
Data Structures and Algorithms
(CS210A)

Lecture 33
• Algorithm for 𝒊th order statistic of a set 𝑺.

1

Problem definition

Given a set 𝑺 of 𝒏 elements and a positive integer 𝒊 ≤ 𝒏,

compute 𝒊th smallest element from 𝑺.

Applications: As wide as that of sorting.

Trivial algorithm: Sort 𝑺

AIM: To design an algorithm with O(𝒏) time complexity.

Assumption (For the sake of neat description and analysis of algorithms of this lecture):

• All elements of 𝑺 are assumed to be distinct.

2

But sorting takes O(n log n) time
and appears to be an overkill

for this simple problem.

A motivational background

Though it was intuitively appealing to believe that there exists an O(𝒏) time algorithm to
compute 𝒊th smallest element, it remained a challenge for many years to design such an
algorithm…

In 1972, five well known researchers: Blum, Floyd, Pratt, Rivest, and Tarjan designed the
O(𝒏) time algorithm. It was designed during a lunch break of a conference when these
five researchers sat together for the first time to solve the problem.

In this way, the problem which remained unsolved for many years got solved in less than
an hour. But one should not ignore the efforts these researchers spent for years before
arriving at the solution … It was their effort whose fruit got ripened in that hour .

3

Notations

4

We shall now introduce some notations which will
help in a neat description of the algorithm.

Notations

• 𝑺 :

 the given set of 𝒏 elements.

• 𝑒𝑖 :

 𝑖th smallest element of 𝑺.

• 𝑺<𝒙 :

 subset of 𝑺 consisting of all elements smaller than 𝒙.

• 𝑺>𝒙 :

 subset of 𝑺 consisting of all elements greater than 𝒙.

• rank(𝑺,𝒙) :

 1 + number of elements in 𝑺 that are smaller than 𝒙.

• Partition(𝑺,𝒙):

 algorithm to partition 𝑺 into 𝑺<𝒙 and 𝑺>𝒙;

 this algorithm returns (𝑺<𝒙, 𝑺>𝒙, 𝒓) where 𝒓=rank(𝑺,𝒙).

 5

Why should such an algorithm exist ?

6

(inspiration from QuickSort)

 0 1 2 3 4 5 6 7 8

QuickSelect(𝑺,𝒊)

7

𝑒𝑟
< 𝑒𝑟

> 𝑒𝑟

What happens during
Partition(𝑺,𝟎,𝟖)

𝑺

 0 1 2 3 4 5 6 7 8

QuickSelect(𝑺,𝒊)

8

 0 1 2 3 4 5 6 7 8

 𝑒1… 𝑒𝑟−1 𝑒𝑟+1… 𝑒𝑛

𝑒𝑟

𝑺

𝑒𝑟

If 𝑖 > 𝑟 we can discard
these element.

If 𝑖 < 𝑟 we can discard
these elements.

Pseudocode for QuickSelect(𝑺,𝒊)

QuickSelect(𝑺,𝒊)

{ Pick an element 𝒙 from 𝑺;

 (𝑺<𝒙, 𝑺>𝒙, 𝒓) Partition(𝑺,𝒙);

 If(𝒊 = 𝒓) return 𝒙;

 Else If (𝒊< 𝒓)

 QuickSelect(𝑺<𝒙,𝒊)

 Else

 QuickSelect(𝑺>𝒙,𝒊 − 𝒓);

}

Average case time complexity: O(𝒏)

Worst case time complexity : O(𝒏𝟐)

9

Analysis is simpler than Quick Sort.

c

c

c

Towards worst case O(𝒏) time algorithm …

10

Key ideas

• Inspiration from some recurrences.

• Concept of approximate median

• Learning from QuickSelect(𝑺,𝒊)

11

 isn’t is surprising that knowledge of recurrence
can help in the design an efficient algorithm)

This is the usual trick:
When a problem appears difficult, weaken the
problem and try to solve it.

This is also a natural choice.
Can we fine tune this algorithm to achieve our goal ?

Learning from recurrences

Question: what is the solution of recurrence T(𝒏) = c𝒏 + T(9𝒏/10) ?

Answer: O(𝒏).

