Data Structures and Algorithms (CS210A)

Lecture 36

• A new algorithm design paradigm: Greedy strategy

part III

Continuing Problem from last class

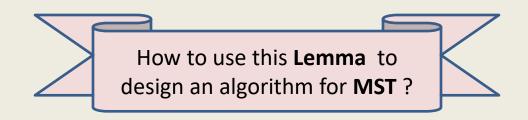
Minimum spanning tree

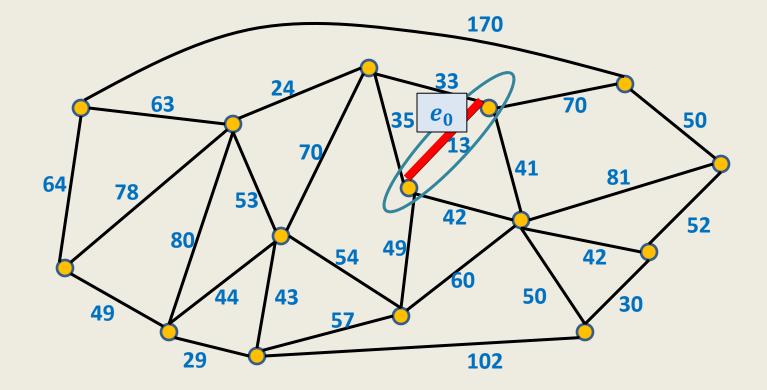
Problem Description

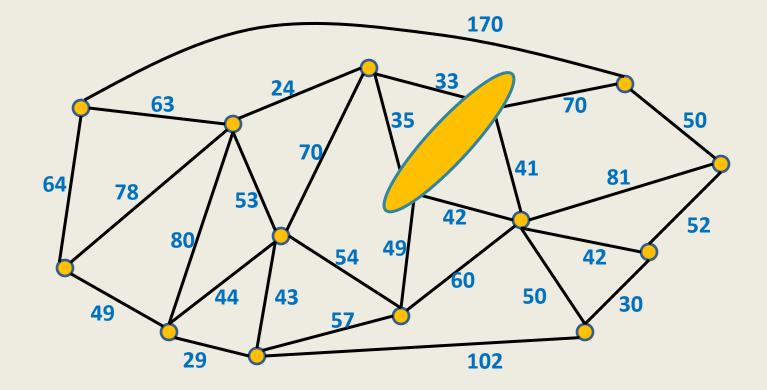
Input: an undirected graph G = (V, E)Aim: compute a spanning tree (V, E')

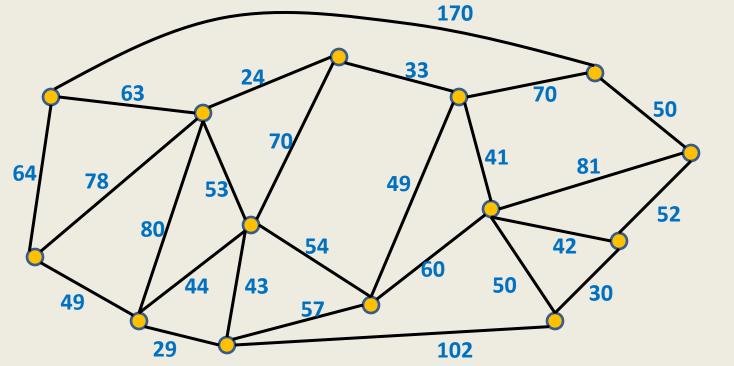
Lemma (proved in last class):

If $e_0 \in E$ is the edge of **least weight** in G, then there is a **MST** T containing e_0 .





