Data Structures and Algorithms (CS210A)

Lecture 27

- Quick revision of Depth First Search (DFS) Traversal
- An O(m + n): algorithm for biconnected components of a graph

Quick revision of Depth First Search (DFS) Traversal

DFS traversal of *G*

DFS(v)

DFS-traversal(G)

}

{ dfn ← 0; For each vertex v∈ V { Visited(v) ← false } For each vertex v ∈ V { If (Visited(v) = false) DFS(v) }

DFN number

DFN[**x**] :

The number at which **x** gets visited during DFS traversal.

DFS(v) computes a tree rooted at v

If x is ancestor of y then DFN[x] < DFN[y]

Question: Is a DFS tree unique ? Answer: No.

Question:

Can any rooted tree be obtained through DFS ?

Answer: No.

Always remember this picture

non-tree edge \rightarrow back edge

of the graph

Verifying bi-connectivity of a graph

An O(m + n) time algorithm A <u>single</u> **DFS** traversal

An O(m + n) time algorithm

- A formal characterization of the problem. (articulation points)
- Exploring <u>relationship</u> between articulation point & DFS tree.

• Using the relation **cleverly** to design an efficient algorithm.

The removal of any of {*v,f,u*} can destroy connectivity.

v,**f**,**u** are called the **articulation points** of **G**.

A formal definition of articulaton point

Definition: A vertex **x** is said to be **articulation point** if

∃ *u*,*v* different from *x*

such that every path between *u* and *v* passes through *x*.

Observation: A graph is biconnected if none of its vertices is an articulation point.

AIM:

Design an **algorithm** to compute all **articulation points** in a given graph.

Some observations

- A leaf node can never be an a.p. ?
- **Root** is an **a.p**. iff it has two or more children.

Necessary and **Sufficient** condition for **x** to be articulation point

Theorem1:

An internal node *x* is **articulation point** iff *x* has <u>**at least**</u> one child *y* s.t. **no** back edge from **subtree(y)** to **ancestor** of *x*.

→ No back edge from subtree(y) going to a vertex "higher" than x.

Necessary and **Sufficient** condition for **x** to be articulation point

Theorem1:

An internal node **x** is **articulation point** iff **x** has **at least** one child **y** s.t.

no back edge from **subtree(y)** to **ancestor** of **x**.

High_pt(v):

DFN of the <u>highest ancestor</u> of **v**

to which there is a back edge from **subtree(v**).

Theorem2:

An internal node x is articulation point iff it has a child, say y, in DFS tree such that $\frac{\text{High}_pt(y)}{2} \quad \text{DFN}(x).$

Theorem2:

- \rightarrow O(m) time in the worst case to compute High_pt(v) of a vertex v.
- \rightarrow O(*mn*) time algorithm \otimes

How to compute **High_pt(v)** efficiently ?

How to compute **High_pt(v)** efficiently ?

Question: Can we express High_pt(v) in terms of its children and proper ancestors?

 $High_pt(v) =$

$$\min_{(v,w) \in E} \begin{cases} \text{High_pt}(w) \\ \text{DFN}(w) \end{cases}$$

If w=child(v) If w = proper ancestor of v

The novel algorithm

Output : an array AP[] s.t. AP[v] = true if and only if v is an articulation point.

Algorithm for articulation points in a graph G

DFS(v)

}

```
{ Visited(v) \leftarrow true; DFN[v] \leftarrow dfn ++; High_pt[v] \leftarrow \infty;
  For each neighbor w of v
          if (Visited(w) = false)
  {
         { DFS(w); Parent(w) \leftarrow v;
              .....;
              }
          ........
  }
DFS-traversal(G)
{ dfn \leftarrow 0;
  For each vertex v \in V { Visited(v) \leftarrow false; AP[v] \leftarrow false }
  For each vertex v \in V {
                                  If (Visited(v) = false) DFS(v)
                                                                            }
```

Algorithm for articulation points in a graph G

);

DFS(v)

```
{ Visited(v) \leftarrow true; DFN[v] \leftarrow dfn ++; High_pt[v] \leftarrow \infty;
For each neighbor w of v
```

{ if (Visited(w) = false)

{ Parent(w) \leftarrow v; DFS(w);

 $\label{eq:High_pt(v)} \leftarrow \min(, \\ \label{eq:High_pt(w)} \geq \mathsf{DFN}[v] \\ \end{tabular}$

} `

}

```
DFS-traversal(G)
```

```
{ dfn ← 0;
```

```
For each vertex v \in V {Visited(v) \leftarrow false; AP[v] \leftarrow false }For each vertex v \in V {If (Visited(v) = false) DFS(v) }
```

Conclusion

Theorem2: For a given graph G=(V,E), all articulation points can be computed in O(m + n) time.

Data Structures

Binary Heap

Simplicity

Binary Search Trees

Неар

Definition: a tree data structure where :

Operations on a heap

Query Operations

• Find-min: report the smallest key stored in the heap.

Update Operations

- **CreateHeap(H)** : Create an empty heap **H**.
- Insert(x,H) : Insert a <u>new key</u> with value x into the heap H.
- Extract-min(H) : delete the <u>smallest</u> key from H.
- **Decrease-key**(p, Δ , H) : decrease the value of the key p by amount Δ .
- Merge(H1,H2) : Merge two heaps H1 and H2.

Why heaps when we can use a binary search tree ?

Compared to binary search trees, a heap is usually

-- much simpler and

-- more efficient

Existing heap data structures

- Binary heap
- Binomial heap
- Fibonacci heap
- Soft heap

Can we implement a binary tree using an array ?

Question: What does <u>the implementation</u> of a tree data structure <u>require</u>?

Answer: a mechanism to

- access **parent** of a node
- access **children** of a node.

A complete binary tree

A complete binary of 12 nodes.

A complete binary tree

