Data Structures and Algorithms
(CS210A)

Lecture 27

Quick revision of Depth First Search (DFS) Traversal
An O(m + n):algorithm for biconnected components of a graph

Quick revision of
Depth First Search (DFS) Traversal

DFS traversal of G

DFS(v)
{ Visited(v) € true; DFN[v] € dfn ++;
For each neighbor w of v
{ if (Visited(w) = false)
{ DFS(w);

(]
LLERY)

}

}
}

DFS-traversal(G)

{ dfn € 0;
For each vertexve V { Visited(v)& false

For eachvertexveV{ If (Visited(v) = false)

}

DFS(v) }

DFN number

DFN[x] :

The number at which x gets visited during DFS
traversal.

DFS(v) computes a tree rooted at v

A DFS tree rooted at v

If x is ancestor of y then
DFN[x] < DFNI[y]

Question: Is a DFS tree unique ?
Answer: No.

Question:

Can any rooted tree be obtained through
DFS ?

Answer: No.

Always remember
this picture

non-tree edge =>» back edge

%

A DFS representation
of the graph

Verifying bi-connectivity of a graph

An O(m + n) time algorithm

A single DFS traversal

An O(m + n) time algorithm

* A formal characterization of the problem.
(articulation points)

* Exploring relationship between articulation point & DFS tree.

e Using the relation cleverly to design an efficient algorithm.

2 This graph is NOT biconnected ;

The removal of any of {v,f,u} can destroy
connectivity.

v,f,u are called the articulation points of G.

A formal definition of articulaton point

Definition: A vertex x is said to be articulation point if
3 u,v different from x
such that every path between v and v passes through x.

Observation: A graph is biconnected if none of its vertices is an articulation point.

AlM:
Design an algorithm to compute all articulation points in a given graph.

Some observations

A leaf node can never be an a.p. ?

Root is an a.p. iff it has two or more
children.

What about an internal
node ?

11

Necessary and Sufficient condition
for x to be articulation point

<5 Theorem1:

An internal node x is articulation point iff
x has at least one child y s.t.
no back edge from subtree(y) to ancestor of x.

=>» No back edge from subtree(y) going to a
vertex “higher” than x.

How to define the notion
“higher” than x ?

z —] O,
Use DFN numbering

12

Necessary and Sufficient condition
for x to be articulation point

<5 Theorem1:

An internal node x is articulation point iff
x has at least one child y s.t.
no back edge from subtree(y) to ancestor of x.

E Invent a new %
function
High_pt(v):

DFN of the highest ancestor of v

to which there is a back edge from subtree(v).

Theorem?2:

An internal node x is articulation point iff
it has a child, say y, in DFS tree such that
High_pt(y) = DFN(x).

13

Theorem2:
An internal node x is articulation point iff

it has a child, say vy, in DFS tree such that
High_pt(y) = DFN(x).

Good ©!
But how to transform this Theorem
into an efficient algorithm for
articulation points ?

O O
In order to compute High_pt(v) of a vertex v, ©
we have to traverse the adjacency lists of all vertices of subtree T(v).
=>» O(m) time in the worst case to compute High_pt(v) of a vertex v.

= O(mn) time algorithm ®

14

How to compute High pt(v) efficiently ?

root
Question: Can we express High_pt(v) in terms of

its children and proper ancestors?

Exploit
recursive structure of
DES tree.

15

How to compute High pt(v) efficiently ?

root

Question: Can we express High_pt(v) in terms of
its children and proper ancestors?

High_pt(v) =
High_pt(w) If w=child(v)
(v,rw)ne E{ DFN(w) If w = proper
- ancestor of v

16

The novel algorithm

Output : an array AP[] s.t.
AP[v]=true if and only if v is an articulation point.

Algorithm for articulation points in a graph G

DFS(v)
{ Visited(v) € true; DFN[v] € dfn ++; High_pt[v]&eo;
For each neighbor w of v
{ if (Visited(w) = false)
{ DFS(w); Parent(w) € v;

}

}
DFS-traversal(G)

{ dfn € 0;
For each vertex ve V { Visited(v)& false; AP[v]< false }
For each vertexveV{ If (Visited(v) =false) DFS(v) }

}

18

Algorithm for articulation points in a graph G

DFS(v)
{ Visited(v) € true; DFN[v] € dfn ++; High_pt[v]&eo;
For each neighbor w of v
{ if (Visited(w) = false)
{ Parent(w)€< v; DFS(w);

High_pt(v) € min(,);

If High_pt(w) 2 DFN|[v]

}
Else if ()
High_pt{v) €

}

}
DFS-traversal(G)

{ dfn € 0;
For each vertex ve V { Visited(v)& false; AP[v]< false }
For each vertexveV{ If (Visited(v) =false) DFS(v) }

}

Conclusion

Theorem2 : For a given graph G=(V,E), all articulation points can be
computed in O(m + n) time.

20

Data Structures

Range of
[Lists: (arrays, linked lists)] efficient functions

[Binary Heap]

Simplicit
Implicity { Binary Search Trees]

21

Heap

Definition: a tree data structure where :
value stored in a node <

@ @ ©

& O @

value stored in each of its children.

@

19 &)

22

Operations on a heap

Query Operations

* Find-min: report the smallest key stored in the heap.

Update Operations
* CreateHeap(H) : Create an empty heap H.

* Insert(x,H) :Insert a new key with value x into the heap H.

e Extract-min(H) : delete the smallest key from H.
* Decrease-key(p, A, H) : decrease the value of the key p by amount A.

 Merge(H1,H2) : Merge two heaps H1 and H2.

Why heaps when we can use a binary search tree ?

Compared to binary search trees, a heap is usually

-- much simpler and

-- more efficient

24

Existing heap data structures

. [Binary heap]

 Binomial heap

* Fibonacci heap

* Soft heap

25

Can we implement
a binary tree using an array ?

— —
fl Yes. If
In some special cases

— fundamental question

Question: What does the implementation of a tree data structure require ?

Answer: a mechanism to
e access parent of a node
 access children of a node.

27

A complete binary tree

O

%
b4

A complete binary of 12 nodes.

28

A complete binary tree

Level nodes

'®) 0o 1

Can you see a relationship
between label of a node
and labels of its children ?

Think over it before coming to the next class.

29