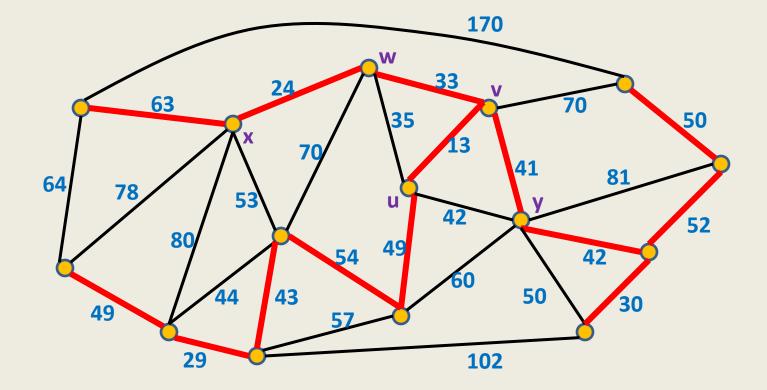




Theorem:

w(MST(**)**) =

G′



A useful lesson for design of a graph algorithm

If you have a complicated algorithm for a graph problem, ...

search for some graph theoretic property

to design simpler and more efficient algorithm

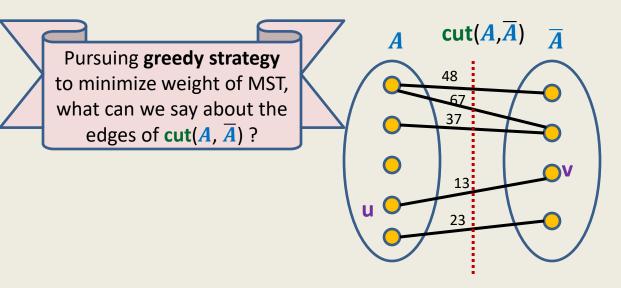
Two graph theoretic properties of MST

- Cut property
- Cycle property

Cut Property

Cut Property

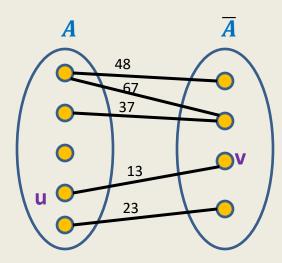
Definition: For any subset $A \subseteq V$ $\operatorname{cut}(A,\overline{A}) = \{ (u,v) \in E \mid$



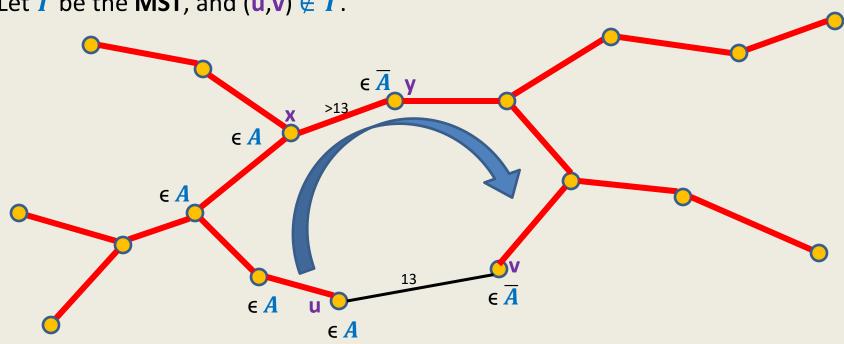
Cut-property:

The least weight edge of a $cut(A,\overline{A})$ must be in MST.

Proof of cut-property



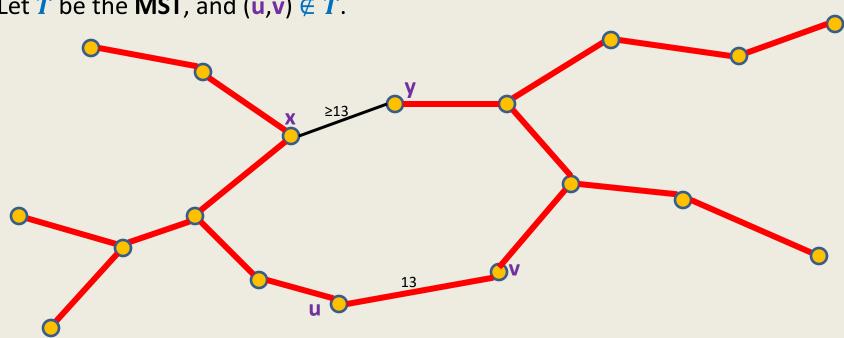
Proof of cut-property



Let **T** be the **MST**, and $(\mathbf{u}, \mathbf{v}) \notin \mathbf{T}$.

