# Data Structures and Algorithms (CS210A)

#### Lecture 38

• An interesting problem:

shortest path from a source to destination

Sorting Integers

### **SHORTEST PATHS IN A GRAPH**

A fundamental problem

# **Notations and Terminologies**

A directed graph G = (V, E)

- $\omega: E \to R^+$
- Represented as **Adjacency lists** or **Adjacency matrix**
- n = |V| , m = |E|

**Question**: what is a path in **G**?

Answer: A sequence  $v_1, v_2, ..., v_k$  such that  $(v_i, v_{i+1}) \in E$  for all  $1 \leq i < k$ .



Length of a path  $P = \sum_{e \in P} \omega(e)$ 

# **Notations and Terminologies**

**Definition**:

The path from u to v of minimum length is called the shortest path from u to v

**Definition**: **Distance** from  $\boldsymbol{u}$  to  $\boldsymbol{v}$  is the <u>length</u> of the shortest path from  $\boldsymbol{u}$  to  $\boldsymbol{v}$ .

#### **Notations**:

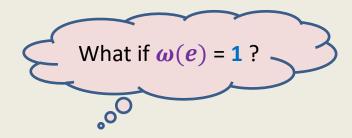
- $\delta(u, v)$ : distance from u to v.
- P(u, v): The shortest path from u to v.

# **Problem Definition**

Input: A directed graph G = (V, E) with  $\omega : E \to R^+$  and a source vertex  $s \in V$ 

#### Aim:

- Compute  $\delta(s, v)$  for all  $v \in V \setminus \{s\}$
- Compute P(s, v) for all  $v \in V \setminus \{s\}$





# **Problem Definition**

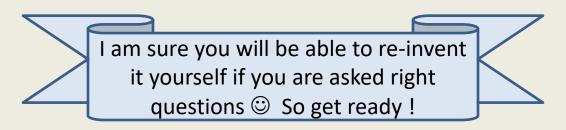
Input: A directed graph G = (V, E) with  $\omega : E \to R^+$  and a source vertex  $s \in V$ 

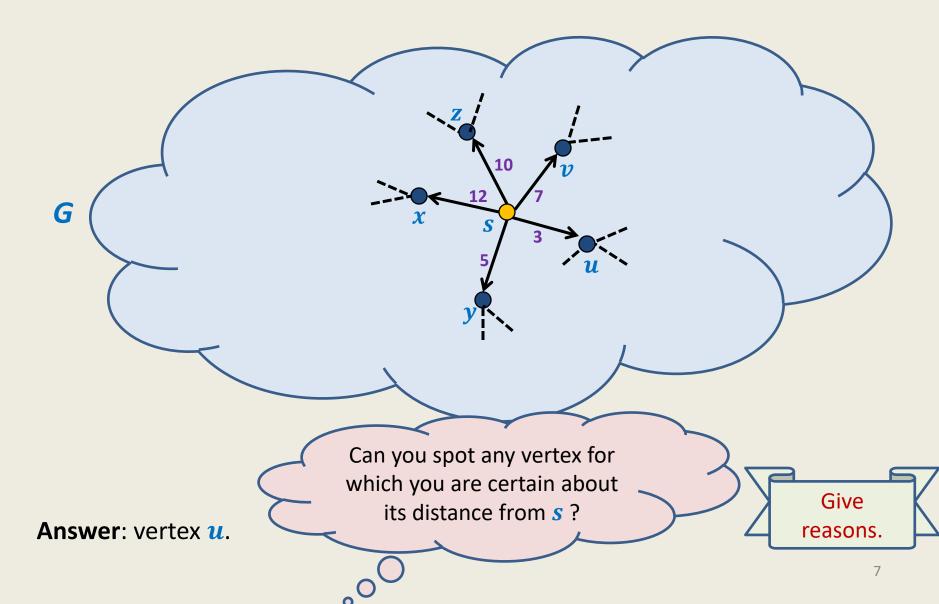
#### Aim:

