
Data Structure & Algorithms

CS210A

Semester II, 2015-16, CSE, IIT Kanpur

Programming Assignment II

Deadline : 11:59pm of 25th January

Note: This programming assignment consists of two problems and you have to do only one of the

two problems. First one is a hard problem compared to the second one. So the marks distributions are
not same. The first problem has 100% marks and the second has only 65% marks of the total
assisnment.

1 Data structure for compact representation of sparse matrices

The simplest way to represent a n×n matrix M is by a 2-dimensional array. A matrix M is said to be a
sparse matrix if the nonzero entries in M are very few. Storing a sparse matrix using 2-dimensional array
is not a compact way to store. However, any alternate data structure should be such that it facilitates
efficient execution of various algorithms on matrix. The goal of this problem is to make you realize that
there is a very elegant link based data structure for storing matrices which achieves compactness. A
skeleton of the data structure you need to develop is shown in Figure 1.

centerline

5454

00

0 0 00

00

00

0 77

67
67

21
21

1313

(i) (ii)

P

Q

row-head nodes

column-head nodes

value nodes

Figure 1: (ii) shows a skeleton the link based data structure for the sparse matrix shown in (i)

There are the following features of this data structure. The data structure for an n × n matrix will
consist of exactly 2n + m nodes where m is the number of non zero entries in the matrix. Each node
will have identical structure, that is, a row-head node, a value node, and a column-head node will have
identical structure (your implementation has to use some way to distinguish these nodes).

1



The matrix will be accessed by two pointers P and Q pointing to the lists of column-head nodes and
row-head nodes respectively (see Figure 1).

As part of the assignment, you have to achieve the following objectives.

• Design the data structure with the above specification.

• You have to develop routines to read entries of matrices and store them in your data structure.
You may assume that the non zero entries will be provided to you in the following order: First the
nonzero entries of 1st row will appear, and then the nonzero entries of second row will appear, and
so on. The entries within a row will appear in the increasing order of their columns (see the sample
input below).

• You have to design an algorithm to multiply two n × n matrices which are stored in the data
structure designed above.

Input: The first line will represent n. Thereafter the nonzero entries of matrices will appear in the
following format. Each line will consist of four numbers. The first number will represent the matrix (first
or second). The second and the third numbers will represent the row and column of the entry. The fourth
number will represent the value of the entry. For example, 1 4 2 36 means that there is a nonzero entry
in the 4th row and 2nd column of the first matrix and its value is 36. First all the nonzero entries of first
matrix appear and then the nonzero entries of the second matrix appear. Finally a line consisting of a
single 0 means the end of the input. You may assume that input to your program will indeed be a valid
input. Both the indices of row and column number start from 1.

Output : You have to print the output matrix after multiplication. The output should be in the
above format given as well. Do not give any matrix number for the resultatant matrix in the output.
For example, 4 2 36 means that there is a nonzero entry in the 4th row and 2nd column of the output
matrix and its value is 36.

Sample Input:

3

1 1 3 25

1 2 1 33

1 2 2 14

1 3 1 8

2 1 1 45

2 1 2 79

2 3 1 109

2 3 3 56

0

Sample Output:

1 1 2725

1 3 1400

2 1 1485

2 2 2607

3 1 360

3 2 632

2



2 Data structure for Big Polynomial Representation

Linked list can be used efficiently for representing polynomials. In array you have to store all the terms
in the polynomial from 0th order to nth order. This will not be efficient usage of storage space as there
may be many terms with 0 coefficient. Using linked list we can store only the non-zero terms of the
polynomial. This assignment deals with representing two polynomials given in the input using linked list
and multiply them. You have to give the output polynomial as linked list as well. You only can store the
non-zero terms in the linked list. Every node of the linked list will contain the exponent and non-zero
coefficient.

As part of the assignment, you have to achieve the following objectives.

• Using linked list represent the 2 polynomials (Store only the non-zero terms).

• Design the algorithm to multiply the given 2 polynomials. The result should be stored in another
linked list.

Figure 2: Shows a representation of a 2nd order polynomial starting with the 2nd order term and ending
with the 0th order term
.

Input : Each line in the input will contain three numbers. First number will represent which poly-
nomial the term belongs to. Second number is the coefficient of the term and the third number is the
exponent of the term.For example, 1 89 2 means that there is a term in the first polynomial which has
coefficient 89 and exponent 2. The exponents would be given in decreasing order. Finally a line consists
of single 0 means the end of the input.

Output : The output is the resulting polynomial represented as follows: The output will contain
n lines if there are n non-zero entries in the resulting polynomial. Each of the n line will contain two
numbers, the coefficient and the exponent of the non-zero term. The exponents should be in decreasing
order.

Sample Input :

1 14 3

1 3 2

1 1 1

2 2 1

2 1 0

Sample Output :

28 4

20 3

5 2

1 1

3