Question: What happens if we remove (x,y) from T, and add (u,v) to T.

Proof of cut-property



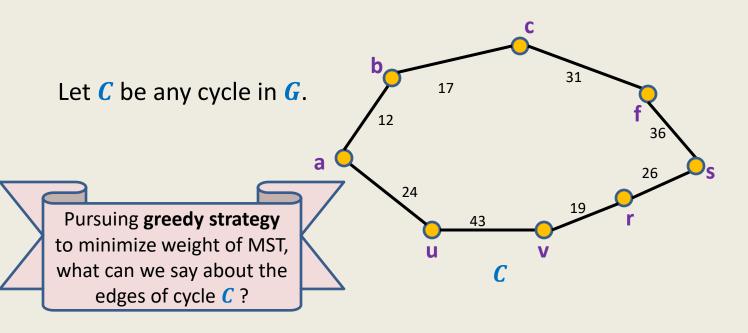
Let **T** be the **MST**, and $(\mathbf{u}, \mathbf{v}) \notin \mathbf{T}$.

Question: What happens if we remove (x,y) from T, and add (u,v) to T.

We get a spanning tree T' with weight < weight(T) A contradiction !

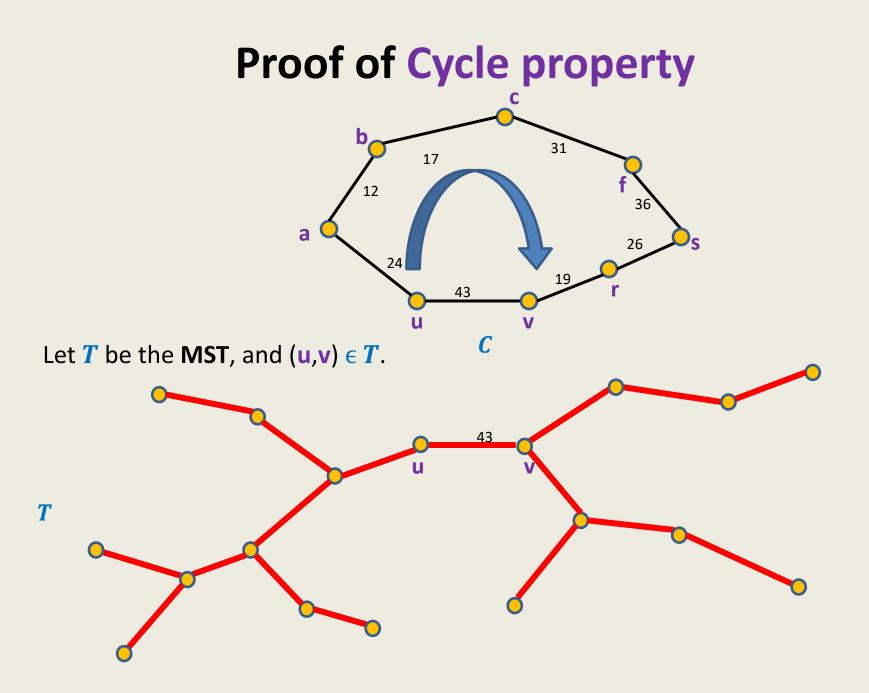
Cycle Property

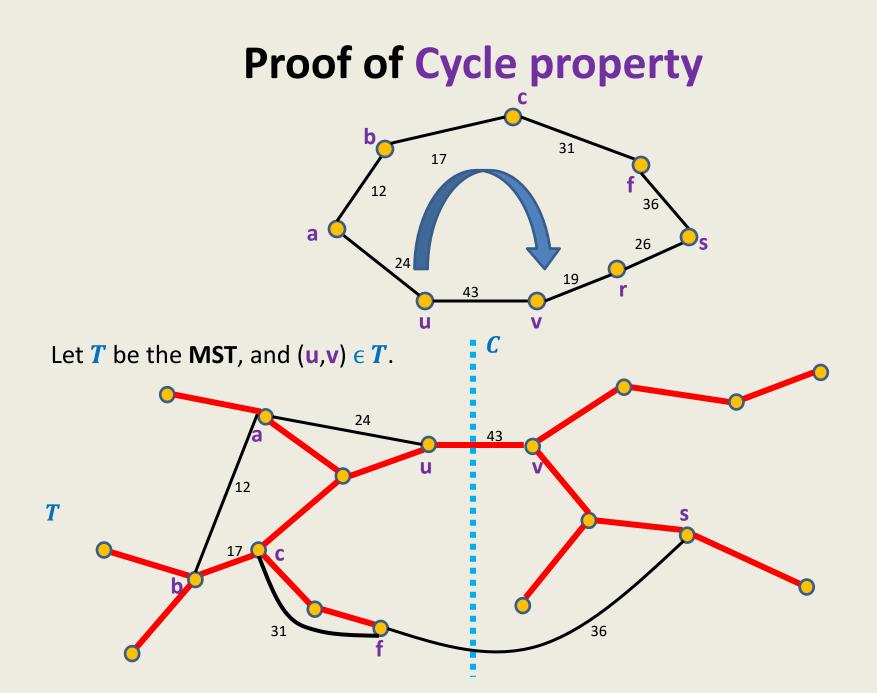
Cycle Property

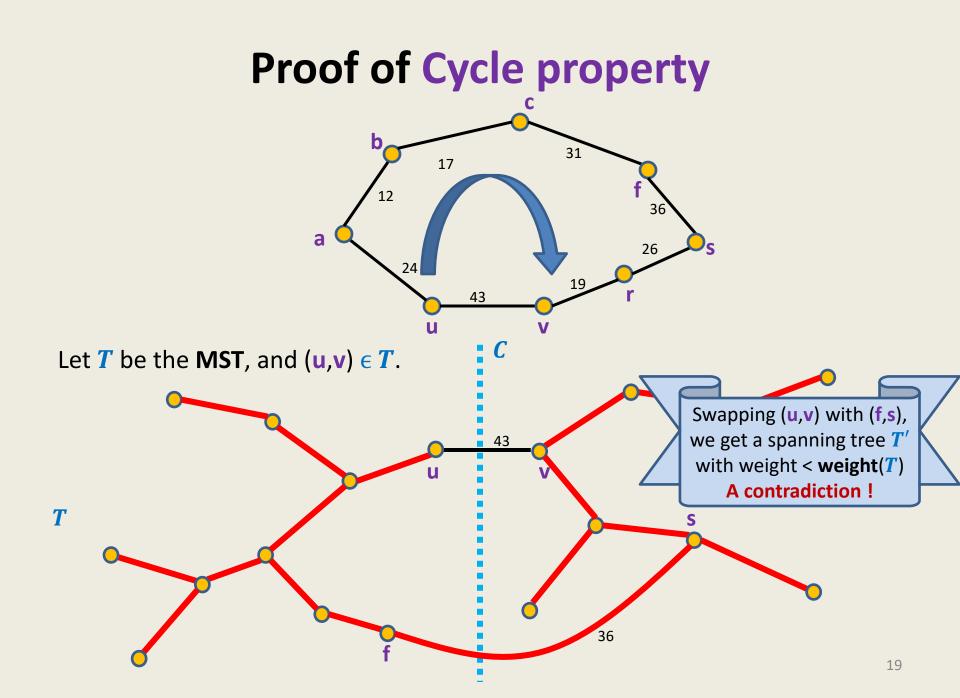


Cycle-property:

