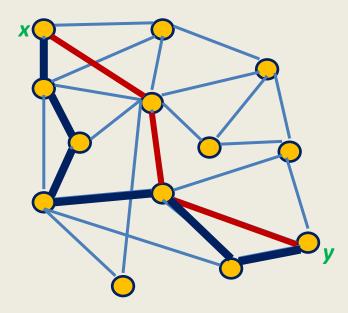
If $\langle x, ..., v, y \rangle$ is a path of length k from x to y, then what is the length of the path $\langle x, ..., v \rangle$? **Answer:** k - 1

Question: What can be the maximum length of any path in a graph ? **Answer:** n - 1

Notations and Observations

Shortest Path from x to y: A path from **x** to **y** of <u>least length</u>

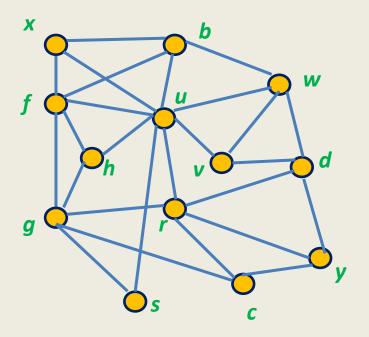
Distance from **x** to **y**: the <u>length</u> of the <u>shortest path</u> from **x** to **y**.



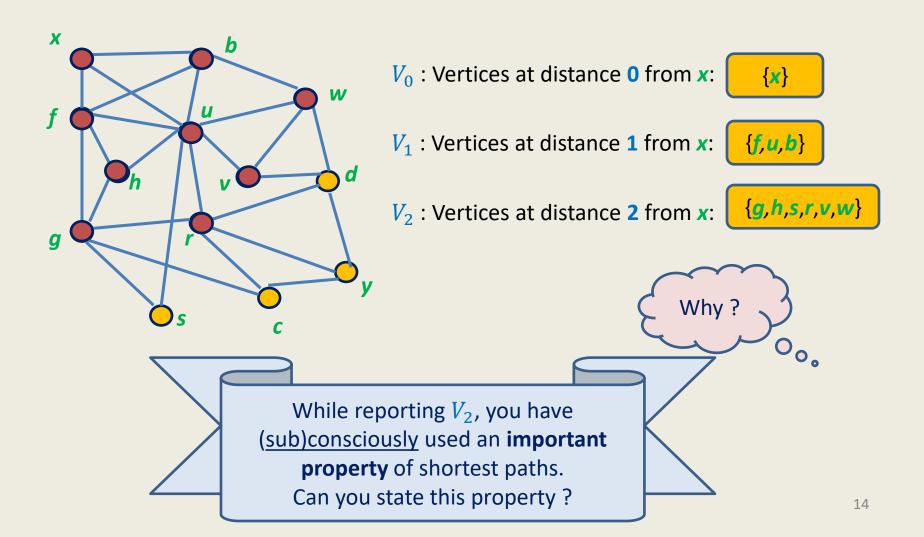
Shortest Paths in Undirected Graphs

Problem:

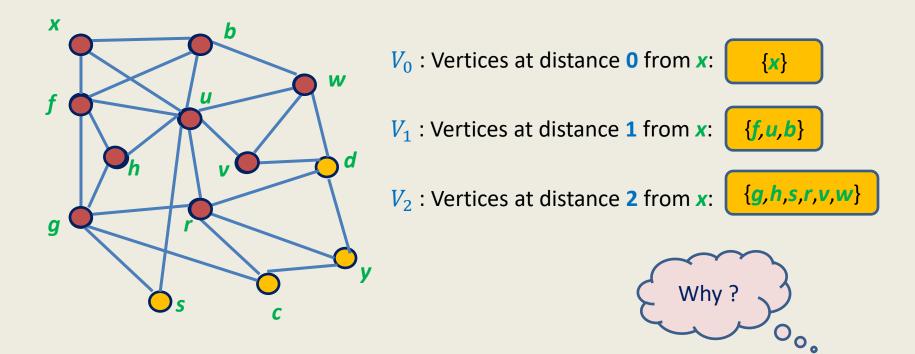
How to compute distance to all vertices **reachable** from **x** in a given undirected graph ?