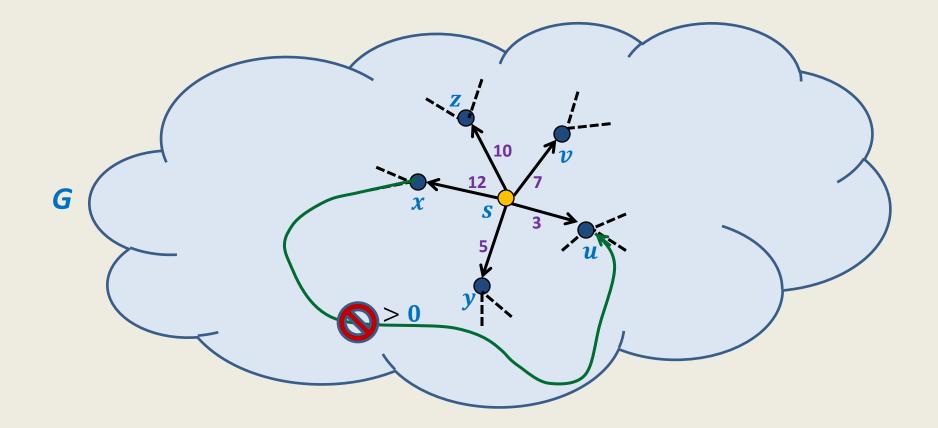
- Compute  $\delta(s, v)$  for all  $v \in V \setminus \{s\}$
- Compute P(s, v) for all  $v \in V \setminus \{s\}$

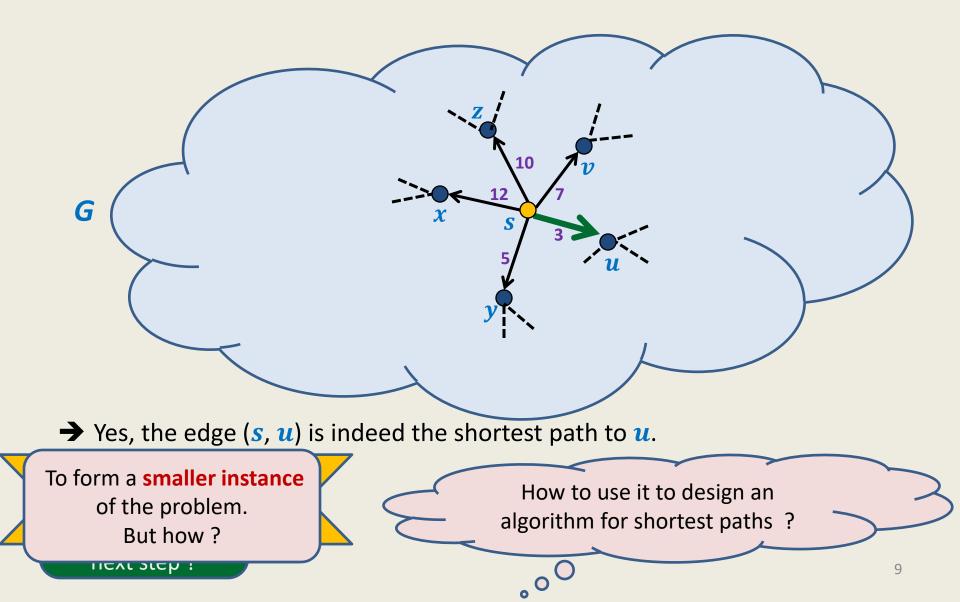
#### First algorithm : by Edsger Dijkstra in 1956

And still the best ...