Sketch (by gradual unfolding):

T(𝒏) = c𝒏 + c 𝟗𝒏/𝟏𝟎 + c 𝟖𝟏 𝒏/𝟏𝟎𝟎 + …

 = c𝒏[𝟏 + 𝟗/𝟏𝟎 + 𝟖𝟏/𝟏𝟎𝟎 + …]

 = O(𝒏)

Lesson 1 :

 Solution for T(𝒏) = c𝒏 + T(𝒂𝒏) is O(𝒏) if …..

 12

𝟎 < 𝒂 < 𝟏.

Learning from recurrences

Question: what is the solution of recurrence

 T(𝒏) = c𝒏 + T(𝒏/6) + T(5𝒏/7) ?

Answer: O(𝒏).

Sketch: (by induction)

Assertion: T(𝒏) ≤ 𝑐1𝒏.

Induction step: T(𝒏) = c𝒏 + T(𝒏/6) + T(5𝒏/7)

 ≤ c𝒏 + 37

42
𝑐1𝒏

 ≤ 𝑐1𝒏 if 𝑐1≥ 42

5
 c

Lesson 2 :

Solution for T(𝒏) = c𝒏 + T(𝒂𝒏) + T(𝒅𝒏) is O(𝒏) if ……..

13

𝒂 + 𝒅 < 𝟏.

Concept of approximate median

Definition: Given a constant 0 < 𝒃 ≤ 𝟏/𝟐,

an element 𝒙 ϵ 𝑺 is said to be 𝒃-approximate median of 𝑺

if rank(𝒙, 𝑺) is in the range [𝒃𝒏, (1 − 𝒃)𝒏].

14

𝑒1 𝑒2 𝑒𝑏𝑛 𝑒𝑛 𝑒(1−𝑏)𝑛 𝑥

Learning from QuickSelect(𝑺,𝒊)

QuickSelect(𝑺,𝒊)

{ Pick an element 𝒙 from 𝑺;

 (𝑺<𝒙, 𝑺>𝒙, 𝒓) Partition(𝑺,𝒙);

 If(𝒊 = 𝒓) return 𝒙;

 Else If (𝒊< 𝒓)

 QuickSelect(𝑺<𝒙,𝒊)

 Else

 QuickSelect(𝑺>𝒙,𝒊 − 𝒓);

}

Answer: T(𝒏) = 𝐜𝒏 + T((𝟏 − 𝒃)𝒏)

 = O(𝒏)

15

Lesson 1 What is time complexity
of the algorithm

 if 𝒙 is a 𝒃-approximate
median of 𝑺 ?

O(𝒏)

T((𝟏 − 𝒃)𝒏)

Algorithm 2

16

Select(𝑺,𝒊)

(A linear time algorithm)

Overview of the algorithm

Select(𝑺,𝒊)

{ Compute a 𝒃-approximate median, say 𝒙, of 𝑺;

 (𝑺<𝒙, 𝑺>𝒙, 𝒓) Partition(𝑺,𝒙);

 If(𝒊 = 𝒓) return 𝒙;

 Else If (𝒊< 𝒓)

 Select(𝑺<𝒙,𝒊)

 Else

 Select(𝑺>𝒙,𝒊 − 𝒓);

}
Observation: If we can compute 𝒃-approximate median in O(𝒏) time, we get O(𝒏) time algo.

But that appears too much to expect from us. Isn’t it ?

So what to do ?

Observation: If we can compute 𝒃-approximate median in O(𝒏)+ T(𝒅𝒏) time for 𝒅+(𝟏 − 𝒃) < 1, the

time complexity of the algorithm will still be O(𝒏).

17

O(𝒏)

T((𝟏 − 𝒃)𝒏)

O(𝒏) + T(𝒅𝒏)

Spend some time on this observation to infer what it hints at.

Hint: use Lesson 2

AIM: How to compute a 𝒃-approximate median of 𝑺

 in O(𝒏)+ T(𝒅𝒏) time with 𝒅+(𝟏 − 𝒃) < 1?

Question: Can we form a set 𝑴 of size 𝒅𝒏 such that

 exact median of 𝑴 is 𝒃-approximate median of 𝑺?

