Generics in Java

Course Curriculum

Generics in Java

Generics in Java

Generics mean parameterized types. The idea is to allow type (Integer, String, … etc, and user-defined types) to be a parameter to methods, classes, and interfaces. Using Generics, it is possible to create classes that work with different data types.
An entity such as class, interface, or method that operates on a parameterized type is called a generic entity.

Why Generics?

The Object is the superclass of all other classes and Object reference can refer to any type object. These features lack type safety. Generics add that type safety feature. We will discuss that type of safety feature in later examples.
Generics in Java is similar to templates in C++. For example, classes like HashSet, ArrayList, HashMap, etc use generics very well. There are some fundamental differences between the two approaches to generic types.

Generic Class
Like C++, we use <> to specify parameter types in generic class creation. To create objects of a generic class, we use the following syntax.

// To create an instance of generic class
BaseType <Type> obj = new BaseType <Type>()

Note: In Parameter type we can not use primitives like
'int','char' or 'double'.

// A Simple Java program to show working of user defined
// Generic classes

// We use < > to specify Parameter type
class Test<T>
{
// An object of type T is declared
T obj;
Test(T obj) { this.obj = obj; } // constructor
public T getObject() { return this.obj; }
}

// Driver class to test above
class Main
{
public static void main (String[] args)
{
// instance of Integer type
Test <Integer> iObj = new Test<Integer>(15);
System.out.println(iObj.getObject());

// instance of String type
Test <String> sObj =
new Test<String>("Prutor.ai");
System.out.println(sObj.getObject());
}
}
Output:

15
Prutor.ai

We can also pass multiple Type parameters in Generic classes.

// A Simple Java program to show multiple
// type parameters in Java Generics

// We use < > to specify Parameter type
class Test<T, U>
{
T obj1; // An object of type T
U obj2; // An object of type U

// constructor
Test(T obj1, U obj2)
{
this.obj1 = obj1;
this.obj2 = obj2;
}

// To print objects of T and U
public void print()
{
System.out.println(obj1);
System.out.println(obj2);
}
}

// Driver class to test above
class Main
{
public static void main (String[] args)
{
Test <String, Integer> obj =
new Test<String, Integer>("Prutor", 15);

obj.print();
}
}
Output:

Prutor
15

Generic Functions:
We can also write generic functions that can be called with different types of arguments based on the type of arguments passed to the generic method, the compiler handles each method.

// A Simple Java program to show working of user defined
// Generic functions

class Test
{
// A Generic method example
static <T> void genericDisplay (T element)
{
System.out.println(element.getClass().getName() +
" = " + element);
}

// Driver method
public static void main(String[] args)
{
// Calling generic method with Integer argument
genericDisplay(11);

// Calling generic method with String argument
genericDisplay("Prutor.ai");

// Calling generic method with double argument
genericDisplay(1.0);
}
}
Output :

java.lang.Integer = 11
java.lang.String = Prutor.ai
java.lang.Double = 1.0
Generics work only with Reference Types:
When we declare an instance of a generic type, the type argument passed to the type parameter must be a reference type. We cannot use primitive data types like int, char.

Test<int> obj = new Test<int>(20);
The above line results in a compile-time error, that can be resolved by using type wrappers to encapsulate a primitive type.

But primitive type array can be passed to the type parameter because arrays are reference type.

ArrayList<int[]> a = new ArrayList<>();
Generic Types Differ Based on Their Type Arguments:

Consider the following Java code.

// A Simple Java program to show working
// of user-defined Generic classes

// We use < > to specify Parameter type
class Test<T>
{
// An object of type T is declared
T obj;
Test(T obj) { this.obj = obj; } // constructor
public T getObject() { return this.obj; }
}

// Driver class to test above
class Main
{
public static void main (String[] args)
{
// instance of Integer type
Test <Integer> iObj = new Test<Integer>(15);
System.out.println(iObj.getObject());

// instance of String type
Test <String> sObj =
new Test<String>("Prutor.ai");
System.out.println(sObj.getObject());
iObj = sObj; //This results an error
}
}
Output:

error:
incompatible types:
Test cannot be converted to Test

Even though iObj and sObj are of type Test, they are the references to different types because their type parameters differ. Generics add type safety through this and prevent errors.
Advantages of Generics:
Programs that use Generics has got many benefits over non-generic code.

1. Code Reuse: We can write a method/class/interface once and use it for any type we want.

2. Type Safety: Generics make errors to appear compile time than at run time (It’s always better to know problems in your code at compile time rather than making your code fail at run time). Suppose you want to create an ArrayList that store name of students and if by mistake programmer adds an integer object instead of a string, the compiler allows it. But, when we retrieve this data from ArrayList, it causes problems at runtime.

// A Simple Java program to demonstrate that NOT using
// generics can cause run time exceptions
import java.util.*;

class Test
{
public static void main(String[] args)
{
// Creatinga an ArrayList without any type specified
ArrayList al = new ArrayList();

al.add("Rishabh");
al.add("Shivam");
al.add(10); // Compiler allows this

String s1 = (String)al.get(0);
String s2 = (String)al.get(1);

// Causes Runtime Exception
String s3 = (String)al.get(2);
}
}
Output :

Exception in thread "main" java.lang.ClassCastException:
java.lang.Integer cannot be cast to java.lang.String
at Test.main(Test.java:19)
How generics solve this problem?
At the time of defining ArrayList, we can specify that this list can take only String objects.

// Using generics converts run time exceptions into
// compile time exception.
import java.util.*;

class Test
{
public static void main(String[] args)
{
// Creating a an ArrayList with String specified
ArrayList <String> al = new ArrayList<String> ();

al.add("Rishabh");
al.add("Shivam");

// Now Compiler doesn't allow this
al.add(10);

String s1 = (String)al.get(0);
String s2 = (String)al.get(1);
String s3 = (String)al.get(2);
}
}

Output:
15: error: no suitable method found for add(int)
al.add(10);
^
3. Individual Type Casting is not needed: If we do not use generics, then, in the above example every time we retrieve data from ArrayList, we have to typecast it. Typecasting at every retrieval operation is a big headache. If we already know that our list only holds string data then we need not typecast it every time.

// We don't need to typecast individual members of ArrayList
import java.util.*;

class Test
{
public static void main(String[] args)
{
// Creating a an ArrayList with String specified
ArrayList <String> al = new ArrayList<String> ();

al.add("Rishabh");
al.add("Shivam");

// Typecasting is not needed
String s1 = al.get(0);
String s2 = al.get(1);
}
}
4. Generics promotes code reusability.
5. Implementing generic algorithms: By using generics, we can implement algorithms that work on different types of objects and at the same, they are type safe too.

(Next Lesson) How to start learning Java