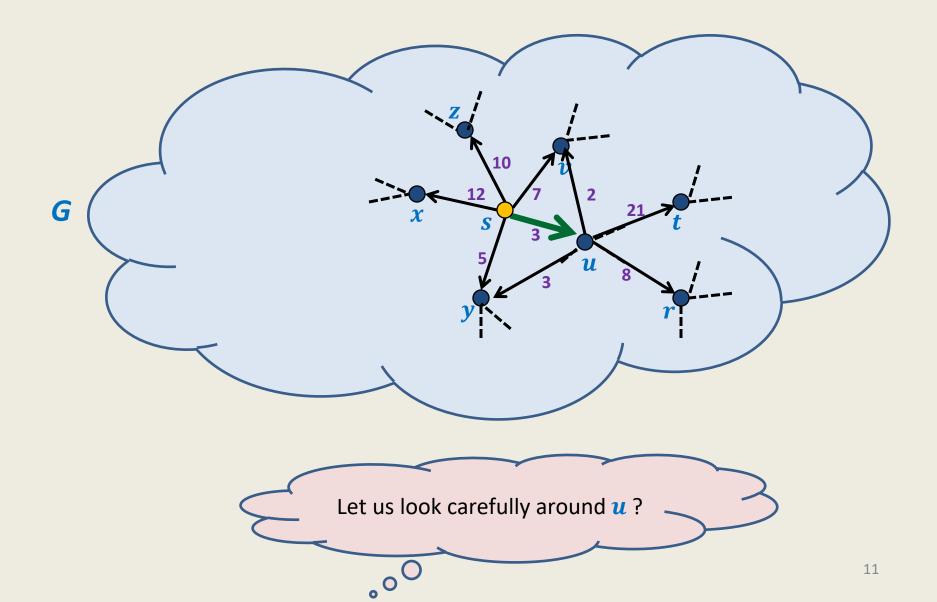
## **Pondering over the problem**

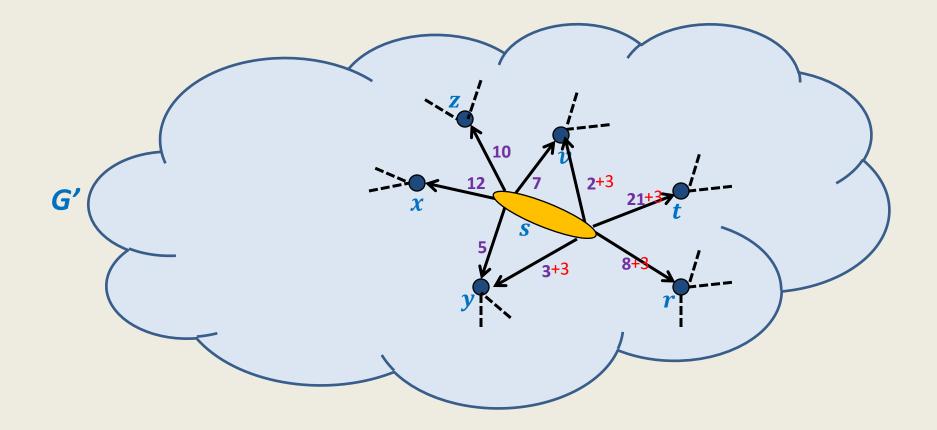
**Idea 1** :

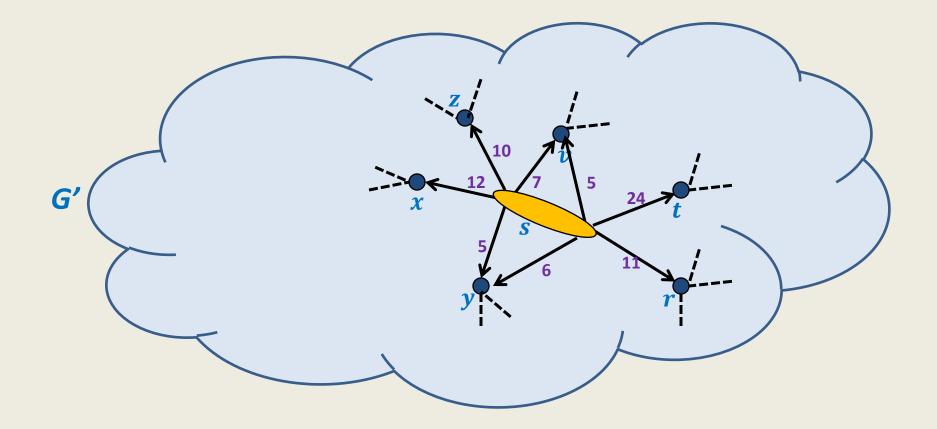
Remove  $\boldsymbol{u}$  since we have computed distance to  $\boldsymbol{u}$ . & so its job is done.