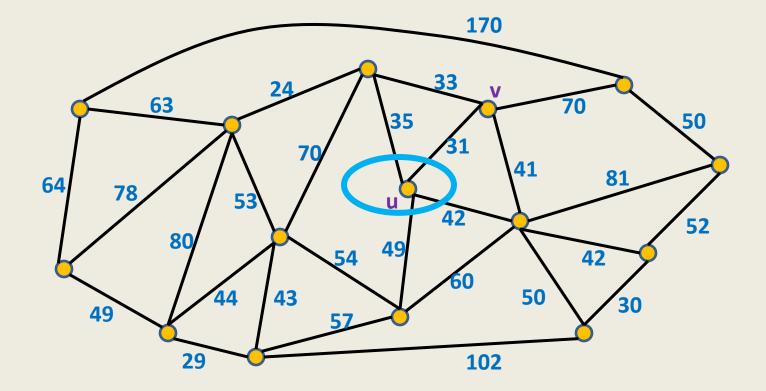
Maximum weight edge of any cycle *C* can not be present in MST.

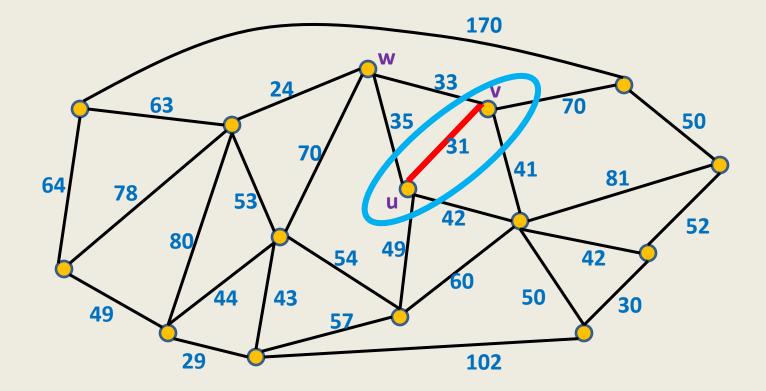


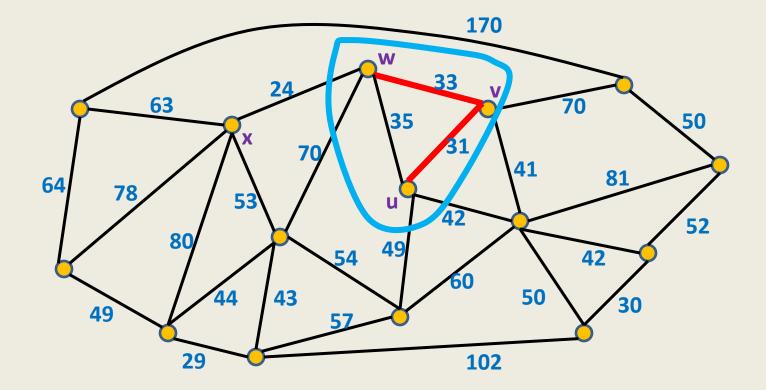


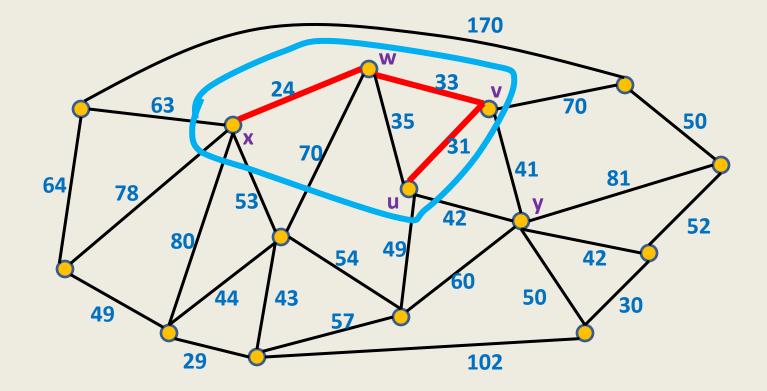


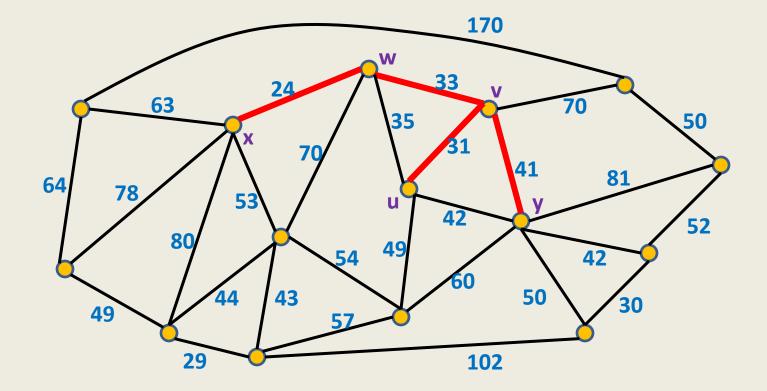
Algorithms based on cut Property

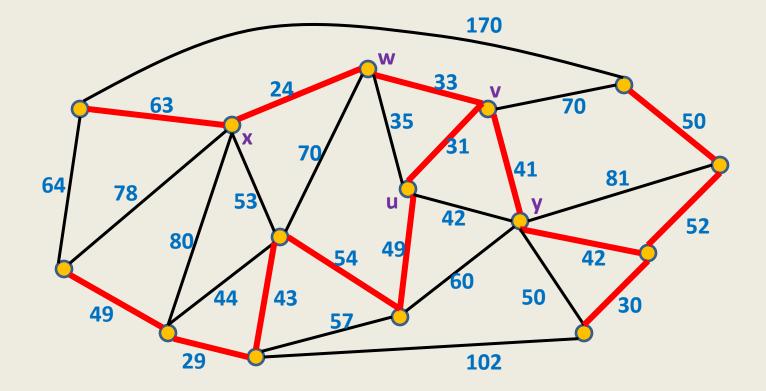












An Algorithm based on cut property

Algorithm (Input: graph G = (V, E) with weights on edges)

- **T**← Ø;
- **A** ← {**u**};

While $\left(A <> V \right)$ do

```
{ Compute the least weight edge from cut(A,A);
Let this edge be (x,y), with x∈ A, y∈ A;
T ← T ∪ {(x, y)};
A ← A ∪{y};
```

Return T;

Number of iterations of the While loop : n-1

Time spent in one iteration of While loop: O(m)

→ Running time of the algorithm: O(mn)

Algorithm based on cycle Property

An Algorithm based on cycle property Description

Algorithm (Input: graph G = (V, E) with weights on edges)

While (<u>E has any cycle</u>) do

{ Compute any cycle C;
 Let (u,v) be the maximum weight edge of the cycle C;
 Remove (u,v) from E;
}

Return **E**;

Number of iterations of the While loop : m - n + 1

Time spent in one iteration of While loop: O(n)