18

𝑺

𝑴

Forming the subset 𝑴 with
desired parameters

 This step forms the core of the algorithm and is indeed a brilliant stroke of inspiration.

The student is strongly recommended to ponder over this idea from various angles.

• Divide 𝑺 into groups of 5 elements;

• Compute median of each group by sorting;

• Let 𝑴 be the set of medians;

• Compute median of 𝑴, let it be 𝒙;

Question: Is 𝒙 an approximate median of 𝑺 ?

Answer: indeed.

The rank of 𝒙 in 𝑴 is 𝒏/𝟏𝟎. Each element in 𝑴 has two elements smaller than itself in its

respective group. Hence there are at least
𝟑𝒏

𝟏𝟎
 − 𝟏 elements in 𝑺 which are smaller than 𝒙.

In a similar way, there are at least
𝟑𝒏

𝟏𝟎
− 𝟏 elements in 𝑺 which are greater than 𝒙. Hence, 𝒙

is
𝟑𝒏

𝟏𝟎
 -approximate median of 𝑺.

(See the animation on the following slide to get a better understanding of this explanation.)
19

O(𝒏)

T(𝒏/5)

1 2 …
𝒏

𝟏𝟎
 …

𝒏

𝟓

Forming the subset 𝑴

• Divide 𝑺 into groups of 5 elements;

• Compute median of each group by sorting;

20

𝑴 𝟏𝟓 𝟒𝟔

𝟏𝟓 𝟗 𝟕 𝟖𝟐 𝟏𝟕 𝟓𝟗 𝟑𝟐 𝟏 𝟏𝟎𝟏 𝟒𝟔 𝟕𝟖 …

𝑺

O(𝒏)

Forming the subset 𝑴

• Divide 𝑺 into groups of 5 elements;

• Compute median of each group by sorting;

• Let 𝑴 be the set of medians;

• Let 𝒙 be median of 𝑴.

Spend some time to answer this question before moving ahead.
21

𝑴 𝟏𝟓 𝟒𝟔

𝟏𝟓 𝟗 𝟕 𝟖𝟐 𝟏𝟕 𝟓𝟗 𝟑𝟐 𝟏 𝟏𝟎𝟏 𝟒𝟔 𝟕𝟖 …

𝒙

𝑺

What can we say about
rank of 𝒙 in 𝑺 ?

1 2 …
𝒏

𝟏𝟎
 …

𝒏

𝟓

Forming the subset 𝑴

 𝒙 is
𝟑𝒏

𝟏𝟎
−approximate median of 𝑺.

Time required to form 𝑴 : O(𝒏)

22

𝑴

Increasing order of values in 𝑴

𝑺 𝒙

Surely smaller than 𝒙

Surely greater than 𝒙

Bring back the remaining 𝟒 elements associated with each element of 𝑴
and place them in the increasing order from top to bottom

Pseudocode for Select(𝑺,𝒊)

Select(𝑺,𝒊)

 𝑴 ∅;

 Divide 𝑺 into groups of 5 elements;

 Sort each group and add its median to 𝑴;

 𝒙 Select(𝑴,|𝑴|/2);

 (𝑺<𝒙, 𝑺>𝒙, 𝒓) Partition(𝑺,𝒙);

 If(𝒊 = 𝒓) return 𝒙;

 Else If (𝒊< 𝒓)

 Select(𝑺<𝒙,𝒊)

 Else

 Select(𝑺>𝒙,𝒊 − 𝒓);

23

O(n)

T(7n/10)

O(n)

T(n/5)

Analysis

T(n) = cn + T(n/5) + T(7n/10)

 = O(n) [Learning from Recurrence of type II]

Theorem: Given any 𝑺 of n elements, we can compute ith smallest element
from 𝑺 in O(n) worst case time.

24

Exercises

(Attempting these exercises will give you a better insight into the algorithm.)

• What is magical about number 5 in the algorithm ?

• What if we divide the set 𝑺 into groups of size 3 ?

• What if we divide the set 𝑺 into groups of size 7 ?

• What if we divide the set 𝑺 into groups of even size (e.g. 4 or 6) ?

25