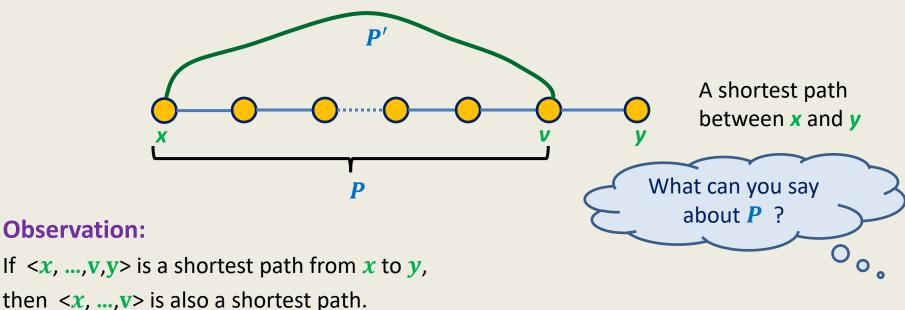
Shortest Paths in Undirected Graphs



Shortest Paths in Undirected Graphs



An important property of shortest paths



Proof:

Suppose $P = \langle x, ..., v \rangle$ is <u>not</u> a shortest path between x and v.

Then let P' be a shortest path between x and v.

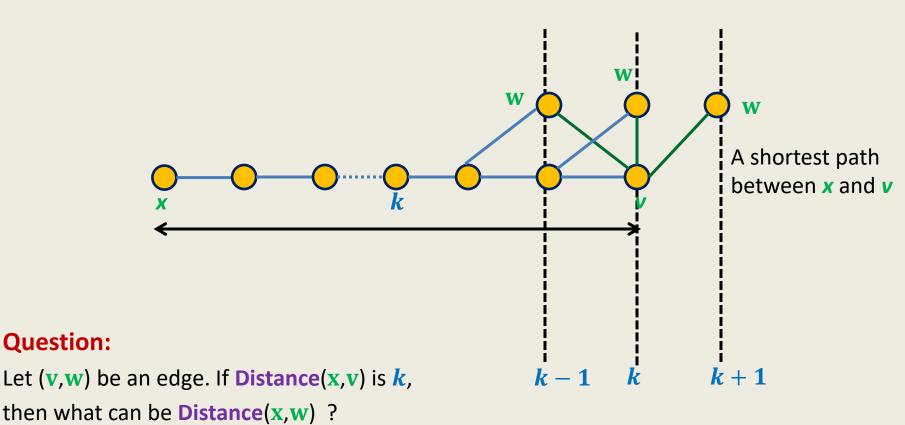
```
Length(\mathbf{P}') < Length(\mathbf{P}).
```

Question: What happens if we concatenate P' with edge (v, y)?

Answer: a path between x and y <u>shorter</u> than the <u>shortest-path</u> $\langle x, ..., v, y \rangle$.

→ Contradiction.

An important question



Answer: an element from the set $\{k - 1, k, k + 1\}$ only.

Relationship among vertices at different distances from *x*

- V_0 : Vertices at distance **0** from $x = \{x\}$
- V_1 : Vertices at distance **1** from **x** =

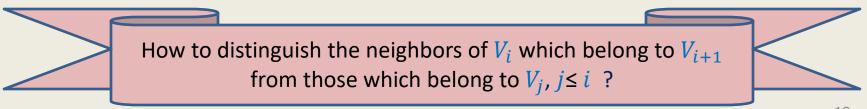
Neighbors of V_0

 V_2 : Vertices at distance 2 from x =

```
Those Neighbors of V_1 which do not belong to V_0 or V_1
```

 V_{i+1} : Vertices at distance **i+1** from **x** =

Those Neighbors of V_i which **do not** belong to $V_i - 1$ or V_i



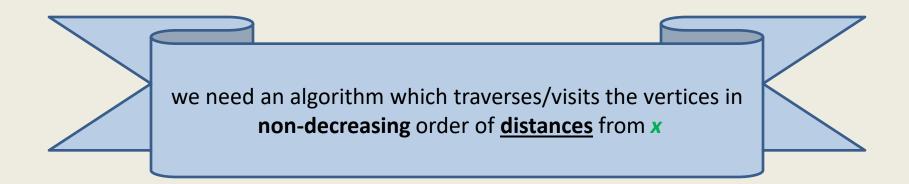
How can we compute V_{i+1} ?

Key idea: compute V_i 's in increasing order of i. Initialize **Distance**[**v**] $\leftarrow \infty$ of each vertex **v** in the graph. Initialize **Distance**[**x**] $\leftarrow 0$.