- So now there will be n 1 vertices.
- The new graph **will preserve** those shortest paths from *s* in which *u* is not present.
- But what about those shortest paths from s that pass through u ?
- We lost them with the removal of  $\boldsymbol{u}$ .  $\boldsymbol{\boldsymbol{\Im}}$
- So we can't afford to remove **u**.









# How to compute instance G'

Let (s, u) be the least weight edge from s in G = (V, E). Transform G into G' as follows.

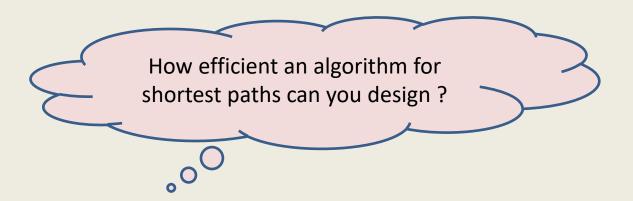
1. For each edge  $(u, x) \in E$ ,

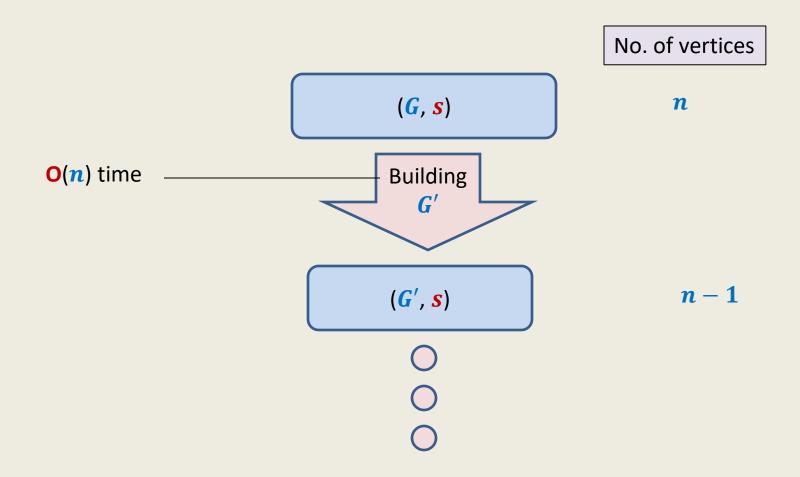
add edge (s,x);  $\omega(s,x) \leftarrow \omega(s,u) + \omega(u,x)$ ;

2. In case of two edges from s to any vertex x

3. Remove vertex *u*.

**Theorem:** For each  $v \in V \setminus \{s, u\}$ ,  $\delta_G(s, v) = \delta_{G'}(s, v)$ 





 $\rightarrow$  an algorithm for **distances** from **s** with  $O(n^2)$  time complexity.

# **Integer sorting**

### Algorithms for Sorting *n* elements

- Insertion sort:  $O(n^2)$
- Selection sort:  $O(n^2)$
- Bubble sort:  $O(n^2)$
- Merge sort:  $O(n \log n)$
- Quick sort: worst case  $O(n^2)$ ,
- Heap sort:  $O(n \log n)$

**Question:** What is common among these algorithms ? **Answer:** All of them use only **comparison** operation to perform sorting.

#### **Theorem** (to be proved in CS345):

Every comparison based sorting algorithm must perform at least  $n \log n$  comparisons in the worst case.

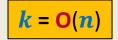
# Question: Can we sort in O(n) time ?

The answer depends upon

- the **model of computation**.
- the <u>domain</u> of input.