→ Running time of the algorithm: O(mn)

Problem 3

Mobile towers on a road

Mobile towers on a road



A mobile tower can cover any cell phone within radius *d*.

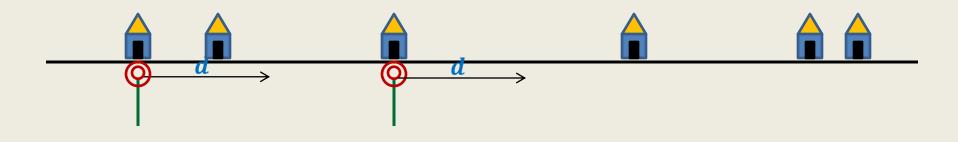
Problem statement:

There are *n* houses located along a road.

We want to place mobile towers such that

- Each house is **covered** by at least one mobile tower.
- The number of mobile towers used is **least** possible.

Mobile towers on a road



Strategy 1:

Place tower at first house,

Remove all houses covered by this tower.

Proceed to the next uncovered house ...

Place tower at distance **d** to the right of the first house;

Remove all houses covered by this tower;

Proceed to the next uncovered house along the road...

Lemma: There is an optimal solution for the problem in which

the <u>leftmost</u> tower is placed at distance *d* to the right of the first house

Homework ...

Ponder over the following questions before coming for the next class

- Use cycle property and/or cut property to design a new algorithm for MST
- Use some data structure to improve the running time of the algorithms discussed in this class to O(m log n)