- First compute V_0 .
- Then compute V_1 .
- ...
- Once we have computed V_i , for every neighbor **v** of a vertex in V_i , If **v** is in V_j for some $j \in \{i, i - 1\}$, then **Distance**[**v**] = a number $\leq i$ If **v** is in V_{i+1} , **Distance**[**v**] = ∞

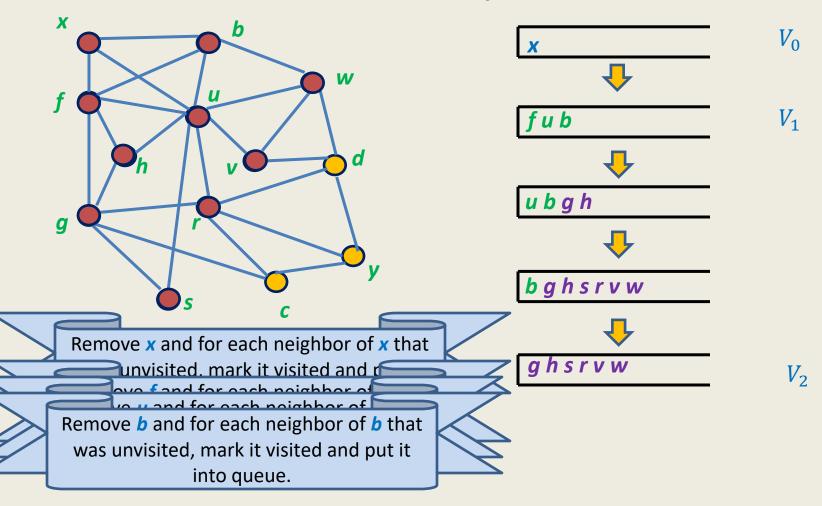
We can thus distinguish the neighbors of V_i which belong to V_{i+1} from those which belong to V_j .

A neat algorithm for computing distances from **x**



This traversal algorithm is called BFS (breadth first search) traversal

Using a queue for traversing vertices in non-decreasing order of distances

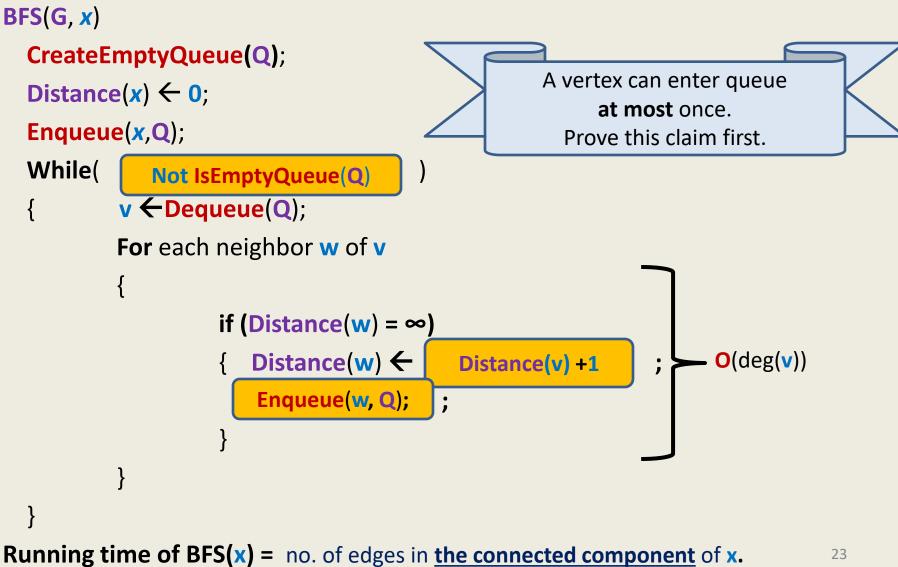


Compute distance of vertices from x:

BFS traversal from a vertex

```
BFS(G, x)
CreateEmptyQueue(Q);
Distance(\mathbf{x}) \leftarrow 0;
Enqueue(x,Q);
While(
             Not IsEmptyQueue(Q)
          v \leftarrow Dequeue(Q);
{
          For each neighbor w of v
                    if (Distance(w) = \infty)
                        Distance(w) ←
                                              Distance(v) +1
                                                                   ;
                        Enqueue(w, Q);
                                            ;
                    }
          }
}
```

Running time of BFS traversal



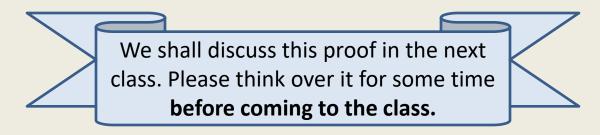
Correctness of BFS traversal

Question: What do we mean by correctness of **BFS** traversal from vertex **x** ?

Answer:

- All vertices reachable from x get visited.
- Vertices get visited in the **non-decreasing order of their distances** from **x**.
- At the end of the algorithm,

Distance(v) is the distance of vertex **v** from **x**.



A useful advice

An effective way to master the technique of **proving correctness**

of an algorithm is to

Do each home work exercise (about proof of correctness) that is asked in the class <u>before</u> attending the next class.

There is no escape. There will be question on proof of correctness in the next course. 🕲