Data Structures and Algorithms (CS210A)

Lecture 41

Miscellaneous problems

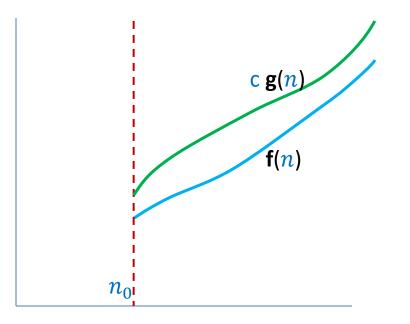
Order notation

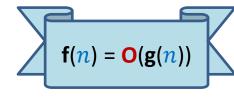
Definition: Let f(n) and g(n) be any two increasing functions of n.

f(n) is said to be

if there exist constants **c** and n_0 such that

 $\mathbf{f}(n) \leq \mathbf{c} \, \mathbf{g}(n)$ for all $n > n_0$



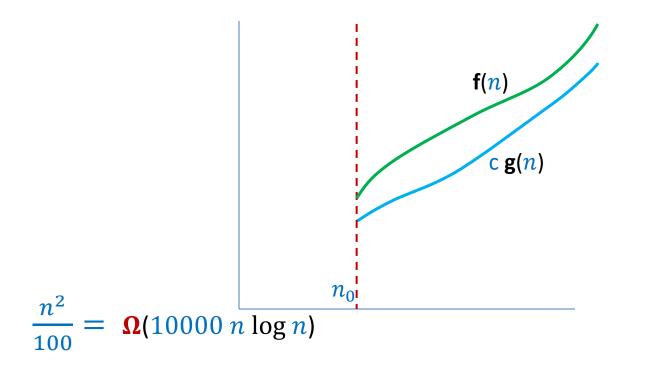


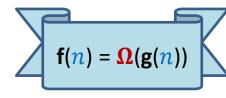
Order notation extended

Definition: Let f(n) and g(n) be any two increasing functions of n.

f(n) is said to be if there exist constants c and n_0 such that

 $\mathbf{f}(n) \ge \mathbf{c} \mathbf{g}(n)$ for all $\mathbf{n} > n_0$





Order notation extended

Observations:

• f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

One more Notation:

If f(n) = O(g(n)) and g(n) = O(f(n)), then $g(n) = \Theta(f(n))$

Examples:

•
$$\frac{n^2}{100} = \Theta(10000 n^2)$$

• Time complexity of Quick Sort is $\Omega(n \log n)$

• Time complexity of Merge sort is $\Theta(n \log n)$

Time complexity of a problem

 $O(n^2)$

 $O(n \log n)$

 $\Omega(n \log n)$

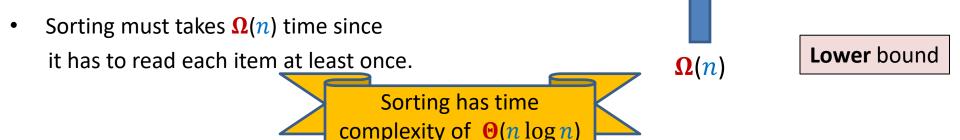
Upper bound

Example: Sorting

• Algorithm 1 : Selection Sort with time complexity $O(n^2)$

Algorithm 2 : Merge Sort with time complexity O(n log n)

• Each comparison based sorting algorithm needs to perform $\Omega(n \log n)$ comparisons in the worst case.



