
Data Structures and Algorithms
(CS210A)

Lecture 27
• Quick revision of Depth First Search (DFS) Traversal

• An O(𝒎 + 𝒏):algorithm for biconnected components of a graph

1

Quick revision of
Depth First Search (DFS) Traversal

2

DFS traversal of G

DFS(v)

{ Visited(v)  true;

 For each neighbor w of v

 { if (Visited(w) = false)

 { DFS(w) ;

 }

 }

}

DFS-traversal(G)

{

 For each vertex vϵ V { Visited(v) false }

 For each vertex v ϵ V { If (Visited(v) = false) DFS(v) }

}

3

……..;

……..;

DFN[v]  dfn ++;

dfn  0;

DFN number

DFN[x] :

The number at which x gets visited during DFS
traversal.

4

z

y

c

d
b

f

g h

u

w

v

r

s

0 1

2
3

4

5

6
7

8

9

10

11 12

DFS(v) computes a tree rooted at v

If x is ancestor of y then

 DFN[x] ? DFN[y]

Question: Is a DFS tree unique ?

Answer: No.

Question:

Can any rooted tree be obtained through
DFS ?

Answer: No.

5

z

y

c

d
b

f

g h

u

w

r

s

v

A DFS tree rooted at v

<

Always remember
this picture

non-tree edge

6

A DFS representation
of the graph

 back edge

Verifying bi-connectivity of a graph

 An O(𝒎 + 𝒏) time algorithm

A single DFS traversal

7

An O(𝒎 + 𝒏) time algorithm

• A formal characterization of the problem.

 (articulation points)

• Exploring relationship between articulation point & DFS tree.

• Using the relation cleverly to design an efficient algorithm.

8

The removal of any of {v,f,u} can destroy
connectivity.

v,f,u are called the articulation points of G.

9

z

y

c

d
b

f

g h

u

w

v

r

s

This graph is NOT biconnected

Definition: A vertex x is said to be articulation point if

∃ u,v different from x

such that every path between u and v passes through x.

Observation: A graph is biconnected if none of its vertices is an articulation point.

AIM:

Design an algorithm to compute all articulation points in a given graph.

A formal definition of articulaton point

10

u x v

Some observations

• A leaf node can never be an a.p. ?

• Root is an a.p. iff it has two or more
children.

11

v

What about an internal
node ?

Necessary and Sufficient condition
for x to be articulation point

Theorem1:

An internal node x is articulation point iff

x has at least one child y s.t.

no back edge from subtree(y) to

 No back edge from subtree(y) going to a
vertex “higher” than x.

12

x

root

y

z

Use DFN numbering 9

6

5

?

How to define the notion
“higher” than x ?

< 5

ancestor of x.

Necessary and Sufficient condition
for x to be articulation point

Theorem1:

An internal node x is articulation point iff

x has at least one child y s.t.

no back edge from subtree(y) to

High_pt(v):

DFN of the highest ancestor of v

to which there is a back edge from subtree(v).

Theorem2:

An internal node x is articulation point iff

it has a child, say y, in DFS tree such that

 High_pt(y) ? DFN(x).

13

x

root

y

z

9

6

5

?

Invent a new
function

< 5

≥

ancestor of x.

Theorem2:

An internal node x is articulation point iff

it has a child, say y, in DFS tree such that

 High_pt(y) ≥ DFN(x).

In order to compute High_pt(v) of a vertex v,

we have to traverse the adjacency lists of all vertices of subtree T(v).

 O(𝒎) time in the worst case to compute High_pt(v) of a vertex v.

 O(𝒎𝒏) time algorithm 

14

Good !
But how to transform this Theorem

into an efficient algorithm for
articulation points ?

How to compute High_pt(v) efficiently ?

Question: Can we express High_pt(v) in terms of

its children and proper ancestors?

15

v

root

Exploit
 recursive structure of

DFS tree.

How to compute High_pt(v) efficiently ?

Question: Can we express High_pt(v) in terms of

its children and proper ancestors?

High_pt(v) =

 min
 ?
 ?

16

v

root

If w=child(v)

If w = proper
ancestor of v

(v,w) ϵ E

High_pt(w)

DFN(w)

The novel algorithm

Output : an array AP[] s.t.

AP[v]= true if and only if v is an articulation point.

17

Algorithm for articulation points in a graph G

DFS(v)

{ Visited(v)  true; DFN[v]  dfn ++;

 For each neighbor w of v

 { if (Visited(w) = false)

 { DFS(w) ;

 }

 }

}

DFS-traversal(G)

{ dfn  0;

 For each vertex vϵ V { Visited(v) false; }

 For each vertex v ϵ V { If (Visited(v) = false) DFS(v) }

}

18

……..;

……..;

Parent(w)  v;

AP[v] false

High_pt[v]∞ ;

……..;

Algorithm for articulation points in a graph G

DFS(v)

{ Visited(v)  true; DFN[v]  dfn ++;

 For each neighbor w of v

 { if (Visited(w) = false)

 {

 }

 }

}

DFS-traversal(G)

{ dfn  0;

 For each vertex vϵ V { Visited(v) false; }

 For each vertex v ϵ V { If (Visited(v) = false) DFS(v) }

}

19

……..;

……..;

Else if (Parent(v) ≠ w)

High_pt(v)  min(High_pt(v) , High_pt(w));

AP[v] false

High_pt[v]∞ ;

……..; If High_pt(w) ≥ DFN[v] AP[v]  true

Parent(w) v; DFS(w);

High_pt(v)  min(DFN(w) , High_pt(v))

Conclusion

Theorem2 : For a given graph G=(V,E), all articulation points can be

computed in O(𝒎 + 𝒏) time.

20

Data Structures

21

Lists: (arrays, linked lists)

Binary Search Trees
Simplicity

Range of
 efficient functions

Binary Heap

Heap
 Definition: a tree data structure where :

value stored in a node ? value stored in each of its children.

22

11

4

18 23

47 21

7

71 9 13

37

43

19

<

Operations on a heap

Query Operations
• Find-min: report the smallest key stored in the heap.

Update Operations
• CreateHeap(H)

• Insert(x,H)

• Extract-min(H)

• Decrease-key(p, ∆, H)

• Merge(H1,H2)

23

: Create an empty heap H.

: Insert a new key with value x into the heap H.

: delete the smallest key from H.

: decrease the value of the key p by amount ∆.

: Merge two heaps H1 and H2.

Why heaps when we can use a binary search tree ?

Compared to binary search trees, a heap is usually

 -- much simpler and

 -- more efficient

24

Existing heap data structures

• Binary heap

• Binomial heap

• Fibonacci heap

• Soft heap

25

Can we implement
 a binary tree using an array ?

26

Yes.
In some special cases

 fundamental question

Question: What does the implementation of a tree data structure require ?

Answer: a mechanism to

• access parent of a node

• access children of a node.

27

A complete binary tree

 A complete binary of 12 nodes.

28

A complete binary tree

29

0 1

Level nodes

1 2

2 4

0

1 2

3 4 5 6

7 8 9 10 11

Can you see a relationship
between label of a node

and labels of its children ?

Think over it before coming to the next class.