# **Integer sorting**

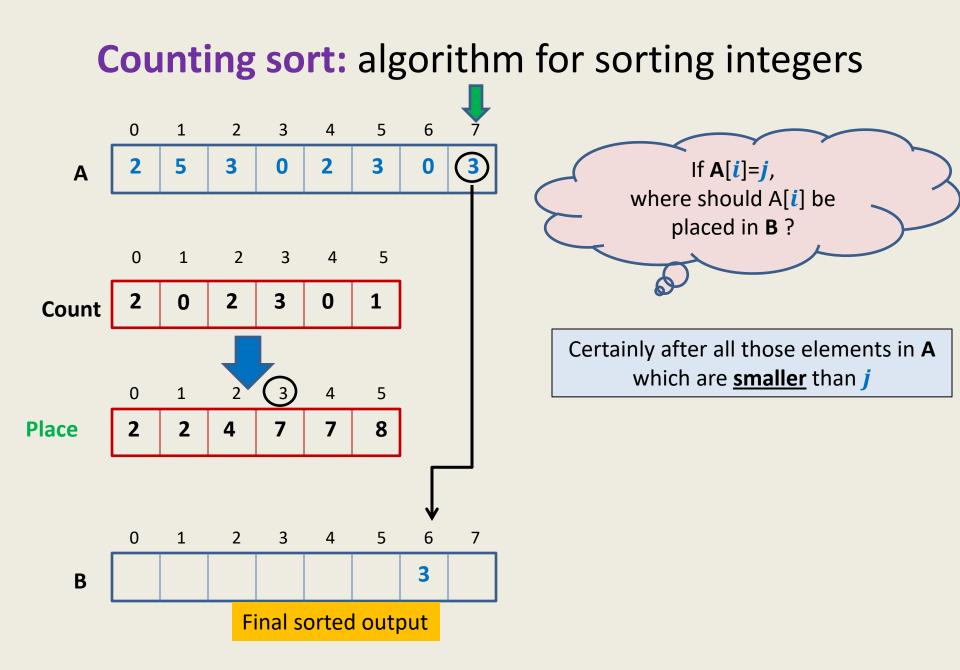
**Input:** An array **A** storing *n* integers in the range [0...k - 1]. **Output:** Sorted array **A**. **Running time:** O(n + k) in word RAM model of computation. **Extra space:** O(k)

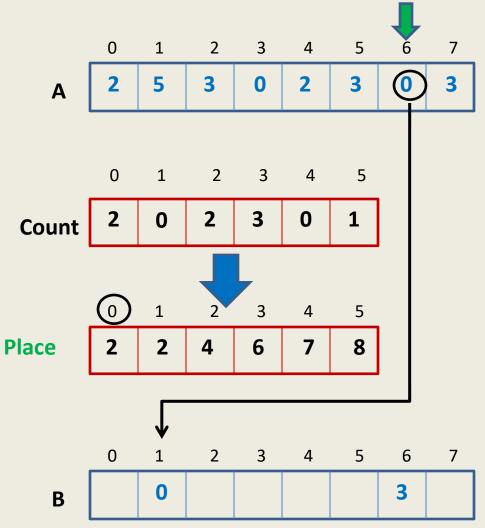


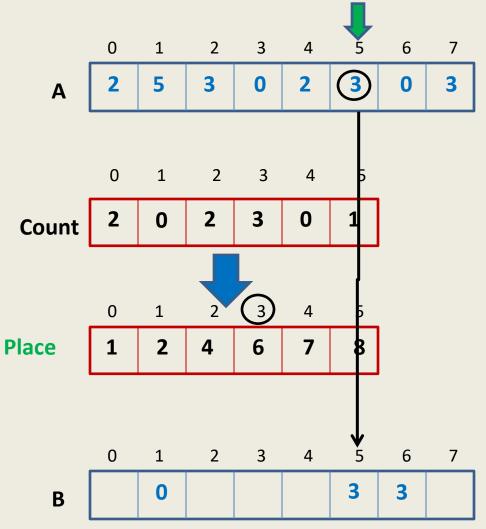
#### **Motivating example: Indian railways**

There are **13 lacs** employees.

Aim : To sort them list according to DOB (date of birth) Observation: There are only 14600 different date of births possible.







Algorithm (A[0...n - 1], k)

For j=0 to k-1 do Count $[j] \leftarrow 0$ ;

For i=0 to n-1 do Count[ A[i] ]  $\leftarrow$  Count[ A[i] ] +1;

For j=0 to k-1 do Place $[j] \leftarrow \text{Count}[j]$ ; For j=1 to k-1 do Place $[j] \leftarrow \text{Place}[j-1] + \text{Count}[j]$ ;

```
For i=n - 1 to 0 do
{ B[ Place[A[i]]-1 ] ← A[i];
    Place[A[i]] ← Place[A[i]]-1;
}
return B;
What is the time complexity
of this algorithm in word
RAM model ?
```