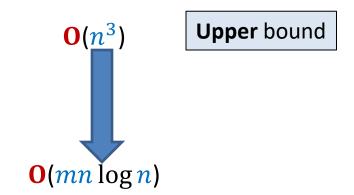
Time complexity of a problem

Time complexity of APSP

Example: All-pairs shortest paths (APSP)

Algorithm 1 : Floyd Warshal Algorithm with time complexity O(n³)

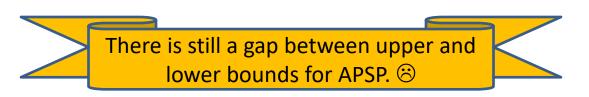
Algorithm 2 : Johnson' algorithm with time complexity O(mn log n)



• All-pairs shortest paths must require $\Omega(n^2)$ time

 $\Omega(n^2)$

Lower bound



Aim of theoretical computer science

For any given computational problem *P*

This requires designing

better algorithm

• Get smallest possible upper bound on its time complexity <

Reduce the GAP

Get largest possible lower bound on its time complexity.

How to establish lower bound

Two ways:

Adversarial approach

A gentle introduction today

• Limitation of the model of computation

Adversarial approach

Key aspects

Algorithm:

- Algorithm does not have free access to the input.
 To access any item in the input, algorithm has to spend some time.
- The execution of an algorithm at any step is determined
 <u>only</u> by the (<u>partial</u>) input it has seen till now.

Adversary

- Adversary has access to <u>all</u> possible inputs of a problem.
- The sole aim of adversary is to make an algorithm work really hard.
 For this purpose, adversary <u>discloses</u> the input <u>cleverly</u>.

Locating 1 problem

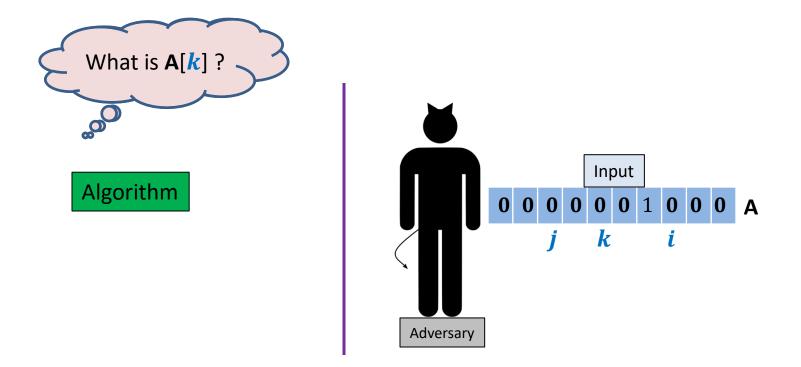
Input: An array A[0...n - 1] with an <u>unknown</u> *i* s.t.

- For all $j \neq i$, A[j] = 0
- A[*i*]= 1

Aim: To locate/search 1 in A.

Upper bound: O(n)Lower bound: $\Omega(n)$

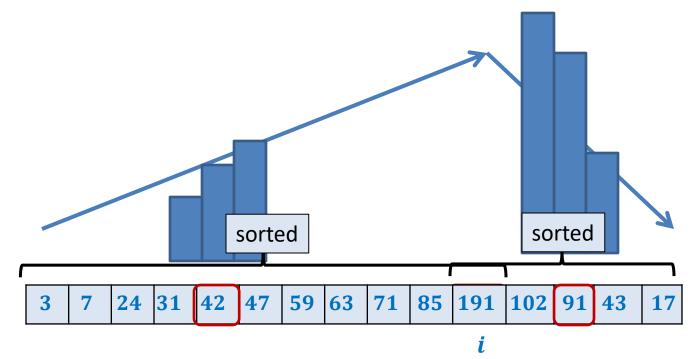
Lower bound on Locating 1 problem



Miscellaneous problems

Input: Given an array A storing *n* numbers, there is an i < n (unknown) s.t. A[0] < A[1] < ... < A[i] > A[i + 1] > ... > A[n - 1]Aim:

To search efficiently **Answer : O**(log *n*) is possible



Input:

Given an array A storing *n* numbers, there is an i < n (unknown) s.t. $A[0] \le A[1] \le ... \le A[i] \ge A[i + 1] \ge ... \ge A[n - 1]$

Aim:

