
Data Structures and Algorithms 
(CS210A) 

 

Lecture 27 
• Quick revision of Depth First Search (DFS) Traversal 

• An O(𝒎 + 𝒏):algorithm for biconnected components of a graph 
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Quick revision of  
Depth First Search (DFS) Traversal 
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DFS traversal of G  

DFS(v)   

{  Visited(v)  true;    

    For each neighbor w of v  

    {          if (Visited(w)  = false)                         

               {    DFS(w) ;                           

                

               } 

      

    } 

} 

 

DFS-traversal(G) 

{    

    For each vertex vϵ V  {       Visited(v)  false                        } 

    For each vertex v ϵ V {       If (Visited(v ) = false)    DFS(v)   } 

} 
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……..; 

……..; 

DFN[v]  dfn ++; 

dfn  0; 



DFN number 

 

 

 

 

 

 

 

 

 

DFN[x] : 

The number at which x gets visited during DFS 
traversal. 
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DFS(v) computes a tree rooted at v 

 

 

 

 

 

 

 

 

 

If x is ancestor of y then 

                   DFN[x]    ?   DFN[y]   

 

Question: Is a DFS tree unique ? 

Answer: No. 

 

Question:  

Can any rooted tree be obtained through 
DFS ? 

Answer: No.  
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Always remember  
this picture 

  
 

 

 

 

non-tree edge 
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A DFS representation  
of the graph 

 back edge 



Verifying bi-connectivity of  a graph 

  An O(𝒎 + 𝒏) time algorithm 

A single DFS traversal 
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An O(𝒎 + 𝒏) time algorithm 

 

• A formal characterization of the problem. 

                                     (articulation points) 

 

• Exploring relationship between articulation point & DFS tree. 

 

 

• Using the relation cleverly to design an efficient algorithm.  
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The removal of any of {v,f,u} can destroy 
connectivity. 

 

v,f,u are called the articulation points of G. 
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Definition: A vertex x is said to be articulation point  if  

∃  u,v different from x 

such that every path between u and v passes through x. 

 

 

 

 

 

 

 

Observation: A graph is biconnected if none of its vertices is an articulation point. 

 

AIM:  

Design an algorithm to compute all articulation points in a given graph.  

A formal definition of articulaton point 
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u x v 



Some observations 

  

• A leaf node can never be an a.p. ?  

 

• Root is an a.p. iff it has two or more 
children. 
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v 

What about an internal 
node ? 



Necessary and Sufficient condition  
for x to be articulation point 

 

 

 

 

 

 

 

 

 

 

Theorem1:   

An internal node x  is articulation point iff 

x has at least one child y s.t.  

no back edge from subtree(y) to 

 

 No back edge from subtree(y) going to a 
vertex “higher” than x. 
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Necessary and Sufficient condition  
for x to be articulation point 

 

 

 

 

 

 

 

 

 

 

Theorem1:   

An internal node x  is articulation point iff 

x has at least one child y s.t.   

no back edge from subtree(y) to 

 

 

High_pt(v):  

DFN of the highest ancestor of v  

to which there is a back edge from subtree(v). 

 

Theorem2:  

An internal node x is articulation point iff  

it has a child, say y, in DFS tree such that 

 High_pt(y)   ?    DFN(x). 
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Theorem2:  

An internal node x is articulation point iff  

it has a child, say y, in DFS tree such that 

 High_pt(y)  ≥ DFN(x). 

 

 

 

 

 

In order to compute High_pt(v) of a vertex v,  

we have to traverse the adjacency lists of all vertices of subtree T(v). 

 O(𝒎) time in the worst case to compute High_pt(v) of a vertex v. 

 O(𝒎𝒏) time algorithm   
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Good !  
But how to transform this Theorem 

into an efficient algorithm for 
articulation points ? 



How to compute High_pt(v) efficiently ? 

 

 

 

 

 

 

 

 

 

 

Question:  Can we express High_pt(v) in terms of   

its children and proper ancestors? 
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How to compute High_pt(v) efficiently ? 

 

 

 

 

 

 

 

 

 

 

Question:  Can we express High_pt(v) in terms of   

its children and proper ancestors? 

 

High_pt(v) =  

            min     
      ?
     ?
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The novel algorithm 

Output : an array AP[]  s.t.  

AP[v]= true if and only if v is an articulation point. 
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Algorithm for articulation points in a graph G  

DFS(v)   

{  Visited(v)  true; DFN[v]  dfn ++;   

    For each neighbor w of v  

    {          if (Visited(w)  = false)                         

               {    DFS(w) ;                           

                

                

 

               } 

          

     

    } 

} 

DFS-traversal(G) 

{   dfn  0; 

    For each vertex vϵ V  {       Visited(v)  false;                              } 

    For each vertex v ϵ V {       If (Visited(v ) = false)    DFS(v)          } 

} 
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……..; 

……..; 

Parent(w)  v; 

AP[v] false 

High_pt[v]∞ ; 

……..; 



Algorithm for articulation points in a graph G  

DFS(v)   

{  Visited(v)  true; DFN[v]  dfn ++;   

    For each neighbor w of v  

    {          if (Visited(w)  = false)                         

               {     

                

                

 

               } 

          

     

    } 

} 

DFS-traversal(G) 

{   dfn  0; 

    For each vertex vϵ V  {       Visited(v)  false;                              } 

    For each vertex v ϵ V {       If (Visited(v ) = false)    DFS(v)          } 

} 
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……..; 

……..; 

Else if ( Parent(v) ≠  w  )  
                     

High_pt(v)  min(  High_pt(v)    ,  High_pt(w)  ); 

AP[v] false 

High_pt[v]∞ ; 

……..; If  High_pt(w) ≥ DFN[v]        AP[v]  true 

Parent(w) v;   DFS(w); 

High_pt(v)  min(   DFN(w)   ,   High_pt(v)    ) 



Conclusion 

 

 

 

 

Theorem2 : For a given graph G=(V,E), all articulation points can be 

computed in O(𝒎 + 𝒏) time. 
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Data Structures  
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Lists: (arrays, linked lists)  

Binary Search Trees 
Simplicity 

Range of 
 efficient functions 

Binary Heap 



Heap 
 Definition: a tree data structure where : 

value stored in  a node     ?      value stored in each of its children. 
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Operations on a heap 

Query Operations 
• Find-min: report the smallest key stored in the heap. 

 

Update Operations 
• CreateHeap(H) 

• Insert(x,H)  

• Extract-min(H)  

• Decrease-key(p, ∆, H)  

• Merge(H1,H2) 
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: Create an empty heap H. 

: Insert a new key with value x into the heap H. 

: delete the smallest key from H. 

: decrease the value of the key p by amount ∆. 

: Merge two heaps H1 and H2. 



Why heaps when we can use a  binary search tree ? 

 

Compared to binary search trees, a heap is usually  

 
      -- much simpler and 

 

      -- more efficient     
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Existing heap data structures 

 

• Binary heap 

 

• Binomial heap 

 

• Fibonacci heap 

 

• Soft heap 

25 



Can  we implement 
 a binary tree using an array ? 
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Yes. 
In some special cases 



                             fundamental question 
 

Question:  What does the implementation of a tree data structure require ? 

 

 

 

 

 

 

 

 

Answer: a mechanism to  

• access  parent of a node 

• access  children of a node. 
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A complete binary tree 

 

 

 

 

 

 

 

 

 

                                     A complete binary of 12 nodes. 
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A complete binary tree 
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Can you see a relationship 
between label of a node 

and  labels of its children ? 

Think over it before coming to the next class. 