To search efficiently

Answer: $\Omega(n)$ time complexity

Locating 1 problem

is a special case of

Problem 2

Input:

Given an array A storing n numbers, there are i < j < n (unknown) s.t. A[0] < A[1] < ... < A[i] > A[i + 1] > ... > A[j] < A[j + 1] < ... < A[n - 1]

Aim:

To search efficiently

Answer: $\Omega(n)$ time complexity

Locating 0 problem

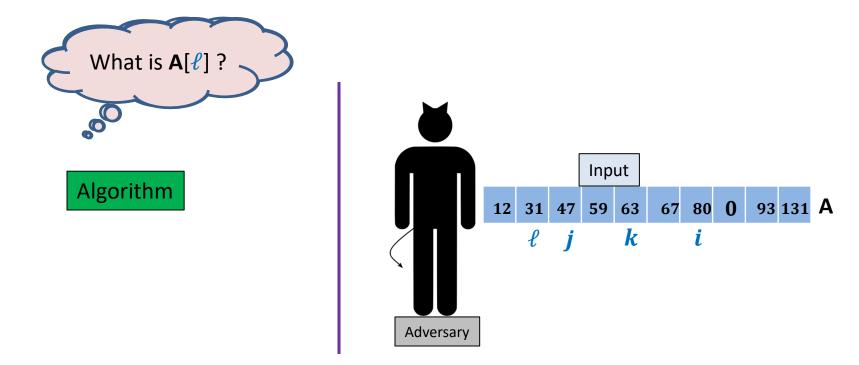
Input: An array A[0...n - 1] with an <u>unknown</u> *i* s.t.

- For all j < i, A[j] > 0 and A[j-1] < A[j]
- A[*i*] = 0
- For all j > i, A[j] > 0 and A[j] < A[j+1]

Aim: To locate/search 0 in A.

Upper bound: O(n)**Lower** bound: $\Omega(n)$

Lower bound on Locating 0 problem



Input:

Given an array A storing n numbers, there are i < j < n (unknown) s.t. A[0] < A[1] < ... < A[i] > A[i + 1] > ... > A[j] < A[j + 1] < ... < A[n - 1]

Aim:

To search efficiently

Answer: $\Omega(n)$ time complexity

Locating 0 problem

is a special case of

Problem 3

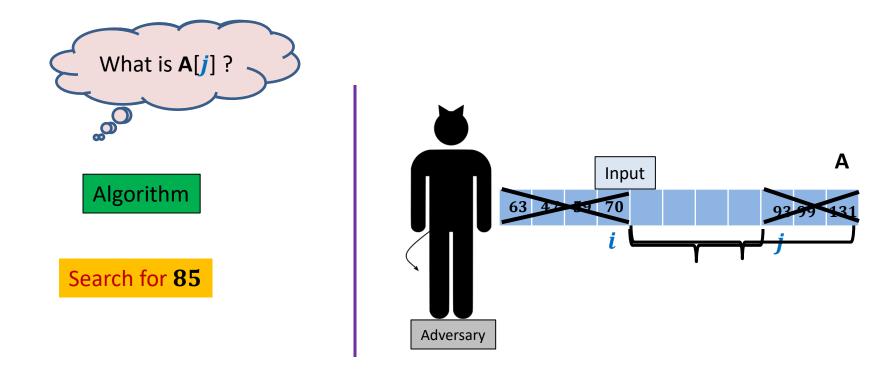
Input:

Given a sorted array **A** storing **n** numbers, **Aim**:

To search efficiently

Answer: $O(\log n)$ time complexity (binary search) $\Omega(\log n)$ time complexity

Lower bound on Problem 4



Input:

Given a 2-dimensional square grid storing n^2 distinct numbers, Aim:

To find a Local minima efficiently

Answer :

O(n) time complexity (in the second week of the course) $\Omega(n)$ time complexity

Prove it using Adversarial arguments during summer vacations

Final slide

